Title
Stationary phase-induction of G \rightarrow T mutations in Escherichia coli

Permalink
https://escholarship.org/uc/item/45d789gh

Journal
Mutation Research-Fundamental and Molecular Mechanisms of Mutagenesis, 596(1-2)

ISSN
0027-5107

Authors
Shu, J L
Schellhorn, H E
Murphy, Terence M

Publication Date
2006-04-01

Peer reviewed
Stationary phase-induction of G → T mutations in Escherichia coli

Joline Shu a, Herb E. Schellhorn b, Terence M. Murphy a,∗

a Section of Plant Biology, University of California, One Shields Avenue, Davis, CA 95616, USA
b Biology Department, McMaster University, Hamilton, Ont., Canada L8S 4K1

Received 9 August 2005; received in revised form 16 November 2005; accepted 22 December 2005

Abstract

A series of Escherichia coli mutants, constructed originally by Cupples and Miller [C.G. Cupples, J.H. Miller, A set of lacZ mutations in Escherichia coli that allow rapid detection of each of the six base substitutions, Proc. Natl. Acad. Sci. U.S.A. 86 (1989) 5345–5349], provides a unique system for quantifying base-change mutations, and the repair processes that limit their establishment, in bacteria under selective and non-selective conditions. We focused on one strain in which a T → G replacement inactivates the lacZ gene. Reversions of this strain can occur through oxidation of G, leading to G → T transversions. We show that spontaneous reversions occurred both in lactose (selective) and glucose (non-selective) medium. The number of revertants per viable cell was much greater in medium containing lactose or both sugars than glucose alone. In glucose medium, the rate of reversion was highest below 0.6% glucose and strongly inhibited at and above that level. Evidence that reversions occurred through G → T transversions in both lactose and glucose media came from two observations: by sequence analysis of a series of revertants and by comparing the reversion rates in strains possessing and lacking the mutM gene (encoding formamidopyrimidine DNA glycosylase, FPG). However, the rate of reversion was stimulated by reducing O2 to 1% and inhibited or delayed by increasing O2 to 90%. In mutM− cells grown on glucose medium, the proportion of revertants increased over a 5-day period. In contrast, in mutM+ cells, revertants appeared primarily during the first 2–3 days after plating; few new revertants appeared in the following days. These data imply that base excision repair initiated by FPG was less effective in the first 2–3 days and more effective later in stationary phase.

© 2006 Elsevier B.V. All rights reserved.

Keywords: Adaptive mutations; Escherichia coli; FPG; G to T transversions; lacZ operon; MutM; Guanine oxidation

1. Introduction

Cairns et al. [1] noted that reversions of Escherichia coli auxotrophs to prototrophy occurred more rapidly under selective conditions than in the absence of selection. This effect has since been reported in other systems, including ones with base-replacement and frame shift mutations. Cairns originally suggested that mutagenesis was being “directed” toward genes that could allow survival, but the prevailing theory is that the stress of the selective conditions increases mutation rate in non-advantageous and advantageous genes, including the gene(s) leading to prototrophy (“adaptive” mutagenesis). There are several hypotheses to explain the mechanism of adaptive mutagenesis, including base modification resulting in mispairing, polymerase errors, errors in recombination, and amplification of genes leading to increased expression of low-activity enzymes [2–5].
Much of the previous work has involved strains with the FC40 plasmid, which has a frameshift in the lacZ gene and generally reverts by deletion mutation [6–8]. Mutations of other genes, including lacZ and tet genes on the F' episome, also often involve frameshifts [9]. Studies by Bridges et al. with carotenoid scavengers, catalase, and mutM and mutM mutants indicated that reversons of tryptophan auxotrophs to prototrophy are caused by reactive oxygen species acting as mutagens [10,11]. They suggested that oxidation of guanine (forming 7,8-dihydro-8-oxoguanine) leads to many, although not all, of the mutations observed. Some of these mutations are caused by oxidized guanine mispairing with adenine, and some involve frameshifts [12,13]. There is also evidence implicating reactive oxygen in some FC40 lacZ frameshift mutations [14]. An alternative to using the FC40 frameshift mutant employs a set of revertible lacZ gene mutants that contain single-base replacements that inactivate the expressed β-galactosidase [15,16]. As restoration of β-galactosidase expression in these strains requires reversion of the mutant lacZ alleles for activity, this system permits the identification of specific base changes caused by suspected mutagens. For example, Palmer et al. [17] used these mutants to show that UV-A (but not UV-B) specifically increased the rate of reversions in mutants with a T → G mutation. Combining the lacZ replacements with mutM knock-out mutations, these authors also showed the influence of base excision repair on the rate of reversion.

Because the expression of the lacZ gene can be readily monitored by a color reaction, the Cupples and Miller strains provide a useful system to investigate the phenomenon of adaptive mutagenesis through base substitution, both under selective (lactose) and non-selective (glucose) conditions, and its relationship to starvation and stationary phase [16].

In this study, we compare the rates and time courses of reversion in lactose and glucose media and in mutM* and mutM+ strains. We also examine the possible role of metabolic stress on mutagenesis by varying glucose and O2 concentrations. Finally, we confirm the sequences of revertant genes from mutants arising in both lactose and glucose and in mutM* and mutM+ strains.

2. Materials and methods

2.1. Strains and chemicals used

E. coli strains CSH104 and the HS1194 derivative were previously described [17]. Both strains are ara Dgpt-lac5 and possess a F'104 lacZAla-461 plasmid. In addition, in HS1194 the mutM (lpg) gene is transposon-inactivated (lpg:kan') [17]. HS1194 is thus isogenic to CSH104 with the exception of lpg:kan'. Lactose was obtained from Sigma Chemical Co., which rated the preparation as 99% total lactose and 70% β-lactose.

2.2. Measurement of reversion

In a typical experiment, an overnight culture was grown in M9 salts (Gibco, BRL) plus 27 μg ml−1 thiamine HCl, 1 mM MgSO4, and 2% glucose to a concentration of 3.9 ± 0.8 × 108 cells ml−1 (mean ± S.D., n = 6). The high glucose concentration was used to limit reversion before the culture was plated (see Section 3.1 and Fig. 3). The overnight culture was centrifuged and resuspended in an equal volume of phosphate-buffered saline solution, and 100 μl were plated on 1.5% agar-solidified medium containing M9 salts supplemented with 27 μg ml−1 thiamine HCl, 1 mM MgSO4, 0.2% glucose or lactose, 0.4 mM IPTG, and 0.4 mM 5-bromo-4-chloro-3-indole-β-D-galactoside (X-gal) in 10-cm diameter plates. Plates were incubated at 37 °C. Each day, blue colonies were counted, and the accumulated number of colonies was reported. To incubate plates in controlled atmospheres, the plates were placed in hermetically sealed, 25-l boxes and flushed with N2 or O2 at 114 ± 10% for 115 min. The washing procedure gave a calculated mean number of cells per plate of 1.3 × 1010 with a S.D. of 2.0 × 109, representing a coefficient of variation of 16%. Because we placed a priority on measuring the accumulation of revertant colonies on each plate over time, calculations on a per-cell basis were made using colony counts from parallel experiments.

2.3. Cell viability

The cells were washed off plates with 1 ml of phosphate-buffered saline or LB medium. The suspension was then collected and the washing was repeated, the two collected suspensions were combined. The suspensions were diluted immediately, and the number of viable cells was determined by dilution plating on LB medium. In one test for reproducibility, eight independent overnight cultures of CSH104 were plated on standard M9 medium containing 0.2% glucose and incubated overnight. The washing procedure gave a calculated mean number of cells per plate of 1.3 × 1010 with a S.D. of 2.0 × 109, representing a coefficient of variation of 16%.

2.4. Sequences of revertant lacZ genes

Fragments of the lacZ genes from revertant colonies were amplified by polymerase chain reaction using forward and reverse primers 5'-CAAATTATATGCTGTCACGGAGGTT-3' and 5'-AAATTATGAAACCCACGGCATGTTG-3', respectively. The fragments of 250 base pairs were isolated by agarose gel electrophoresis, and the sequences determined, using the forward primer, by the UCDavis Division of Biological Sciences Automated DNA Sequencing Facility.
3. Results

3.1. Reversion on lactose and glucose media

On M9 agar containing 0.2% lactose, IPTG, and X-gal, cells of CSH104 (mutM+) and HS1194 (mutM−) formed only discrete blue colonies. On M9, 0.2% glucose, IPTG, and X-gal, these cells formed a lawn with blue foci appearing later. In general, the foci seen in glucose plates were small and well separated, especially in plates with CSH104 (FPG proficient) colonies. In plates with HS1194 (FPG deficient) colonies, the numbers of foci were high, and it is likely that, because of superposition, the total number of revertants was even higher than the observed counts indicated.

The number of revertants per plate was normally lower in lactose- than in glucose-containing medium. For both HS1194 and CSH104, a combination of 0.05% glucose and 0.2% lactose gave a much greater number of revertants per plate than either sugar alone (Fig. 1). We hypothesized that this effect occurred because the glucose supported more growth than lactose alone, and lactose allowed more revertants to survive, outcompete wild type, and thrive than did glucose alone. To test this hypothesis, we compared the number of revertants to the number of cells that could be recovered from the plates (Fig. 2). The number of cells in glucose medium was 30–100 times the number in lactose; the numbers of revertants per viable cell were approximately equal in media containing lactose alone and lactose plus glucose, but 10-fold lower in glucose medium (Table 1).

Table 1

<table>
<thead>
<tr>
<th>Strain</th>
<th>Media</th>
<th>Glucose</th>
<th>Glucose + lactose</th>
<th>Lactose</th>
</tr>
</thead>
<tbody>
<tr>
<td>CSH104</td>
<td>9.3 x 10^{-11}</td>
<td>1.1 x 10^{-10}</td>
<td>1.3 x 10^{-9}</td>
<td></td>
</tr>
<tr>
<td>HS1194</td>
<td>8.9 x 10^{-9}</td>
<td>6.4 x 10^{-9}</td>
<td>1.8 x 10^{-8}</td>
<td></td>
</tr>
</tbody>
</table>

Values represent revertants per viable cell, calculated from the data of Figs. 1 and 2.
and very low at 2% glucose. In 2% glucose, the cells died quickly after reaching their maximum population density (Fig. 2), and this could have contributed to the lack of revertants, but this explanation does not hold for 0.6% glucose. The data suggest that the rate of reversion depends both on nutrient availability for cell division and is alleviated (or blocked, depending on point of view) by high glucose concentrations.

3.2. Rates and time courses of reversion

In glucose and lactose plates seeded with either CSH104 or HS1194, revertants did not start to appear until the second day of incubation (Fig. 1), well after the culture reached stationary phase (Fig. 2). Furthermore, for strain CSH104, plates of M9 medium with 0.2% glucose inoculated with \(1 \times 10^5\) cells had the same number of revertants as those inoculated with \(4 \times 10^8\) cells (mean 101%, minimum 45%, maximum 189%, nine comparisons). In HS1194, plates inoculated with \(1 \times 10^6\) cells had approximately 60% the number of revertants as those inoculated with \(4 \times 10^9\) cells (mean 62%, minimum 24%, maximum 101%, six comparisons). These observations are consistent with the interpretation that the reversions occurred after the cells reached stationary phase.

Table 2 shows the ratio in the number of HS1194 revertants to CSH104 revertants over 5 days, averaged from eight independent experiments. Although the number of revertants was two to three times higher in HS1194 than CSH104, even at 2 days, the ratio rose to over 10-fold higher by 5 days. For CSH104 (mutM\(^+\)), revertants appeared on M9 medium + 0.2% glucose in 2–3 days, but, after that period, few additional revertants appeared. In contrast, for HS1194 (mutM\(^−\)), revertants initially appeared at the same time, 2–3 days, but they continued to accumulate over a longer time.

<table>
<thead>
<tr>
<th>Days after plating</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Revertants/cell HS1194</td>
<td>(3.0 (1.1) \times 10^4)</td>
<td>(3.2 (1.6) \times 10^5)</td>
<td>(6.1 (1.4) \times 10^4)</td>
<td>(5.7 (1.7) \times 10^3)</td>
</tr>
<tr>
<td>Revertants/cell CSH104</td>
<td>(1.0 (0.4) \times 10^8)</td>
<td>(4.6 (0.8) \times 10^8)</td>
<td>(5.7 (0.9) \times 10^8)</td>
<td>(5.4 (1.4) \times 10^8)</td>
</tr>
<tr>
<td>Ratio</td>
<td>3.3 ± 1.0</td>
<td>3.9 ± 1.0</td>
<td>7.2 ± 1.2</td>
<td>10.5 ± 3.1</td>
</tr>
</tbody>
</table>

In all cases, cells were plated on M9 medium containing 0.2% glucose (plus IPTG and X-gal) and incubated at 37°C at ambient O\(_2\) concentration. Values represent means ± S.E.; for “ratio,” the table gives the mean of ratios (from different experiments), not the ratio of means.
3.4. Revertant genes

Mutations could arise either through reversion or suppression by second site mutations. To confirm that the mutant lacZ allele in the indicator strains had truly reverted, a randomly selected set of LacZ+ colonies was isolated from mutM+ and mutM− strains plated on lactose and on glucose. In each case, a PCR fragment spanning the original mutant base was amplified, purified, and sequenced, and its sequence was compared to the sequence of the parental mutant lacZ allele. Every revertant possessed a G → T transversion at the predicted position (Fig. 5). There were no deletions or insertions identified in the amplified PCR fragments.

4. Discussion

4.1. Mechanism of reversion

Three possible mechanisms have been hypothesized to account for stimulation of mutagenesis in E. coli under stressful conditions. The lactose-competent cells of HS1194 and CSH104 can arise as a result of a G→C transversion in the lacZ gene [16]. The G→T transversions considered in this study may be caused by oxidation of guanine, followed by 8-oxo-G mispairing with A [2,11,18,19]. Other mechanisms of reversion include the induction of error-prone polymerase and the amplification of the lacZ gene leading to multiple adjacent copies of lacZ on the F plasmid [5,20]. The fact that the revertants all showed G → T transversions indicates that amplification by itself is not the mechanism of reversion. Although it does not rule out amplification in addition to transversion, we did not see mixtures of G and T in PCR fragments from pure revertant cultures. The fact that the revertants all showed G → T transversions does not rule out error-prone polymerase as the mechanism of reversion if the G → T transversions considered in this study may be caused by oxidation of guanine, followed by 8-oxo-G mispairing with A [2,11,18,19].

Because G → T transversions can result from mispairing of adenine with 8-oxo-dG formed by the reaction of guanine with reactive oxygen species, we tested the effect of O2 concentration on the rate of reversion. Although it does not rule out amplification in addition to transversion, we did not see mixtures of G and T in PCR fragments from pure revertant cultures. The fact that the revertants all showed G → T transversions does not rule out error-prone polymerase as the mechanism of reversion if the G → T transversions considered in this study may be caused by oxidation of guanine, followed by 8-oxo-G mispairing with A [2,11,18,19]. Other mechanisms of reversion include the induction of error-prone polymerase and the amplification of the lacZ gene leading to multiple adjacent copies of lacZ on the F plasmid [5,20].

The fact that the revertants all showed G → T transversions indicates that amplification by itself is not the mechanism of reversion. Although it does not rule out amplification in addition to transversion, we did not see mixtures of G and T in PCR fragments from pure revertant cultures. The fact that the revertants all showed G → T transversions does not rule out error-prone polymerase as the mechanism of reversion if the G → T transversions considered in this study may be caused by oxidation of guanine, followed by 8-oxo-G mispairing with A [2,11,18,19]. Other mechanisms of reversion include the induction of error-prone polymerase and the amplification of the lacZ gene leading to multiple adjacent copies of lacZ on the F plasmid [5,20].

Recombinant enzymes were used to correct for stimulation of mutagenesis in E. coli under stressful conditions. The lactose-competent cells of HS1194 and CSH104 can arise as a result of a G→C transversion in the lacZ gene [16]. The G→T transversions considered in this study may be caused by oxidation of guanine, followed by 8-oxo-G mispairing with A [2,11,18,19]. Other mechanisms of reversion include the induction of error-prone polymerase and the amplification of the lacZ gene leading to multiple adjacent copies of lacZ on the F plasmid [5,20].

The fact that the revertants all showed G → T transversions indicates that amplification by itself is not the mechanism of reversion. Although it does not rule out amplification in addition to transversion, we did not see mixtures of G and T in PCR fragments from pure revertant cultures. The fact that the revertants all showed G → T transversions does not rule out error-prone polymerase as the mechanism of reversion if the G → T transversions considered in this study may be caused by oxidation of guanine, followed by 8-oxo-G mispairing with A [2,11,18,19]. Other mechanisms of reversion include the induction of error-prone polymerase and the amplification of the lacZ gene leading to multiple adjacent copies of lacZ on the F plasmid [5,20].
transversion is the only change that can restore activity to the β-galactosidase [16].

The evidence that the lacZ reversions considered here occur through guanine oxidation and mispairing includes: (a) the observation that all revertants showed G → T transversions. However, we recognize that selection, either naturally on lactose medium or artificially from glucose medium, may have enforced this situation; (b) the inhibition of reversion in mutM cells. The mutM product, FPG, is known to excise 8-oxo-G from DNA. From our data showing that the difference in reversion rate between mutM* and mutM– cells was greater in the later phase of stationary phase (4–5 days after plating), we conclude that 8-oxo-G played a greater part in reversion at that time. Palmer et al. [17] also reported that G → T transversions in lacZ occurred more frequently in mutM* than mutM– cells, whereas the frequency of other transversions and transitions was similar. Bridges et al. [10] reported that a tyrosine auxotroph with a mutM deficiency failed to exhibit greater rates of mutation to prototrophy than its parent strain, although mutY– and mutM–mutY– strains did show higher rates of mutation. Although the results with respect to mutM seem contradictory to ours, mutM (adenine-DNA glycosylase) is thought to work in the same transversion pathway, because A is the base that mispairs with 8-oxo-G.

The observation that reversions occurred in mutM+ cells early in stationary phase (i.e., 2–3 days after plating) at about the same time and rate as in mutM– cells suggests that for this period base excision repair initiated by FPG was less efficient. Alternatively, the mechanism of mutation in these cells did not involve 8-oxo-G, and the pre-mutagenic lesions were not correctable by FPG. Saumaa et al. [21] also found a change in the types of mutations occurring during stationary phase. Working with mutations in the promoter of a phd gene, utilization operon of Pseudomonas putida, they found that 70% of the selected strains had G → T or C → A transversions at 2–3 days, but less than 50% at 6–7 days. At the later times deletions, insertions, and unidentified mutations became more important, and the effect of the absence of mutI function less important.

4.2. Conditions promoting reversion

The rate of appearance of revertants per cell was higher both on lactose alone and lactose together with glucose than on glucose alone. The similarity in lactose with and without glucose suggests that neither the glucose itself nor the glucose-dependent increase in population of cells, with consequent crowding and competition, influenced the reversion rate. Since glucose represses the SOS response [22], yet did not reduce the rate in the presence of lactose, the higher rate in the presence of lactose seems unrelated to error-prone polymerase. It is possible that cells on the lactose media acquire greater numbers of plasmids carrying the mutant β-galactosidase gene; an increase in the number of plasmids carrying mutant β-galactosidase increases the chance that one of the copies for β-galactosidase will mutate to produce a functional β-galactosidase gene. This hypothesis holds so long as cells grown on lactose media undergo greater rates of plasmid replication than do cells grown on glucose media [22].

4.3. Effect of O2

The high rate of reversion in HS1194 cells in 1% O2 and its inhibition by 90% O2 atmosphere was unexpected. We were aware that re-aeration following transient hypoxia induces an increase in reactive oxygen species in animal cells, so we were careful not to open the N2-flushed chambers until we were ready to count revertants. Thus the reversions occurred under hypoxic conditions. There is evidence for hypoxia-stimulated generation of reactive oxygen by NAD(P)H oxidase 1 in cultured mouse cells and hypoxia-stimulated mutations in mismatch-repair deficient human carcinoma cells [23,24]. We hypothesize that the formation of 8-oxo-G in low O2 occurs through reactive oxygen generated by an inhibited electron transport system. This hypothesis can be tested: if reversion reflects the production of reactive oxygen species (by leakage of electrons from a blocked electron transport chain), then we would expect a higher number of C → T transitions, but not other, non-oxidative transitions or transversions, in 1% O2. If reversion in low O2 reflects the induction of error-prone polymerases, we would expect higher numbers of all base substitutions under the same conditions.

5. Conclusions

The complex process of bacterial adaptation in stationary phase is thought to include accumulation of selective beneficial mutations. In this study we have shown that G → T transversions accumulate during early stationary phase even in the presence of an active base excision repair system. As these mutations were stimulated by low oxygen tension and inhibited by high O2, it is likely that reactive oxygen species are important in the formation of this type of mutation, which is known to be produced as a consequence of oxidative damage to cells.
Acknowledgements

We are grateful to the staff of the Mann Laboratory, University of California, Davis, for providing equipment for the controlled atmosphere experiments. J.S. is the recipient of a University of California President’s Undergraduate Fellowship.

References


MUT 16/206 1–7