Title
Current utilization of cardiac computed tomography in mainland China: A national survey

Permalink
https://escholarship.org/uc/item/44n1r75d

Authors
Liu, K
Hsieh, C
Zhuang, N
[et al]

Publication Date
2015-09-17

DOI
10.1016/j.jcct.2015.11.004

Peer reviewed
Current utilization of cardiac computed tomography in mainland China: the first national survey

Kun Liu¹; Christopher Hsieh²; Nan Zhuang³; Yang Gao¹; Zhennan Li¹; Xinshuang Ren¹; Huayang Liu⁴; Li Yang⁵; Jiayin Zhang⁶; Matthew J. Budoff⁷ and Bin Lu¹*

¹ Department of Radiologic Imaging, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College; National Center of Cardiovascular Diseases; #167 Beilishi Road, Beijing 100037, China
² Olin Business School, Washington University in St. Louis, 1 Brookings Drive, St. Louis, MO 63130;
³ The Institute of Medical Information and Library, Chinese Academy of Medical Sciences and Peking Union Medical College; #5 Dong-dan-san-tiao street, Beijing, 100005, China
⁴ Department of Molecular Imaging & Computed Tomography, GE Healthcare; 3000 N. Grandview Boulevard, Waukesha, WI 53188;
⁵ Department of Radiology, PLA General Hospital; 28 Fuxing Road, Beijing 100853, China.
⁶ Institute of Diagnostic and Interventional Radiology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yishan Road, Shanghai 200233, China.
⁷ Department of Internal Medicine, Division of Cardiology, Harbor-UCLA Medical Center, 1124 West Carson Street, Torrance, CA, USA.

* Corresponding Author: Bin Lu, Department of Radiologic Imaging, Fuwai Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College; National Center of Cardiovascular Diseases; #167 Beilishi Road, Beijing 100037, China;

Email: blu@vip.sina.com; Tel: 86-10-88398052; Fax: 86-10-68313012.
Running title: CCTA utilization survey in China
Key words: coronary artery; computed tomography; CT angiography; questionnaire

Conflict of interest: None

Financial disclosure: This work was granted by the “Eleventh Five-Year Plan” of the Ministry of Science and Technology, China (No.2007BAI05B02) and “Capital Health Development Research Project” of Beijing Municipal Health Bureau (No. 2011-4003-01).

Highlights
1. This work is the first nationwide cardiac CT survey in China mainland, and probably the first analogous survey conducted by random sampling manner worldwide.
2. Authors managed an extensive investigation on each routine component of cardiac CT examination in terms of current CT apparatus, indications, imaging acquisition techniques, contrast media protocols, image reconstruction and interpretation, and clinical challenges. Thereby, an overall picture of current cardiac CT utilization in China was drawn.
3. This survey was sponsored by China International Regional Committees of Society of Cardiovascular CT (SCCT China IRC), which conformed to the duty of SCCT.
Background Surveys referring to the utilization of cardiac computed tomography (CT) were available in the United States, Germany and Taiwan, but not in mainland China.

Objectives To understand the clinical utilization of cardiac CT in mainland China.

Methods A 25-item questionnaire was designed by Society of Cardiovascular Computed Tomography China International Regional Committee (SCCT China IRC) Representatives. 240 hospitals were randomly chosen from all the level A & B tertiary hospitals listed in an official report. Survey data were collected by interview, and double checked by phone and email to providers.

Results 237 (98.8%) hospitals consented to this survey, but 85 were dropped due to lack of advanced CT scanners or lack of volume. 152 (64.1%) questionnaires were available for analysis. The most common indications for cardiac CT angiography at each hospital was exclusion of coronary artery disease in patients with low-intermediate pretest likelihood (100%), asymptomatic people with cardiovascular risk factors (95.4%), and follow-up after coronary bypass grafting (66.4%). Each center examined on median 1,037 patients (range 150-8,072) annually. Beta-blocker was administered on a median heart rate threshold of >70 beats/min. Most (86.2%) used sublingual nitroglycerin. Prospective ECG triggering acquisition was the predominant technique in 44.1% of hospitals. Many (59.2%) providers adjusted the tube current to the body mass but few (15.8%) adjusted the injection rate of contrast agents. The mean examination and post-processing time per case were 14.2 min and 13.6 min, respectively. Reporting took an average of 18.0 min per case.
Conclusions Cardiac CT has rapidly become established in clinical practice in mainland China, though needs to be more uniform in application and performance across the country.

Introduction
Computed tomography (CT) has been evolving since its birth 4 decades ago, and it is impossible to imagine current clinical practice without CT imaging. CT angiography is a relatively novel technique, with a history of ~20 years, which was born through a marriage of spiral CT and graphical volumetric image processing. Among organs or sites, coronary CT angiography (CCTA) is the most technically challenged, and is far more complicated than simply modifying the acquisition parameters and contrast infusion protocols for an anatomic region. Human hearts are in constant motion. A good CCTA acquisition requires a controlled heart rate, a regular heart rhythm, and carefully timed coronary enhancement during maximal arterial perfusion and minimal cardiac motion. After that, post-processing is conducted to optimize the evaluation of each coronary segment using multiple reconstruction techniques. Lastly, certificated cardiologists or radiologists interpret all the axial and reconstructed images and sign the reports. The same procedure happens everyday in China and the United States, but there are differences in the practice patterns for each component of CCTA examination among countries. Johnson and Maurer independently launched nationwide investigations in the United States and Germany years ago, but utilization and interpretation techniques were still not well delineated in China. China is the most populous nation on earth, and carries the heaviest burden of cardiovascular diseases. According to an official report released by the National
Center of Cardiovascular Diseases (NCCD) during 2015 China Heart Congress held in Beijing, there were 270 million patients with cardiovascular disease in China. Chinese cardiovascular radiologists must do their part in this battle against cardiovascular diseases, but current utilization of cardiac CT scanners is not well known. The first 64-rows CT scanners in China (not including Taiwan, Hong Kong and Macao, similarly hereinafter) were installed in 2005, and now the estimated premium CT (64 rows or above) scanners number more than 3 thousand. However, there is inadequate data, if not vacant, to demonstrate the amount of CCTA scans, indications, acquisition techniques, contrast media protocols, interpretation duration, and even radiation dose in China. Based on the above considerations, it was necessary to launch a national survey concerning the utilization of cardiac CT in China, of which the China International Regional Committees (IRC) of Society of Cardiovascular CT (SCCT) was the eligible organizer. SCCT China IRC was established in February 2013, which was set up to promote cardiovascular CT and the objectives of SCCT in our region. As it was the first nationwide survey, we attempted to buildup China’s CCTA information database including the level of methodology behind each scan, and compared with the previous reports in other countries.

Methods

This investigation was deemed exempt by the institutional review board of our hospital. A 25-item questionnaire was designed by SCCT China IRC Representatives (Table 1). A preset question (No. 0) was authentication information, including the respondent's name, position, contact, and hospital. The first question was whether there was at least one premium CT scanner in the hospital: if no, the survey was
ended as premium CT scanners are a pre-requisite for CCTA. Questions No. 2 was
whether the CCTA procedures were over 100 in the last 12 months: if no, the survey
was not continued as the hospital was assume to be less experienced. The
remaining questions pertained to the facility the radiologists work in (teaching or non-
teaching hospital), the indications for cardiac CT, patient preparation (e.g.,
administration of sublingual nitroglycerin or beta-blocker, breath-hold test), and
technical aspects of the “double low” (radiation and iodine) protocols (e.g., gland
shield, prospective triggering, tube current adjustment, contrast agent
administration). The last 7 questions (No. 19-25) referred to the storage and
interpretation of cardiac CT data sets (e.g., overall duration), and the future needs for
cardiac CT.

Hospitals in China are organized according to a 3-tier system designated as primary,
secondary or tertiary institutions that recognize a hospital’s ability to provide medical
care, medical education, and conduct medical research. Based on the level of
service, size, medical technology, medical equipment, the 3 tiers are further
subdivided into 3 subsidiary levels: A, B and C, resulting in a total of 9 levels. The
procedure for choosing our sample size as well as the list for hospitals to be
surveyed started from analyzing a list of all the tertiary hospitals in China, because
the survey mainly focused on CCTA scans, primary and secondary hospitals would
not be applicable. Therefore it was determined that the most likely group of hospitals
to meet the requirements were the level A & B tertiary hospitals (designated as
LABEL hospitals) from this list of hospitals gathered by the National Health and
Family Planning Commission (NHFPC) of China, making the population size of the experiment 1,44211. It was determined that a sub-sampling of the population is needed in order to make the study practice with limited resource. For a finite population, the sample size, \(s \), can be calculated based on the following equation:

\[s = s'N/(s'+N-1) \]

with \(s' = Z^2p(1-p)/c^2 \), where \(N = 1,442 \) as the population size, \(Z \) was the Z-Score, \(p \) was the standard deviation, and \(c \) stood for the margin of error. The desired confidence level for this study was selected to be 90\% which meant \(Z = 1.645 \). Since no prior knowledge was available, a \(p \) value of 0.5 was selected which was a conservative estimation to ensure the sample size was sufficient. \(c \) was willing to undergo 5\%. Based on the above assumption, the required sample size was determined to be 228. Given the varying economic and population levels in China's provinces, the sample size needed to be split evenly among the different provinces based upon the number of \textit{LABEL} hospitals located in, guaranteeing that each province had at least one representative hospital. The final sample size ended up being 240 due to a buffer (5\%) being added in case of absent response to the survey from a hospital, which was believed to adequate to make our results universal and convincing. At last, a notarized random sampling was taken.

Under directions of SCCT China IRC, this survey was done during December 2014 to February 2015. Our respondents were either the directors of CT departments or their deputies with authentication. The numbers of CCTA procedure amount were obtained exactly from Picture Archiving and Communication System (PACS) if available or from an estimated value which was confirmed by another senior
radiologist (>10 years experience) if PACS was not available, with a maximum expected error of 50 scans/year. As an incentive for completing the questionnaire, 10 copies of an educational book Coronary CT Angiography Manual (Chinese version translated by authors, original English version by Robert Pelberg and Wojciech Mazur, Springer 2007) were offered as gifts to all respondents. Questionnaires were collected by either the marketing team of GE Healthcare China (83.5%) or SCCT China IRC representatives (16.5%), but 30% (60/198) forms provided by GE were randomly picked and checked by SCCT China IRC representatives via telephone, email or Wechat (Tencent Inc., Shenzhen, China) to clear the suspicions of commercial bias.

Results

Hospitals and CCTA procedure volumes

Two hundred and forty hospitals were nominated through random drawing, but 3 were unwilling to cooperate. After the Question 1 & 2, 69 (29.1%) hospitals were dropped due to lack of premium CT and 16 (6.8%) because of inadequate CCTA volumes (<100 scans per year). Finally, 152 (64.1%) LABEL hospitals were surveyed (Figure 1). The median CCTA procedure volume of the valid hospitals was 1,037 (range 150-8,072), which was somehow linear distribution at the index of 2 if the independent variable was the order of the volumes (Figure 2A).

CCTA indications

With regard to the inpatient/outpatient proportion, CCTA examinations were performed mostly (≥90%) for inpatient in 17.8% (27/152) hospitals, often (50%-89%) for inpatient in 36.2% (55/152) hospitals, sometimes (11%-49%) for inpatient in 37.5% (57/152) hospitals, and occasionally (≤10%) for inpatient in 8.5% (13/152)
The indications of CCTA were for the exclusion of coronary artery disease (CAD) in patients with a low to intermediate likelihood of disease by 100% of centers (152/152), for screening to rule out CAD in asymptomatic patients by 95.4% (145/152), for follow-up of patients with coronary bypasses by 66.4% (101/152), for the exclusion of coronary anomalies by 64.5% (98/152), for evaluation for pericardial disease by 38.8% (59/152), for follow-up of patients with coronary stents by 28.3% (43/152), for diagnosis of CAD in patients with a high pretest likelihood by 21.1% (32/152), and for triple rule-out by 18.4% (28/152, Table 2).

CT acquisition technique & radiation dose

Beta-blockers were routinely used by 30.3% (46/152) hospitals regardless of the heart rates before CCTA scanning, and administered based upon heart rate limits in the remaining, i.e., ~70bpm (65-74) by 37.5% (57/152) hospitals, ~80bpm (75-84) by 22.4% (34/152) hospitals, and ~90bpm (85-100) by 9.7% (15/152) hospitals (Figure 2C). Routinely administration of sublingual nitroglycerin prior to cardiac CT was reported by 86.2% (131/152) of respondents. In all the hospitals (100%), patient’s breath-hold capacity was tested before the scan. The majority (63.2%, 96/152) of respondents stated that they did not perform cardiac CT in patients with atrial fibrillation at all, 23.0% (35/152) did conditionally, and 13.8% (21/152) stated they did as a routine (Figure 2D). The tube current was adjusted to the patient’s body weight or body mass index by 59.2% (90/152, Figure 2E), while 80.9% (123/152) shielded thyroid or genitals with lead apron.
Prospective electrocardiogram (ECG) triggering acquisition was widely adopted (≥90%) in the daily scanning by 13.2% (20/152) hospitals, often adopted (50%-89%) by 30.9% (47/152) hospitals, sometimes adopted (11%-49%) by 46.0% (70/152) hospitals, and occasionally adopted (≤10%) by 9.9% (15/152) hospitals (Figure 2F). Three eighth (37.5%, 57/152) hospitals had experiences of novel CCTA techniques, viz. GE single shot snap, Siemens high-pitch, or Toshiba SURE Cardio Prospective, but only 15.1% (23/152) believed them to be practical. Regarding iterative reconstruction algorithms, it was encouraging that 82.2% (125/152) hospitals used these protocols, but it was only 30.3% (46/152) believed them to be useful. Radiation dose is an unavoidable issue for CCTA. In our survey, 15.8% (24/152) hospitals chose >15mSv as the modal value of radiation dose, 42.1% (64/152) chose 10-15mSv, 31.6% (48/152) chose 6-9mSv, 10.5% (16/152) chose 3-5mSv, and no hospitals chose <3mSv (Figure 2G). The median dose among all the LABEL hospitals was 10-15mSv, but after adjusting by CCTA volume, the median dose among Chinese patients was 6-9mSv (Figure 2H).

Contrast media
Contrast media suppliers in China can be divided into two categories, domestic manufacturers and foreign/joint ventures. The former included Beijing Beilu Pharmaceutical, Yangtze River Pharmaceutical, Jiangsu Hengrui Medicine, and so on; the latter were mainly represented by Bayer Schering Pharma, Bracco Sine Pharmaceutical, and GE Pharma. We investigated the market shares of domestic and foreign holding vendors, and found that 28.3% (43/152) hospitals used almost all
foreign products, 28.9% (44/152) used more than half (50%-89%), 21.1% used less than half (11%-49%), and 21.7% used few (≤10%) foreign agents. Only about one sixth of centers (15.8%, 24/152) stated that they adjusted the injection rate based upon the patient’s body weight or body mass index. Over 97% use biphasic or triphasic injection protocols for contrast injection. Principally biphasic represented 74.4%, (113/152), followed by triphasic (23.0%, 35/152) and uniphasic (2.6%, 4/152, Figure 2I).

Images storage, interpretation and reporting

95.4% (145/152) of respondents stored image data in PACS, and the other 4.6% (7/152) stored on compact disks. The estimated average duration of a CCTA examination was 14.2 minutes (median 15 min; range 5–30 min, Figure 2J). The average post-processing time was 13.6 minutes (median 15 min; range 5–25 min, Figure 2K), and the duration required for interpretation and reporting was 18.0 minutes (median 20 min; range 8–30 min, Figure 2L). Only 30.3% (46/152) of the centers reported that they also evaluated pulmonary structures and other non-cardiac structures, and the remainder stated that CCTA was scanned using a large field of view but did not include a lung sequence. In most (80.9%, 123/152) hospitals, the coronary artery calcium scores, Agatston scores were not calculated, instead the degrees of calcification, i.e., mild, moderate, and severe, were reported.

Clinical challenge

The last question was open, referring to the current challenges of performing CCTA. The most frequent answer (92.8%, 141/152) was “less sophisticated scanner and/or software”, followed by “time consuming” (67.8%, 103/152), “indifference and/or mistrust of physicians” (55.9%, 85/152), “less patients” (48.7%, 74/152), “inadequate and/or uncertain diagnostic information” (44.7%, 68/152), “high radiation dose”
(29.6%, 45/152), “less training” (25.7%, 39/152), and “high price” (19.1%, 29/152).

One third (51/152) of respondents talked about the unbalanced development among hospitals, which meant economic developed regions and provincial capital cities utilized more medical resources, either by more advanced scanners or experienced radiologists.

Discussion

To our knowledge, this work is the first nationwide cardiac CT survey in China mainland, and probably the first analogous survey conducted by random sampling worldwide. Developed by SCCT China IRC, the authors managed an extensive investigation on each routine component of cardiac CT examination in terms of current CT apparatus, indications, imaging acquisition techniques, contrast media protocols, image reconstruction and interpretation, and clinical challenges. This study establishes an overall picture of current cardiac CT utilization in China. China is a government-dominated country with a vast territory, so it is difficult to conduct a nationwide survey without administrative directives. Chinese Society of Radiology (CSR) is one of the primary branches of Chinese Medical Association, the biggest and most orthodox academic organization with official background, and ideally should act as the originator of this survey. However, it was deemed to be too costly to have CSR administer this survey, as the optimal way in China to get convincing data is face-to-face interview, and the travelling expenses alone will be cost prohibitive. Moreover, cardiac CT is still a niche specialty in China. At this point, SCCT China IRC offered to take the responsibility, took advantage of his their members, and achieved the initial aim at a very low expense.
SCCT released the appropriate use criteria for cardiac CT in 2010, and two
guidelines for the interpretation and reporting of CCTA in 2009 and 20143,4,13.
Authors, members of CSR cardiothoracic group, published a Chinese CCTA
guideline in January 2011 in the form of expert consensus. These files played a
significant role in promoting the normative development of cardiac CT in China.
Nevertheless, the survey results suggested that the utilization of cardiac CT was still
limited in China mainland.
First, cardiac CT scanners were not uniformly available. Although our target
hospitals were of the highest level in China, one third of candidate hospitals did not
own one premium CT scanner. The \textit{LABEL} hospitals were all public, thus to obtain
such an expensive scanner via government procurement was less likely. Besides,
part of the \textit{LABEL} hospitals were cancer hospitals, children hospitals, maternity
hospitals, mental hospitals and traditional Chinese medicine hospitals, and as such,
cardiovascular diseases were not their major concern.
Second, several of the CCTA indications used by these hospitals were considered
generally inappropriate by guidelines. For example, 95.4\% of respondents stated
that they performed CCTA in clinically healthy people, which was conflict to the latest
criteria13-18. The common view of appropriateness criteria for cardiac CT is to detect
asymptomatic coronary artery disease with intermediate pretest likelihood and
suspected coronary anomalies, though few experts deemed that CCTA could be
used as a screening test19, 20, 21.
Third, the radiation dose was still high. Hausleiter \textit{et al} reported the dose reports
form the PROTECTION I study, and showed that the estimated radiation dose of
CCTA on a global scale was ~12mSv in 2007, and that of east Asia was ~15mSv22.
In the past eight years, dozens of effective strategies to reduce radiation dose have become available, even a submillisievert CCTA scan has become feasible23-26. In our survey, the median dose among hospitals was 10-15mSv, and the median dose among patients was 6-9mSv, which is demonstrating improvement as compared to 2007. Nevertheless, median doses differed significantly among sites. Some essential strategies, as prospective ECG triggering acquisition, tube current adjustment, iterative reconstruction algorithms, were not frequently used in China22. The dose reduction is largely dependent on the innovations of CT scanners’ hardware and operating systems, and Chinese radiological technicians need a user-friendly operating interface, only by which low dose scanning would become routine practice, rather than a passive acceptance ordered by their bosses. Fourth, the maturity of cardiac CT varied, e.g. CCTA procedure volumes varied from 150 to over 8,000 per year; radiation dose varied from 3-5mSv to >15mSv; cumulative time comprising scanning, reprocessing and reporting varied from 18min to 85min. Too many factors caused the inequality, but one action can attenuate this diversity, this was continuing education27. SCCT China IRC started education and training programs from its inception, duplicating the SCCT training programs and the Core Cardiovascular Training of American College of Cardiology28,29. Over 500 hundred radiologists have attended the programs, and plans are in place to train more. Compared to the previous questionaires, the current had features specific to China. First, we did not ascertain the apportioning roles of radiologists and cardiologists, because Chinese cardiologists just ordered CCTA exams and hardly participated in the data acquisition and reporting, which is different from practices in
the United States, Germany, and Taiwan. Second, CCTA charge was excluded as it is fixed by provincial governments. Third, we omitted some details, for example, route of beta-blocker administration and dose, the exact flow rate (ml/s) of the contrast agent, how to initiate the scan (test bolus or others), the reconstructed slice thickness (mm), images set using for interpretation (transverse source images, volume rendering, maximum intensity projection, or curved planar reconstruction), which we felt may be inaccurate if chief radiologists and not technicians answered them. Fourth, we created an open question (No. 25), letting our respondents explain their dissatisfactions and point out their expectations.

Our study does have some limitations. It was conjectured the interviews of different people were not uniform across the country, and this bias may be region dependent due to GE’s organization form. Other biases might have resulted from the recall of the respondents. To avoid inaccuracies as fully as possible, we designed the questionnaire to be confidential and promised our respondents that the results would be published in an unidentified pattern. The authentication information (No. 0) was strictly confidential, only used for subsequent data checking by the organizer. Some of the largest centers were not included, such as Fuwai hospital, the biggest cardiovascular center in China. Fuwai radiologists performed over 22 thousands CCTA annually, that was over 100 scans per workday. The estimated dose per scan was ~3mSv or less, and <1mSv in selected patients. Some centers were not included due to random sampling.

Conclusion

We believe that our data provides a comprehensive overview of the current practice of cardiac CT in China mainland, and provides interesting insights into the different
practical aspects of its routine use. The results of our survey show that cardiac CT
via 64+ row scanners has become an established radiological modality in China after
nearly ten years’ of evolution, though there are continued needs to be more
sophisticated and develop with nationwide balance. Being the first study of its kind,
the study will serve as a baseline for future studies to judge changes in CCTA
scanning as well as other related procedures in China.

Acknowledgement
We cordially thank all members of SCCT China IRC Academic Board for their help in
conducting the survey. Tens of GE Healthcare China employees in the Department of
Sales & Marketing who participated in collecting the data are also gratefully
acknowledged. Finally, we must thank all the radiologists who cooperated with our
work and filled the questionnaires.

References
1. Rubin GD, Leipsic J, Joseph SU, Fleischmann D, Napel S. CT angiography after
20 years: a transformation in cardiovascular disease characterization continues to
2. Johnson PT, Eng J, Pannu HK, Fishman EK. 64-MDCT angiography of the
coronary arteries: nationwide survey of patient preparation practice. AJR Am J
Pontone G, Raff GL. SCCT guidelines for the interpretation and reporting of coronary
CT angiography: a report of the Society of Cardiovascular Computed Tomography

12. Lu JG, Lv B, Chen XB, Tang X, Jiang SL, Dai RP. What is the best contrast

Figure Legends

Figure 1: Flowchart of valid hospital selection

A population of 24,709 hospitals from the NHFPC list

Only high level hospitals in China Hospital System, level A&B tertiary hospitals, were assume to meet the hardware requirements of CCTA

A population of 1,442 Level the NHFPC list, designated

A sample of 240 LAE

3 hospitals were unwilling to cooperate

237 hospitals surveyed

Question 1

168 qualified hospitals with at l

CT (≥64 rows)

Question 2

152 valid hospitals performing routine (≥100 scans in the last

of China; CCTA :

B) frequency of inpatient scanning; C) upper heart rate limit of beta-blocker
administration; D) whether to perform CT in case of atrial fibrillation; E) whether to adjust tube current to body mass; F) proportion of perspective ECG triggering acquisition; G) estimated radiation dose among hospitals; H) estimated radiation dose among patients; I) contrast injection protocols; J) estimated average duration of CCTA acquisition; K) estimated average duration of post-processing; L) estimated average duration of interpretation and reporting.