Lawrence Berkeley National Laboratory
Recent Work

Title
E- PRODUCTION BY K- MESONS

Permalink
https://escholarship.org/uc/item/4565b820

Authors
Fowler, William B.
Birge, Robert W.
Eberhard, Phillippe
et al.

Publication Date
1960-12-02
UNIVERSITY OF CALIFORNIA

Ernest O. Lawrence

Radiation Laboratory

TWO-WEEK LOAN COPY
This is a Library Circulating Copy which may be borrowed for two weeks. For a personal retention copy, call Tech. Info. Division, Ext. 5545

BERKELEY, CALIFORNIA
DISCLAIMER

This document was prepared as an account of work sponsored by the United States Government. While this document is believed to contain correct information, neither the United States Government nor any agency thereof, nor the Regents of the University of California, nor any of their employees, makes any warranty, express or implied, or assumes any legal responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by its trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof, or the Regents of the University of California. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof or the Regents of the University of California.
For Phys. Rev. Letters only

UNIVERSITY OF CALIFORNIA

Lawrence Radiation Laboratory
Berkeley, California

Contract No. W-7405-eng-48

\(\beta^- \) PRODUCTION BY K^- MESONS

December 2, 1960
The Berkeley 30-inch propane chamber was operated in a 1.17-Bev/c K^- beam at the Bevatron to produce cascade particles. Out of the 100,000 pictures taken there have been 18 positively identified negative cascade decays with the decay mode $\Xi^- \rightarrow \Lambda + \pi^-$. Of these, six were produced with a K^+ meson and three were accompanied by a visible θ_1 decay. Three of the events with a K^+ satisfy the kinematics for the hydrogen interaction

$$K^- + p \rightarrow \Xi^- + K^+,$$

and the other three are assumed to have been produced from protons in carbon. Two of the K^+ decayed in the chamber and the other four were identified by comparing momentum and ionization. Since only one-third of the K^0 produced in the interaction

$$K^- + n \rightarrow \Xi^- + K^0$$

decay into a visible mode, it is quite consistent to attribute the nine events in which no positive-strangeness K particle was observed to the neutral mode of the θ_1 decay, to the θ_2 decay, or to a K^+ that could not be distinguished from a proton.

The 18 events were selected from a sample of 47 in which a V particle was thought to come from a prong of a K^- interaction which appeared to decay into a π^-. The selection consisted of a series of two single-origin constraints on an IBM 704 calculator: (a) the Q of the V particle was required to be consistent with that of a Λ, 37 Mev, and its line of flight consistent with the assumed Ξ^- decay origin; (b) the Λ and the π^- were required to be coplanar with the assumed Ξ^- and to balance transverse momentum. Revised estimates
of the momentum and angles of the Δ and π^- were obtained from the
constraint program and the average mass of the Ξ^- for the 18 surviving events,
weighted by the estimated probable error of each event, was found to be

$$M_{\Xi^-} = 1317.9 \pm 1.9 \text{ Mev.}$$

The mean life of the Ξ^- has been determined by means of a modification
of the statistical method of Bartlett \(^2\) which accounts for the necessity of seeing
the Δ decay before the Ξ^- leaves the chamber. The possible time for decay
was determined by calculating the time of flight to the boundary of the fiducial
region, which was chosen to allow a minimum of 4 cm for the measurement of
the Δ decay. In all cases the correction due to finite chamber size is small,
and the total correction amounts to less than 10% of the uncorrected mean of the
actual flight times. The flight times include dE/dx corrections and the possible
times were modified for those cases in which the Ξ^- would have come to rest
before leaving the chamber. Figure 1 shows a plot of Bartlett's S function as
a function of $1/\tau$. This function is zero at the most probable lifetime and at
the best estimate of the standard error. Figure 2 is a cumulative histogram of
the calculated times of flight, t_1, and indicates a considerable scanning bias
against flight times less than 0.5×10^{-10} sec. An estimate of the total number
of events was obtained by fitting those events with a time of flight greater than
0.5×10^{-10} sec to the exponential $N_0 e^{-t/\tau}$. The revised mean life consistent
with this procedure required the addition of seven events in the interval from
zero to 0.5×10^{-10} sec, and was found to be

$$\tau = 1.28 \times 10^{-10} \pm 0.41 \pm 0.25 \text{ sec.}$$

The S function corrected for scanning bias is shown as the solid line b in
Fig. 1. This mean life is considerably shorter than that found by Trilling and
Neugebauer. \(^3\) However, their events at high cascade momentum required much
greater corrections for chamber size. The dotted line c in Fig. 1 shows the S
function for their six events combined with our 25 (including corrections for
scanning bias), and it is seen that the combined mean life falls within our error.
A violation of parity conservation in the cascade decay will manifest itself as a fore-aft asymmetry in the \(\Lambda \) decay, the \(K^- \) serving to polarize the \(\Lambda \) with the strength \(a_{\bar{K}\Lambda} \) which is then analyzed by the \(\Lambda \) decay. Denoting the direction of the \(\Lambda \) in the \(K^- \) rest frame as \(\hat{\Lambda} \) and the direction of the proton in the \(\Lambda \) center of mass as \(\hat{P} \), the distribution of \(\hat{\Lambda} \cdot \hat{P} \) is

\[
P (\hat{\Lambda} \cdot \hat{P}) \, d (\hat{\Lambda} \cdot \hat{P}) = \frac{1}{2} \left[1 + \left(a_{\bar{K}\Lambda} \right) \, \left(\hat{\Lambda} \cdot \hat{P} \right) \right] \, d (\hat{\Lambda} \cdot \hat{P}).
\]

We have found, on the basis of the above 18 events,

\[
(a_{\bar{K}\Lambda}) = -0.65 \pm 0.35,
\]

using \((a_{\bar{K}\Lambda}) = \frac{3}{N} \sum (\hat{\Lambda} \cdot \hat{P}) \) as the best estimator. The negative sign shows the helicity of the \(\Lambda \) from the \(K^- \) to be opposite to that of the proton from \(\Lambda \) decay. \(^5\) Birge and Fowler \(^5\) find the helicity of the proton to be positive, implying that the helicity of the \(\Lambda \) is negative. Using the best estimate of the magnitude \(|a_{\bar{K}\Lambda}| \) is \(0.69 \pm 0.35 \) and the sign of \(\rho_\Lambda \) as determined by Birge and Fowler, we find

\[
a_{\bar{K}} = 0.69 \pm 0.36.
\]

The possibility of an up-down asymmetry of the decay \(\pi^- \) from \(K^- \) to \(\Lambda + \pi^- \) produced in the reaction

\[
K^- + N \rightarrow K^- + K
\]

has been examined, and \((a_{\bar{K}\pi}) \) is \(-0.28 \pm 0.40 \) where \(P \) is the polarization of the \(K^- \) in production and \(a_{\bar{K}} \) the decay asymmetry parameter. There seems to be no indication that the \(K^- \) produced in this manner from carbon are polarized.
In the 100,000 pictures we had a total of $1.5 \pm 0.2 \times 10^7$ cm of K^- track length. After adding seven events to correct for scanning bias and then 50% to correct for the unobserved neutral decay mode of the Δ, we estimate the total number of Ξ^- to be 37.5. On this basis the Ξ^- production cross section in the reaction $K^- + N \rightarrow \Xi^- + K$ is

$$\sigma_{\Xi^-} = 18 \pm 5 \mu\text{b/nucleon},$$

assuming an $A^{2/3}$ correction for shielding in the carbon nucleus.
FOOTNOTES AND REFERENCES

*Brookhaven National Laboratory, Upton, L. I., N. Y.

†Ecole Polytechnique, Laboratoire de Physique, Paris, France.

§College de France, Laboratoire de Physique, Berthelot, Paris, France.

**University of Wisconsin, Physics Department, Madison, Wisconsin.

††University of California, Physics Department, Los Angeles, California.

1. Eberhard, Good, and Ticho, A Séparated 1.17-Bev/c K⁻ Beam,

6. Frank S. Crawford, Jr. (Lawrence Radiation Laboratory), private communication.
Fig. 1. Bartlett's $S(\tau)$ function with a Δ lifetime correction for (a), the 18 observed Ξ^- from this experiment, (b) this experiment corrected for scanning bias, and (c) the corrected data of this experiment combined with six events from Trilling and Neugeberger. 3

Fig. 2. A cumulative histogram of the times of flight of the Ξ^-. The solid line is the best fit of those events with $t_i > 0.5 \times 10^{-10}$ sec to an exponential.