University of California
Ernest O. Lawrence
Radiation Laboratory

TWO-WEEK LOAN COPY
This is a Library Circulating Copy
which may be borrowed for two weeks.
For a personal retention copy, call
Tech. Info. Division; Ext. 5545

PHASE CONTOURS OF SCATTERING AMPLITUDES

Ching-Tai Tan
(Ph. D. Thesis)
May 10, 1968

RECEIVED
LAWRENCE RADIATION LABORATORY
LIBRARY AND DOCUMENTS SECTION
Berkeley, California
June 27, 1969
DISCLAIMER

This document was prepared as an account of work sponsored by the United States Government. While this document is believed to contain correct information, neither the United States Government nor any agency thereof, nor the Regents of the University of California, nor any of their employees, makes any warranty, express or implied, or assumes any legal responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by its trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof, or the Regents of the University of California. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof or the Regents of the University of California.
PHASE CONTOURS OF SCATTERING AMPLITUDES

Chung-I Tan

(Ph. D. Thesis)

May 10, 1968
CONTENTS

<table>
<thead>
<tr>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abstract</td>
<td>iv</td>
</tr>
<tr>
<td>1. Introduction</td>
<td>1</td>
</tr>
<tr>
<td>2. Assumptions and Properties of Phase Contours</td>
<td>6</td>
</tr>
<tr>
<td>3. A Model With No Zeros on the Physical Sheet</td>
<td>11</td>
</tr>
<tr>
<td>(a) Phase Contours in the s-Channel Physical Region (s + 10 Limit)</td>
<td>12</td>
</tr>
<tr>
<td>(b) Phase Contours in the s + 10, t + 10, u + 10 Limits</td>
<td>14</td>
</tr>
<tr>
<td>(c) Phase Contours in the s + 10, t - 10, u - 10 Limits</td>
<td>15</td>
</tr>
<tr>
<td>4. Zeros at Finite Real Points</td>
<td>18</td>
</tr>
<tr>
<td>(a) The Amplitude Below Threshold</td>
<td>18</td>
</tr>
<tr>
<td>(b) Complex Sections of Phase Contours</td>
<td>22</td>
</tr>
<tr>
<td>(c) Crossing Symmetric Phase Contours</td>
<td>23</td>
</tr>
<tr>
<td>5. Zeros of Regge Residues</td>
<td>25</td>
</tr>
<tr>
<td>(a) An Oscillating Phase; b₁(t) > 0, b₂(t) > 0, in t < 0</td>
<td>27</td>
</tr>
<tr>
<td>(b) An Increasing Phase; b₁(t) > 0, b₂(t) < 0, in t < 0</td>
<td>28</td>
</tr>
<tr>
<td>(c) Zeros on the Physical Sheet</td>
<td>29</td>
</tr>
<tr>
<td>(d) Phase Contours in t < 0</td>
<td>32</td>
</tr>
</tbody>
</table>
6. Resonance Poles and Asymptotic Phases 37
 (a) $s + i0, t + i0$, With $s \rightarrow +\infty$ and $t > 4m^2$ 37
 (b) $s + i0, t - i0$, With $s \rightarrow +\infty$ and $t > 4m^2$ 40
 (c) $s + i0, t + i0$, With $t \rightarrow +\infty$ and $s > 4m^2$ 41
 (d) $s - i0, t + i0$, With $s \rightarrow +\infty$ and $t > 4m^2$ 41
 (e) $s - i0, t - i0$, With $s \rightarrow +\infty$ and $t > 4m^2$ 42
7. Crossing Symmetric Phase Contours 43
8. Summary 46
9. Conclusion 48
Acknowledgment 52
Footnotes and References 53
PHASE CONTOURS OF SCATTERING AMPLITUDES

Chung-I Tan

Lawrence Radiation Laboratory
University of California
Berkeley, California

May 10, 1968

ABSTRACT

Phase contours are used to study consistency conditions for a symmetric scattering amplitude having a given high energy behavior. The latter is taken to correspond to dominance by Regge poles that have continuously rising trajectories.

By means of crossing symmetry we introduce a sequence of real zeros of the amplitude, that lie along lines of symmetry in our model, $s = u$, in $t < 0$, for example. The leading zero in this sequence is related to the scattering length. Under quite general conditions these zeros may be related, via complex surfaces of zeros, to the zeros of Regge residues below threshold. By considering complex sections of phase contour surfaces, we show that these zeros may also be related to a sequence of zeros at complex points, that are due to interference between resonance poles on unphysical sheets above threshold.
I. INTRODUCTION

Our aim in this study is to explore the properties of scattering amplitudes by means of a general study of their phases. Our objective is to investigate consistency conditions imposed by analyticity when a given asymptotic behavior is assumed for a scattering amplitude. These consistency conditions are obtained by the use of phase contours, which were introduced and studied in a previous paper (hereafter denoted by I).

A phase contour is defined as the curve, or more generally the complex surface, on which the phase of an invariant amplitude takes a given constant (real) value. Our main motivations for employing them are that phase contours are simply related to high energy behavior, and that they have striking features related to resonance poles and zeros of scattering amplitudes.

We are mainly interested in models of scattering amplitudes that have asymptotic power behavior in the Mandelstam variables. In particular, we consider the case of the Regge model with continuously rising (and falling) Regge trajectories. The characteristic feature of these models is the simplicity of the asymptotic phase of scattering amplitudes when any one of the Mandelstam variables is held fixed. The method of phase contours becomes particularly useful in this case. We illustrate the method utilizing a
symmetric scattering amplitude corresponding to equal mass spinless bosons.

A consistent Regge model requires that the trajectories should be complex above threshold and go through integral values on the unphysical sheets at resonance poles. In addition zeros are required in residues to avoid the existence of nonphysical poles in the full scattering amplitude, or in partial wave amplitudes. These zeros and resonance poles play an essential role in establishing a consistent topology for phase contours. This is because phase contours that correspond to different (real constant) values of the phase cannot intersect each other except at zeros, poles, and possibly other divergent singularities of the invariant amplitude.

In this paper we are working towards a consistent solution for the phase contours for a scattering amplitude having crossing symmetry and Regge behavior. A consistent solution should describe both the characteristic features of Regge behavior in the asymptotic regions, and also the interference pattern due to zeros and resonance poles of our Regge model at finite energies. Therefore, this solution allows us to obtain information about the properties of scattering amplitudes at low energies by starting from our knowledge in all three asymptotic regions.

We would like to emphasize that the nature of this
investigation is exploratory and heuristic, rather than rigorous and deductive. In order to build an intuition based on phase contours, it is necessary at first to make simplifying assumptions. For example, we demand our final solution of the phase contours to be as simple as possible. Zeros of scattering amplitudes are introduced on the physical sheet whenever they lead to simplification of the phase contours. These zeros will be required in regions of crossed branch cuts, and they can be described in terms of a generalized scattering length. We show that these zeros can be identified as different parts of the same surface of zeros that can be deduced from our Regge model.

The main reason we put forward for the general study of phases is that it provides a new way of looking at the analytic properties of scattering amplitudes. Phase contours provide a description that is remarkably simple in many circumstances. This description may be compared with the method of finite energy sum rules. Both methods allow one to deduce properties of amplitudes at low energies from their asymptotic behavior; however, they differ in their emphasis. The use of finite energy sum rules requires the identification of a "Regge" channel, but Regge expansions in other channels are not used explicitly. The method of phase contours, on the other hand, makes use of Regge expansions in all channels simultaneously. However, through the use of
resonance approximation, finite energy sum rules appear more complete and correspondingly more useful in obtaining quantitative information. The method of phase contours would be useful primarily in obtaining qualitative information which could be used as a general guide in a more sophisticated bootstrap program.

In Section 2 we summarize the properties of phase contours that are required for our subsequent discussion. Most of these properties were discussed in more detail in Ref. 1. In Section 3 we first introduce a phase model that has no zeros or poles on the physical sheet, and from it we obtain a solution for the phase contours. We point out that the assumption of no zeros on the physical sheet leads to a complicated structure of phase contours in certain regions of crossed branch cuts. These complications can be removed by the introduction of zeros. In Section 4, we discuss zeros below threshold that depend on the scattering length, and extend this to include a sequence of real zeros on the crossed branch cuts. Associated with these real zeros, there are curves of complex zeros on the physical sheet that lead to a simplification of the phase contours of our first model. This modification can be interpreted as arising when zeros move on to the physical sheet through the crossed branch cuts at infinity.

In section 5, we study the complex zeros on the physical sheet that come from zeros of the residues of the leading Regge terms, and we show how they modify the phase contours.
These zeros may be identified as parts of the complex surfaces of zeros that disappear through the crossed branch cuts and are related to the generalized scattering length. In Section 6 we introduce the effects of the Regge model above the thresholds where the trajectories become complex. Resonance poles on the unphysical sheet produce striking changes in the asymptotic phase contours that are analogous to those produced by the zeros of residues below threshold. There is, however, an essential difference in the way the zeros move on the physical sheet. Below the t threshold, they move out to infinity in complex s plane when t approaches finite values at which the residue of the leading t channel Regge pole is zero. Above threshold they move to infinity only when t becomes infinite. This becomes evident in Section 7, where we give the crossing symmetric phase contours for the Regge Model. We also indicate in Section 7 the way resonances and zeros are related, by considering a complex section of the phase contours on the physical sheet and on neighboring unphysical sheets. In Section 8 we give a summary of our results. A discussion of the general use of phase contours is given in Section 9.
2. ASSUMPTIONS AND PROPERTIES OF PHASE CONTOURS

The phase $\phi(s,t)$ of a scattering amplitude $F(s,t)$ is defined by

$$\phi(s,t) = \text{Im} \left[\log \left(F(s,t) \right) \right].$$

It is also necessary to specify the phase at an initial point (s_0, t_0). When $F(s,t)$ has zeros or poles on the physical sheet, the phase may be changed by multiples of 2π by choosing different routes from the initial point to the point (s,t). We must therefore specify the route that we use when relating the phases at two different points.

A phase contour is defined by

$$\phi(s,t) = C,$$

where C is a real constant. We will study phase contours both for real s and t, and for complex s when t is held at real values.

For fixed t and complex s ($s = s_1 + is_2$), the phase is a harmonic function of s_1 and s_2, when F is regular. In the s plane the phase contours are orthogonal to the modulus contours, but this does not apply in other planes, like s and t real, for example.

Phase contours, for different constant values of the phase, cannot meet except at singularities or zeros of the
amplitude $F(s,t)$. There is a phase change of 2π for an anticlockwise loop round a zero, and (-2π) round a pole in a complex plane. The phase change is $\pm 2\pi$ round a zero in the real s,t plane.

If $F(s,t)$ is finite, or only logarithmically divergent, at a singular point, there will be no meeting of phase contours at this point. We will assume that this situation holds for all singularities of F on the boundary of the physical sheet. We will limit our discussion to the scattering of equal mass particles, and we will assume that $F(s,t)$ is regular on the physical sheet defined by the cut s, t and u planes. We will therefore have the analyticity of the Mandelstam representation, but we will make assumptions that prevent its full validity, due to an infinite number of subtractions.

Our asymptotic assumptions, which also serve to define the phase at the initial point, will be based on a Regge model, for which, as $s \to \infty$,

$$
F(s,t) \sim \frac{b(t)s^{\alpha(t)} \exp \left[i\pi \left(1 - \frac{1}{2} \alpha(t) \right) \right]}{\sin \left[\frac{1}{2} \pi \alpha(t) \right]} \frac{\Gamma[\alpha(t)]}{\Gamma[\alpha(t)]}.
$$

(2.3)

However, we will initially (in Section 3) use a simpler model for the phase as $s \to \infty$, in which the complications of the Regge form (2.3) are avoided. These complications, which are incorporated in later sections, arise from the zeros of the term (2.3) at negative odd integers below threshold,
and from the fact that α becomes complex above the threshold in t, and there are resonance poles on the unphysical sheet.

We assume that the total cross section is asymptotically constant. From the optical theorem this gives $\alpha(0) = 1$, and along $s + i0$ (above the branch cut with s real), using (2.3)

$$\phi(s,0) \rightarrow \frac{1}{2} \pi, \text{ as } s \rightarrow \infty.$$ \hspace{1cm} (2.4)

This equation defines our initial phase. It is more convenient than defining the initial phase at threshold, since there it will depend on the sign of the scattering length.

We will assume that the Regge trajectory $\alpha(t)$ is continuously rising, so that $\text{Re} \, \alpha(t)$ increases without limit as t increases, and $\text{Re} \, \alpha(t)$ decreases when t decreases, also without limit. Below threshold we assume $\alpha(t)$ to be real, and above threshold we take it to be complex, but with an imaginary part that is small compared to its real part. In our initial simplified model in Section 3, we will approximate $\alpha(t)$ as real for all real t.

We will study a scattering amplitude $F(s,t)$ that is symmetric under crossing in the three variables s, t and u. This requires that Regge exchange corresponds to even signature, which gives the asymptotic phase, near $t = 0$,

$$\phi(s,t) \sim \pi \left[1 - \frac{1}{2} \alpha(t) \right], \text{ as } s \rightarrow \infty.$$ \hspace{1cm} (2.5)
This formula for the phase follows from Eq. (2.3) when \(t \) is in the range
\[
{t_1^0 < t < 4m^2}, \tag{2.6}
\]
where \(t_1^0 \) denotes the first zero of the residue, that occurs for negative \(t \), when
\[
\alpha(t_1^0) = -1, \tag{2.7}
\]
provided \(b(t) \) does not have any zeros in the range (2.6).

We will discuss the effects of zeros at \(\alpha(t) = -(2N + 1) \) in Section 5. Above the threshold \(t = 4m^2 \), \(\alpha(t) \) becomes complex, and the phase of the Regge term (2.3) is no longer given by Eq. (2.5). We will consider the resulting phase in Section 6.

Our initial simplifying assumptions about the phase are based on Eq. (2.5). We assume that the phase of the amplitude has the form (2.5) as \(s \to \infty \) along real \(s + i0 \), for any fixed real \(t \). We also assume that \(\alpha(t) \) is real for all real \(t \), even above threshold. This is no longer a Regge model but it is useful for illustrating the first requirements of the consistency problem. Crossing symmetry is achieved by making analogous asymptotic assumptions for fixed \(u \) and fixed \(s \).

In the forward direction, \(t = 0 \), the optical theorem requires that, along \(s + i0 \),
\[
\text{Im } F(s,0) > 0, \text{ for } s > 4m^2, \tag{2.8}
\]
in order that the total cross section shall be positive. Since our amplitude is to be symmetric, there is a similar condition in the backward direction, \(u = 0 \).

The relation \((2.8)\) can be extended to any value of \(t \) in the range
\[
0 \leq t < 4m^2.
\]
(2.9)

Hence, using Eq. \((2.5)\), which holds also for the Regge amplitude \((2.3)\) in this region, we must have
\[
0 < \phi(s,t) < \pi,
\]
(2.10)

for \(s > 4m^2 \), in the range \((2.9)\). There is a similar condition in
\[
0 \leq u < 4m^2.
\]
(2.11)

From this result we see that the phase at threshold \(s = 4m^2 \), reached along \(t = 0 \) from \(s = +\infty \), must be zero or \(\pi \). If there are no poles or zeros below threshold, the phase must be either 0 or \(\pi \) throughout the region
\[
s < 4m^2, \quad t < 4m^2, \quad u < 4m^2.
\]
(2.12)

Which of the values, \(\phi = 0 \) or \(\pi \), is relevant will depend on the scattering length, which will be discussed in Section 4. The value of the phase \(\phi \), in the triangle \((2.12)\) also depends on the route by which it is reached from our starting point given in Eq. \((2.4)\).
3. A MODEL WITH NO ZEROS ON THE PHYSICAL SHEET

Our first objective is to obtain a solution for phase contours on the physical sheet, when there are no zeros or poles of the amplitude on the physical sheet. It is not evident, a priori, that such a solution will exist. Our reason for requiring no zeros (or poles), is that the phase of F will be unambiguously defined, so that it is independent of the path on the physical sheet by which it is obtained from the initial value in Eq. (2.4).

We assume an asymptotic behavior that is consistent with a symmetric amplitude and has the phase (2.5), as $s \to + \infty$,

$$F(s,t) \sim b(t)s^{\alpha(t)} \exp \left[i \pi \left(1 - \frac{1}{2} \alpha(t) \right) \right]. \quad (3.1)$$

We assume that $b(t)$ has no poles or zeros on the physical sheet, and that $\alpha(t)$ is real, and corresponds to a continuously rising trajectory, for all t. We make similar asymptotic assumptions for fixed real u, and s.

It is important to specify the limit in which the boundary of the physical sheet is approached, since this will affect the phase. Thus Eq. (3.1) holds in the limit $(s + i0)$ with s real. In the limit $(s + i0)$ as $s \to - \infty$ along the real axis the phase will be

$$\phi(s \to - \infty, t) \sim \pi \left(1 + \frac{1}{2} \alpha(t) \right). \quad (3.2)$$

We shall first study phase contours in one physical
region and then in the other physical regions and the regions of crossed branch cuts. For each case, we first obtain a solution for the phase contours by assuming that the amplitude has a specific form. We then argue that the contours thus obtained are the simplest ones compatible with the requirement that our solution is to have no zeros on the physical sheet.

(a) Phase Contours in the s-Channel Physical Region ($s+i0$ Limit)

We begin by obtaining phase contours in the physical s channel (in the limit $s+i0$), assuming that the amplitude has the form

$$F(s,t) = b(t) s^{\alpha(t)} \exp\left[i \pi \left(1 - \frac{1}{2} \alpha(t)\right)\right] + b(u) s^{\alpha(u)} \exp\left[i \pi \left(1 - \frac{1}{2} \alpha(u)\right)\right] + \text{background}$$

We take $\alpha(0) = 1$, so as to give a constant total cross section, and we take the background to have only a slowly varying phase. At high energies the background is neglected at all angles in the physical regions.

The phase contours for real s and t in the s-channel are shown in Fig. 3.1. We have neglected small oscillations of the type discussed in I. It is not evident at this stage, whether the phase contours $\phi = \frac{1}{2} \pi$ bend away from the physical region as shown, or whether they join through the physical region like the other contours shown.
The topology of the phase contours, shown in Fig. 3.1, is more generally typical than one might expect from our special model. Given the assumptions of dominance by a continuously falling trajectory \(\alpha(t) \) for decreasing \(t \), \(\alpha(0) = 1 \), and no zeros on the physical sheet, we note the following consequences:

(i) Phase contours are asymptotic constant, parallel to \(t = \text{const.} \) or to \(u = \text{const.} \).

(ii) The phase contours \(\phi(s,t) = 0 \) cannot cross the line \(t = 4m^2(0) \) or the line \(u = 4m^2(0) \) above the elastic threshold \(s = 4m^2 \). This follows from the optical theorem and the positivity of the total cross section associated with a symmetric amplitude.

(iii) We expect phase contours to be continuous. This is because there are no divergent singularities of the scattering amplitude in the physical region.

(iv) Phase contours can cross each other only at zeros of the scattering amplitude. Since there are none by assumption, it follows that the phase contour \(\phi = -n\pi/2 \) that is asymptotically parallel to \(t = \text{const.} \) must connect to the contour \(\phi = -n\pi/2 \) that is asymptotically parallel to \(u = \text{constant} \).

It is easy to see that the topology of the phase contours shown is the simplest one that is compatible with these requirements for the case of no zeros on the physical sheet.
From Fig. 3.1 we can obtain phase contours in other real regions in two essentially different ways. These depend, for instance, on whether we desire the phase in the limit \((s + 10, t + 10)\), or in the limit \((s + 10, t - 10)\) when we increase \(t\) past \(4m\). Other limits give contours topologically similar to one of these, for the model considered here. We shall first consider the \(+10\) limit, and then the \(-10\) limits. We shall assume the amplitude to have a specific form, similar to Eq. (3.3), describing the assumed asymptotic behavior. Arguments similar to the above can be made to show that the resulting phase contours are the ones that satisfy the general requirements of this section.

We shall denote by \((s + 10)\) the triangular region \(s > 4m^2 + 10, t < 4m^2, u < 4m^2\), and by \((s + 10, t + 10)\) the region \(s > 4m^2 + 10, t > 4m^2 + 10, u < 4m^2\) (the \(s - t\) crossed-branch-cut region). Similarly, we can define other regions on the Mandelstam plot.

(b) Phase Contours in the \(s + 10, t + 10, u + 10\) Limits

The phases in the \(+10\) limits for each relevant variable, or a pair of variables will be symmetric with respect to \(s, t\) and \(u\). In particular, they have the same form in each physical region as Fig. 3.1, i.e., in the \((s + 10)\), \((t + 10)\), and \((u + 10)\) regions.

In the unphysical regions, for example, \(s > 4m^2, t > 4m^2\), i.e., \((s + 10, t + 10)\), we write the amplitude in the form
\[F(s,t) = b(t)s^\alpha(t) \exp \left[i\pi \left(1 - \frac{1}{2} \alpha(t) \right) \right]
+ b(s) u^\alpha(s) \exp \left[i\pi \left(1 - \frac{1}{2} \alpha(s) \right) \right] \] (3.4)

+ background.

With assumptions about the smoothness of the background similar to those made in the physical region, the asymptotic contours above the \(s \) threshold join smoothly to those above the \(t \) threshold. The resulting phase contours in the real \((s,t,u)\) plane in the limits from the upper half planes are shown in Fig. 3.2.

(c) Phase Contours in the \(s + i0, t - i0, u - i0 \) Limits

The analogous diagram showing phase contours in the limits \((s + i0, t - i0, u - i0)\) is more interesting. The phases in the \(t \)-channel and the \(u \)-channel are obtained by analytic continuation in the region \(\text{Im}(s) > 0 \) along, for fixed \(t \) or fixed \(u \),

\[s = K \exp(i\theta), \quad 0 \leq \theta \leq \pi, \] (3.5)

where \(K \) is a large positive constant. In this simple case with no zeros, one obtains phase contours in the \(u \)-channel \((u - i0)\) and the \(t \)-channel \((t - i0)\), which are complex conjugate to those in the \(s \)-channel \((s + i0)\).

In the region of crossed branch cuts, we replace Eq. (3.4) by
\[F(s,t) = b(t) s^{\alpha(t)} \exp \left[i \pi \left(1 + \frac{1}{2} \alpha(t) \right) \right] + b(s) u^{\alpha(s)} \exp \left[i \pi \left(1 - \frac{1}{2} \alpha(s) \right) \right] + \text{background.} \tag{3.6} \]

This form is appropriate to the limit \((s + i0, \, t - i0)\). Along \(s = t\), the background must be real; so the phase will be \(\pi\), since it has this value asymptotically and there are no zeros by assumption.

The resulting phase contours are shown in Fig. 3.3. We see that along \(t = 0\), the phase is \(\frac{1}{2} \pi\) as \(s \to +\infty\) but is \(\frac{3}{2} \pi\) as \(s \to -\infty\) (keeping on \(s + i0\)). In the region of crossed cuts, say \((t - i0, \, s + i0)\), the \(\frac{1}{2} \pi\) phase contour is required to separate the \(\pi\) contour from the \(0\) contour. Similarly the \(\frac{3}{2} \pi\) contour must lie between the \(\pi\) and \(2 \pi\) contours in this region. This determines that these contours must bend away from the physical regions in this diagram, and also in Fig. 3.2 since below \(t = 4m^2\), the \(\frac{1}{2} \pi\) contour follows the same path as in Fig. 3.3. We see also that the phase in the triangle below threshold must be equal to \(\pi\); this is a consequence of our assumption that there are no zeros on the physical sheet.

The phase contours in the region \((u - i0, \, s + i0)\) are obtained from \((t - i0, \, s + i0)\) by \(u - t\) symmetry. The complicated structure of phase contours in the \((t - i0, \, s + i0)\) and \((u - i0, \, s + i0)\) regions will be removed in the next
section when we relax the assumption that there are no zeros on the physical sheet.

In Fig. 3.4 we show complex sections of the phase contour surfaces for three real values of \(t \), in the complex \(s \) plane. The values of \(t \) are chosen with one well below \(t = 0 \), the second just above \(t = 0 \), and the third well above \(t = 4m^2 \). The phase contours in Fig. 3.4 indicate the asymptotic phase as \(s \to \infty \),

\[
\phi(s,t) \sim \pi \left[1 - \frac{1}{2} \alpha(t) \right] + \Theta \alpha(t), \tag{3.7}
\]

where \(s = |s| \exp i\theta \). The phase lines \(\phi = \pi \) meet at stagnation points, so that \(\phi = \pi - \epsilon \) and \(\phi = \pi + \epsilon \) diverge away from these points as indicated in Fig. 3.4(b).
4. ZEROS AT FINITE REAL POINTS

In this section we will extend the model described in Section 3, so that there are zeros at finite real points. Attached to these zeros are curves of complex zeros that lie on the physical sheet.

We begin by stating the results that have been established by Jin and Martin for a symmetric scattering amplitude below threshold. These give an indication of where we may expect to find a set of real or complex zeros of the scattering amplitude on the physical sheet. We will extrapolate heuristically from the rigorous results of Jin and Martin to deduce the effects on phase contours of the first real zero. These lead us to obtain a consistent solution for phase contours with an infinite sequence of real zeros on the crossed branch cuts in the limits from opposite half planes, for example \((s + io, u - io)\). This solution can be continuously varied so that it goes over to the solution obtained in the previous section when the zeros move through infinity to unphysical sheets.

(a) The Amplitude Below Threshold

Define the variable \(z\) by

\[
z = \frac{1}{2} (s - u)^2 = (s - 2m^2 + \frac{1}{2} t)^2. \tag{4.1}
\]
When t is in the range $(-4m^2, +4m^2)$, the amplitude can be expressed by a dispersion relation in z, with one subtraction.2,3 Let $G(z,t)$ denote the amplitude $F(s,t)$ expressed in terms of the variable z. Then

$$G(z,t) = C(t) + \frac{z - x_0}{\pi} \int_{x_0}^{\infty} dx \frac{\text{Im} \, G(x,t)}{(x - x_0)(x - z)}. \quad (4.2)$$

In the region $0 \leq t < 4m^2$, $\text{Im} \, G$ is positive for $x > x_0$, hence

$$\left(\frac{d}{dz}\right)^n G(z,t) > 0, \text{ for } z \text{ real } < x_0, \quad (4.3)$$

where

$$x_0 = (2m^2 + \frac{1}{2}t)^2. \quad (4.4)$$

When z is real and less than x_0, the function $G(z,t)$ will be real for $0 \leq t < 4m^2$. Hence for t in this range

(i) if $C(t) < 0$, $G(x,t)$ will have no zeros when $x < x_0$;

(ii) if $C(t) > 0$, $G(x,t)$ will have at most one zero when $x < x_0$.

Using crossing symmetry, this result can be extended to give information about the amplitude $F(s,t)$, within the triangle where it is real, namely,

$$s < 4m^2, \quad t < 4m^2, \quad u < 4m^2. \quad (4.5)$$
It has been shown by Jin and Martin2 that $F(s,t)$ has an absolute minimum at the symmetry point
\[s = \frac{4m^2}{3}, \quad t = \frac{4m^2}{3}. \quad (4.6) \]

The amplitude F increases (inside the triangle) along any straight line originating at this symmetry point.

If we assume asymptotic power behavior as indicated in Section 2, there will be one real zero of $G(x,0)$ for $x < x_0$, when the scattering length $C(0)$ is positive. More generally for t in the range,
\[-4m^2 < t < 4m^2, \quad (4.7) \]
there will be one real zero of $G(x,t)$, when the subtraction term in (4.2) is positive, $C(t) > 0$. Let this zero be at $z_0(t,f)$,
\[G(x_0(t,f), t) = 0, \quad (4.8) \]
where f denotes a parameter that permits us to vary the scattering length $C(0)$ and other values of the subtraction term $C(t)$. For example, let f denote the value of F at the symmetry point
\[f = F(4m^2/3, 4m^2/3). \quad (4.9) \]

If f is positive, there will be no zeros of F inside the triangle (4.5), but there will be a real zero of $G(x, 4m^2/3)$ in $x < 0$. This real zero z_0 corresponds to two complex
conjugate zeros of F,

$$s_0 = \frac{4m^2}{3} \pm i |z_0|^{\frac{1}{2}}. \quad (4.10)$$

If f is decreased and becomes negative, the two zeros (4.10) become real and separate inside the triangle (4.5). If f is sufficiently negative, the zeros reach the threshold branch points and move through them on to unphysical sheets.

The various situations of real zeros, that we wish to consider are shown in Fig. 4.1. The first diagram (a) corresponds to the situation when $f > 0$ and there are no real zeros, but there will be complex zeros. It is due to these complex zeros that we can choose different phases indicated in the diagram by $\phi = 0$, or 2π. In Fig. 4.1 (b) we have decreased f so that it is negative and there is a loop of real zeros in the triangle. Reducing f further gives (c), in which the broken lines indicate zeros that have moved on to the second sheet. In Fig. 4.1 (d) some of the second sheet zeros have become complex, as $z_o(t, f)$ decreases past zero on the second sheet. In Fig. 4.1 (e), all second sheet zeros are complex except for the black circles where the complex zeros move through its real boundary ($s + i0, \ u - i0$) etc. on to the physical sheet. The complex zeros on the physical sheet are indicated by dotted lines in diagram (e). There are also complex zeros on the physical sheet for all the other diagrams shown. They rise out from the curves of
real zeros, except in Fig. 4.1 (a) when they are at complex parts of the physical sheet and have no intersection with the real triangle.

(b) Complex Sections of Phase Contours

The location of zeros and their relation to the phase contours becomes clearer by considering complex sections. For illustration, we consider two complex sections when the real zeros have the form of Fig. 4.1(b). These show the phase contours and zeros in the complex s plane when \(t < 0 \), in Fig. 4.2 (a), and when \(t = 0 \), so that there are no real zeros, in Fig. 4.2 (b) and (c).

Since there are zeros of the amplitude \(F(s,t) \), the value of the phase \(\phi(s,t) \) will depend on the route taken from our initial point, \(s \to \infty \) along \(s + i0 \), and \(t = 0 \), when the phase is \(\frac{1}{2} \pi \). In Fig. 4.2(a) we define the phase by keeping in the upper half s plane, so we always go above the real zeros at \(s_0 \) and \(s_1 \). In Fig. 4.2(b), the zeros have become complex, and only \(s_1 \) is in \(\text{Im}(s) > 0 \). The path by which the phases have the values shown are indicated by arrows. The Fig. 4.2 (c) is an identical section to Fig. 4.2 (b) but we obtain different phases by passing below the complex zero \(s_1 \), as indicated by the arrows. The phases in diagram (b) are relevant if we use a route through asymptotic values in \(\text{Im}(s) > 0 \), but those in (c) are relevant if we proceed along \(s + i0 \).
(c) Crossing Symmetric Phase Contours

We now extrapolate from the location of the zeros shown in Fig. 4.1 (e), and assume an infinite sequence of real zeros on the crossed cuts in the limits

\[(s + i0, u - i0) \text{ along } s = u, \]
\[(s + i0, t - i0) \text{ along } s = t. \]

Only the leading zero may go below threshold, when it may have the form shown in Fig. 4.1 (b), (c), (d). However, we have chosen to take it on the crossed cuts as in Fig. 4.1 (e), since the resulting phase contours are slightly simpler than the other cases.

The phase contours with pairs of variables in the limits \((s + i0, t + i0, u + i0)\) can be taken to be the same as those in Fig. 3.2, since they are consistent without the introduction of any real zeros on the physical sheet in these limits.

The phase contours in the limits \((s + i0, u - i0, t - i0)\) are shown in Fig. 4.3. The labeling of phases is obtained by going from the physical region for the s-channel near \(t = 0\), or \(u = 0\), through asymptotic values in \(\text{Im}s > 0\) to the physical regions for other channels. Then we use continuity out of these physical regions to their neighboring unphysical regions on the indicated sides of the branch cuts.

In Fig. 4.3 zeros are shown as small black circles, and the attached complex zeros as dotted lines. The direction in
the complex space taken by these zeros depends on whether we vary \(t \) and consider complex \(s \), or vary \(u \) and consider complex \(s \), etc. The heavy line through the zeros has a different phase on either side. It is part of the complex surface of branch cuts of \(\log F(s,t) \). Similar cuts should be drawn through the complex zeros along the dotted lines. However, we will find it convenient to discuss various routes for defining the phase so we will not normally consider such branch cuts, which specify the phase in a less flexible manner.

The intermediate phase lines, on the \((u,s)\) and \((t,s)\) crossed cuts in Fig. 4.3, do not cross the heavy phase contour \(\phi = n\pi \) that goes through the zeros. The detailed form of these contours is shown in Fig. 4.4, which is an enlargement of the region labeled \((u - 10, s + 10)\) in Fig. 4.3. This figure indicates more intermediate contours, but omits the symmetric \(\phi = n\pi \) contour.

Complex sections, for real \(t \) and complex \(s \), of Figs. 4.3 and 4.4 are similar to the sections given in Fig. 4.2 for small values of \((-t)\). For large values of \(\pm t \), they are more complicated but we will proceed to a more realistic version of the Regge model before considering further complex sections.
5. ZEROS OF REGGE RESIDUES

The asymptotic Regge amplitude (2.3) is zero for \(t \) below threshold, whenever the residue vanishes, namely at

\[
\alpha(t) = -(2n + 1), \quad n = 0, 1, 2, \ldots \quad (5.1)
\]

In order to obtain the effects of this zero on phase contours, we must consider more than one term in the Regge asymptotic expansion. We will study the first two terms and will assume that the zeros of their residues do not coincide. We write them in the form

\[
F(s, t) \sim \beta_1(t) s^{\alpha_1(t)} \exp \left[i \pi \left(1 - \frac{1}{2} \alpha_1(t) \right) \right] \\
+ \beta_2(t) s^{\alpha_2(t)} \exp \left[i \pi \left(1 - \frac{1}{2} \alpha_2(t) \right) \right]
\]

(5.2)

where

\[
\beta_i(t) = \frac{b_i(t)}{\sin \left(\frac{1}{2} \pi \alpha_i(t) \right) \Gamma \left[\alpha_i(t) \right]}, \quad i = 1, 2.
\]

(5.3)

We assume that \(\alpha_1 \) and \(\alpha_2 \) are real for \(t < 4m^2 \), and that

\[
\alpha_1(t) > \alpha_2(t).
\]

(5.4)

For simplicity we will assume also that their difference is constant, and
\[\alpha_1(t) = \alpha_2(t) + 1. \]

(5.5)

There would be no significant change in our results if we took any constant difference between 0 and 2. For a larger difference, the results would be more complicated.

The optical theorem requires

\[\alpha_1(0) = 1, \ b_1(0) > 0. \]

(5.6)

The residue \(\beta \) could have additional zeros in \(t < 0 \), due to zeros in \(b_1(t) \). However, we will limit the possibilities that we need to consider by taking

\[b_1(t) > 0, \ \text{for } t \ \text{real}. \]

(5.7)

An important aspect of the phase contours depends on whether \(b_2(t) \) has the same sign or a different sign from \(b_1(t) \), when the residue \(\beta_1(t) \) vanishes at values of \(t \) satisfying Eq. (5.1). Although \(b_2(t) \) should be positive at resonance poles above threshold in our model, it could change sign in \(t < 4m^2 \), before we reach the first zero of the leading Regge residue \(\beta_1(t) \). We will therefore consider the two situations

(a) \(b_1(t) > 0, \ b_2(t) > 0 \), and (b) \(b_1(t) > 0, \ b_2(t) < 0 \).

In the general case we could have situation (a) holding at some zeros of \(\beta_1(t) \), and situation (b) holding at other zeros. However, we will limit our discussion by assuming that either (a) or (b) holds for all \(t < 0 \). The former leads to an oscillating phase in the physical regions, the latter leads to an increasing phase.
(a) An Oscillating Phase; $b_1(t) > 0$, $b_2(t) > 0$, in $t < 0$

We consider firstly the phase change of $F(s,t)$, given by Eq. (5.2), as t decreases from zero at a fixed positive real value of s along ABC in Fig. 5.1 (a) (on $s + i0$). Since $\beta_i(t)$ is zero, when $\alpha_1(t) = -(2n + 1)$, the term

$$F_1 = \beta_1(t) s^{\alpha_1(t)} \exp \left[i\pi \left(1 - \frac{1}{2} \alpha_1(t) \right) \right], \quad (5.8)$$

will describe a spiral in the half plane $\text{Re} F_1 \leq 0$. This spiral will touch the imaginary F_1 axis whenever t takes a value so that α_1 is a negative odd integer. On account of our assumption (5.5) about the trajectory difference, the spirals for F_1 and F_2 will be out of phase in general, but they will be in the same half-plane. The spirals for F_1 and F_2 are shown in Fig. 5.1 (b) and (c), together with the path of their sum in Fig. 5.1 (d), as t decreases for fixed real s. Note that the relative size of the spiral (c) will decrease if s is increased.

For any finite real s, it is evident that the phase of the amplitude F, given by Eq. (5.2), will oscillate between $(\frac{1}{2} \pi + \varepsilon)$ and $(\frac{3}{2} \pi - \varepsilon)$, where $\varepsilon \to 0$ as $s \to \infty$,

$$\phi(s,t) \sim \eta(t), \quad \frac{1}{2} \pi \leq \eta(t) \leq \frac{3}{2} \pi. \quad (5.9)$$

The phase, for finite large s, is shown in Fig. 5.2 (a) as a function of $\alpha_1(t)$.

Before discussing the location of the zeros on the physical sheet that come from the zeros of residues, we consider the phase in case (b).

(b) An Increasing Phase; \(b_1(t) > 0, b_2(t) < 0 \), in \(t < 0 \)

In this case, as we follow the path ABC in Fig. 5.1 (a) for fixed \(s \) and decreasing \(t \), the term \(F_1 \) given by Eq. (5.8) with \(i = 1 \), follows the spiral shown as (b) in Fig. 5.1. However, \(F_2 \) will follow the spiral shown as (e) in Fig. (5.1) in \(\text{Re}(F_1) > 0 \). The resulting sum, that gives the asymptotic phase of \(F(s,t) \) will follow the path indicated by diagram (f) in Fig. (5.1). For a larger fixed value of \(s \), there will be a smaller part of the curve in \(\text{Re}(F) > 0 \), but it will always loop round the origin for any finite \(s \) (no matter how large).

The asymptotic phase as \(s \to +\infty \), in this case, is given by

\[
\phi(s,t) \sim \pi \left[1 - \alpha_1(t) \right] + \zeta(t), \quad (5.10)
\]

where

\[
-\frac{1}{2}\pi \leq \zeta(t) \leq \frac{1}{2}\pi. \quad (5.11)
\]

This phase, for finite large \(s \), is shown in Fig. 5.2 (b) as a function of \(-\alpha_1(t) \), (note that \(-\alpha_1 \) increases as \(t \) decreases).
(c) Zeros on the Physical Sheet

We consider now, how the zeros from the residues in case (a) move in the finite regions of the physical sheet as \(t \) is decreased through negative values. We begin from the fixed value of \(t \) that gave point B in Fig. 5.1 (b), (c) and (d), for some fixed real \(s \), which we denote by \(s_0 \). We then follow the path in \(\text{Im}(s) > 0 \),

\[
s = s_0 \exp(i\Theta), \quad 0 \leq \Theta \leq \pi. \tag{5.12}
\]

Along this path,

\[
F(s, t) \sim F_1 + F_2 = F_2 \left[\frac{F_1}{F_2} + 1 \right], \tag{5.13}
\]

where

\[
\frac{F_1}{F_2} = -\left| \frac{\beta_1(t)}{\beta_2(t)} \right| s_0 (\alpha_1 - \alpha_2) \exp \left[i(\alpha_2 - \alpha_1) \left(\frac{1}{2} \pi - \Theta \right) \right]. \tag{5.14}
\]

This ratio is real and negative when \(\Theta = \frac{1}{2} \pi \), that is, when \(s \) is pure imaginary. We can now hold \(t \) fixed and choose \(s_0 \) so that at \(\Theta = \frac{1}{2} \pi \),

\[
\frac{F_1}{F_2} = -\left| \frac{\beta_1(t)}{\beta_2(t)} \right| s_0 (\alpha_1 - \alpha_2) = -1. \tag{5.15}
\]

If we have chosen the point B in Fig. 5.1 (a) - (d), so that \(\beta_1(t) \) is very small, then the solution \(s_0 \) of Eq. (5.15) will be large. As \(t \) moves further above the value \(t_1^n \) at which
\[\alpha_1(t_1^n) = -(2n + 1), \]
(5.16)

The ratio \(\beta_1 / \beta_2 \) increases and \(s_0 = s_0(t) \) decreases, until \(s_0 = 0 \), when \(t = t_2^n \), where

\[\alpha_2(t_2^n) = -(2n + 1). \]
(5.17)

Before we reach the value \(t_2^n \), we must of course replace \(F_2 \) in Eq. (5.13) by another correction term or a sum of such terms. We should also use the variable \((s - u)\), instead of \(s \), in order to preserve crossing symmetry. The zero associated with (5.16) then moves in from infinity along a curve in the plane, \(t \) real \((s - u)\) pure imaginary, as \(t \) increases from \(t_1^n \) given by (5.16). We will see that after these modifications, it is still consistent to assume the zeros become real, although this will no longer occur at \(t = t_2^n \). We denote the real zeros by

\[t = a_1, \quad t = a_2, \ldots \]
(5.18)

and since they move in along \((s - u)\) pure imaginary, we will assume that they are real along the symmetry line \(\text{Re}(s) = \text{Re}(u) \).

We have already, in Section 4, established a need for zeros of the amplitude \(F(s, t) \) that are real along \(s = u \), and are at complex values on the physical sheet along curves that go through the real zeros. It seems natural to identify those curves of zeros with the curves of zeros that are asymptotic...
to \(t = t_1^n \) satisfying Eq. (5.16), along \((s-u)\) pure imaginary. The resulting complex section containing these zeros is shown in Fig. 5.3 (a), where the axes are \(t(\text{real}) \) and \((s-u)\) (pure imaginary). In order to establish the consistency of this figure, we should also consider the complex \(s \) plane (or \((s-u)\) plane) for \(t < t_1^n \). The ratio in Eq. (5.14) becomes modified because \(\beta_1(t) \) is now negative. If

\[
0 < (\alpha_2 - \alpha_1) < 2,
\]

the ratio \(F_1/F_2 \) does not become real and negative for any value of \(\Theta \). Hence there are no zeros of \(F \) in the asymptotic region for case (a) with \(t < t_1^0 \), when \(|t - t_1^0| \) is small.

In case (b), considered in subsection (b) above, the situation is reversed. For \(t > t_1^0 \) there are no zeros in the asymptotic region, but for \(t < t_1^0 \) there will be one zero. The resulting curves of zeros in the complex section, \(t \) real and \((s-u)\) pure imaginary, are shown in Fig. 5.3 (b).

The shape of the phase contours in the real region \(s > 4m^2, \ u > 4m^2 \), in the limit \((s+i0, u-i0)\) in both cases (a) and (b), obliges us to draw the attached complex curves of zeros as shown in Fig. 5.3 (a) and (b). The zeros are on the intersection of phase contour surfaces. In case (b) they will normally remain in the finite part of the complex section shown in Fig. 5.3 (b) even when \(t \to -\infty \).
In this case (b) we are unable to identify directly, the zeros coming from the real symmetry points \(s = u \), with the zeros coming from the vanishing of the Regge residues. However, by a variation of the parameters \(t_1^0 \) and \(a_1 \), for example, we can cross over from situation (a) to situation (b) for the first zero. It is then evident that the zero at \(a_1 \) connects to the zero coming in from \(t_1^0 \) on the physical sheet in case (a), but on an unphysical sheet in case (b).

More complicated situations can occur if we relax the condition \(0 < (\alpha_2 - \alpha_1) < 2 \). This would permit more than one zero to come from each vanishing residue. Apart from these possibilities, there will in general be local distortions of phase contours, and hence of the curves of zeros, due to resonances. These would have their greatest effect on the physical sheet near the real axes.

(d) Phase Contours in \(t < 0 \)

With so many zeros on the physical sheet it is necessary to specify the routes by which the phase is defined. Unfortunately the route that gives the most natural phase labeling for one section of the surfaces of constant phase becomes rather unnatural for other sections. We will therefore sometimes change the routes used for defining the phase, when we change to a different section of the phase surfaces.
We assume that the zeros at real points in \(t < 0 \), are located in position similar to those shown in Fig. 4.3, on the overlapping branch cuts \(u > 4m^2, t > 4m^2 \). Taking account of the zeros of residues, we find that Fig. 4.3 for \(t < 0 \), in case (a) is replaced by Fig. 5.4. Here we have used a phase labeling beginning from \(t = 0, \ s \rightarrow \infty \) along \(s + i0 \), where the phase is \(\frac{1}{2} \pi \). The phases in the s-channel are found by continuity along \(t \) real. The phase in the u-channel is found by crossing along \(s = |s| \exp i\theta \), for large \(s \) with \(t = 0 \), giving a phase \(\frac{3}{2} \pi \). Then we proceed by continuity along \(t \) real. In the physical regions of the s- and u-channels the phase is never equal to a half integer multiple of \(\pi \). For a more realistic model that had resonance distortions of phase contours at finite energies, one would expect this result to continue to hold for large \(s \) and for large \(u \).

In Fig. 5.5 we show for case (a) some complex sections of the phase contour, for several fixed real values of \(t \), in \(\text{Im}(s) > 0 \) in the complex \(s \) plane. The labeling in Fig. 5.5 (a) corresponds to that in Fig 5.4 for small negative \(t \). In Fig. 5.5(b) \(t \) has become more negative. The labeling in brackets corresponds to a route above the zero (in agreement with Fig. 5.4), the other corresponds to a route below the zero. The latter is the most natural labeling to use in Fig. 5.5 (c), when \(t \) has decreased just below \(a_1 \). At the value \(t_1^0 \) of \(t \) (see Fig. 5.3 (a)), the zero.
shown in Fig. 5.5 (b) has moved upwards to infinity. As t decreases below the value t_1^0, the contours $(\frac{1}{2} \pi)$ and $(\frac{3}{2} \pi)$ in Fig. 5.5 (b) have stretched to $i \infty$ and separated as shown in Fig. 5.5 (c). In the latter figure, t has decreased below a_2 (see Fig. 5.5 (a)), so there is a new zero on the imaginary $(s - u)$ axis, which connects the $(-\frac{1}{2} \pi)$ and $(\frac{5}{2} \pi)$ contours. In Fig. 5.5 (d), we have taken a value of t in the range

$$a_3 > t > t_1^2 ,$$

(5.19)

and have used the phase labels in the complex $(s - u)$ plane that are appropriate for this value of t, given that the phase of the right most contour is π, as in the s-channel of Fig. 5.4.

We see that in case (a), defined in Section 5 (a) above, the phase remains near to the value π in the s-channel, as shown in Fig. 5.4. The phase contours that are relevant to the high energy behavior are those in the region of overlapping branch cuts. This is illustrated by Fig. 5.5 (d), where the power behavior s^α has $\alpha \approx -4$. Thus the oscillations of $\text{Im} F$ are ineffective in the physical region. An approximation to a superconvergence relation that included only the physical regions would give a completely wrong result in this case (a), where the region of crossed cuts plays a vital role.
The situation is different in case (b) described in subsection 5 (b), and giving zeros as shown in Fig. 5.3 (b).

The phase has the asymptotic value given by Eq. (5.10) as $s \to +\infty$. If we defined the phase in the u-channel by crossing asymptotically in $\text{Im}(s) > 0$ near $t = 0$, the phase there as $s \to -\infty$, would satisfy

$$\varphi(s,t) \sim n[1 + \alpha_1(t)] - \xi(t).$$

(5.20)

Thus the net phase change is $2\alpha_1 n$, which is twice as much as that obtained at each fixed negative t from the asymptotic behavior $s\alpha(t)$. The discrepancy is taken up by the zeros that move in from infinity when $\alpha(t) = -(2n + 1)$. In this case, however, the zeros that come in from infinity do not leave the physical sheet. They are in addition to the zeros that enter the physical sheet through the real points $t = a_1, a_2, a_3, \ldots$ along $s = u$. The two types of zeros are separated on the physical sheet by the phase contour $\varphi(s,t) = \pi$, in this case.

The phase contours for case (b) are shown for real s and t in Fig. 5.6, which is analogous to Fig. 5.4 (which applies to case (a)). In Fig. 5.7, we show a complex section that corresponds to fixed real t in Fig. 5.6 just below the first real zero,

$$a_2 < t_1^1 < t < a_1 < t_1^0.$$

(5.21)

The phase labeling in Fig. 5.7 is obtained by continuity in
the s plane for this particular value of t, so it does not correspond to that on the left of Fig. 5.6. The upper zero in Fig. 5.7 comes from the zero at the residue, whereas the lower zero comes from the unphysical sheet through the real zero $t = a_1$, $s = u$, in Fig. 5.6. If we begin from case (b) and increase a_1 until $a_1 = t_1^0$, we obtain case (a). The flip of the contours when $a_1 = t_1^0$, will occur at infinity where the two zeros become coincident. For $a_1 > t_1^0$, they are separated again but one of them is on the unphysical sheet. The other is the zero discussed in case (a). More complicated situations can be obtained by varying parameters so that the two zeros in Fig. 5.7, meet along $\text{Re}(s) = \text{Re}(u)$, at finite $\text{Im}(s)$. They could then separate again on opposite sides of the line $\text{Re}(s) = \text{Re}(u)$, and could move down towards the physical regions.
6. RESONANCE POLES AND ASYMPTOTIC PHASES

In this section we investigate the asymptotic phase above threshold in the Regge model related to Eq. (2.3), and find the associated phase contours. Above threshold the Regge trajectory becomes complex, and it is important to distinguish whether we have \(t \) above or below the branch cut along the real axis. We find that the presence of nearby resonance poles on the second sheet produces an important change in phase from the simple model that we used in Sections 3 and 4. It is necessary to consider the phase for different limits before we can study the associated phase contours.

\((a) \ s + i0, \ t + i0, \text{ With } s \to +\infty \text{ and } t > 4m^2 \)

The phase can be obtained from the asymptotic expression (2.3) for \(F \) in the Regge model, namely

\[
F(s, t) \sim \frac{b(t) s^{\alpha(t)} \exp \left[i\pi \left[1 - \frac{1}{2} \alpha(t) \right] \right]}{\sin \left(\frac{1}{2} \pi \alpha(t) \right) \Gamma \left(\alpha(t) \right)}
\]
(6.1)

We write for \(t > 4m^2 \),

\[
\alpha(t) = \alpha_1 + i\alpha_2, \text{ with } \alpha_2 > 0.
\]
(6.2)

The residue \(b(t) \) is assumed to be nearly real and to have a slowly changing phase in \(t > 4m^2 \), and the gamma function
is almost real, since \(\alpha_1 > 1 \) and we assume \(\alpha_2 \) is much less than \(\alpha_1 \). The power of \(s \) leads to a factor

\[
\exp \left[i \alpha_2 \log s \right]. \tag{6.3}
\]

The phase of this term is a slowly varying function of \(s \), so we will ignore it in our present discussion of phases and phase contours. It may become important when considering more detailed questions of consistency, but it does not appear to be relevant for our work in this section.

However, the phase of the \(\sin \left(\frac{1}{2} \pi \alpha \right) \) term in the denominator of the expression (6.1) is important. This term can be written,

\[
\sin \left(\frac{1}{2} \pi \alpha_1 \right) \cosh \left(\frac{1}{2} \pi \alpha_2 \right) + i \cos \left(\frac{1}{2} \pi \alpha_1 \right) \sinh \left(\frac{1}{2} \pi \alpha_2 \right). \tag{6.4}
\]

Its phase lies in the same quadrant as the phase of

\[
\exp \left[i \pi \left(\frac{1}{2} - \frac{1}{2} \alpha_1 \right) \right]. \tag{6.5}
\]

Hence neglecting the factor (6.3), the asymptotic phase \(\phi(s,t) \) of the scattering amplitude \(F \), given by (6.1) will satisfy

\[
\phi(s + i0, t + i0) \sim \frac{1}{2} \pi + \chi_a(t), \text{ as } s \to +\infty, \tag{6.6}
\]

where \(\chi_a(t) \) depends on \(\alpha_1 \) and \(\alpha_2 \);

\[
\chi_2(t) = 0, \text{ when } \alpha_1 = n, \quad n = 1, 2, 3, \ldots \tag{6.7a}
\]
\[0 < \chi_a < \frac{1}{2} \pi, \quad \text{when} \ 2n < \frac{1}{2} \alpha_1 < 2n + 1, \quad \text{(6.7b)} \]

\[-\frac{1}{2} \pi < \chi_a < 0, \quad \text{when} \ 2n + 1 < \frac{1}{2} \alpha_1 < 2n + 2, \quad \text{(6.7c)} \]

\[\chi_a(t) \rightarrow 0, \quad \text{as} \ \alpha_2(t) \rightarrow \infty. \quad \text{(6.7d)} \]

In this limit, the phase oscillates about the value \(\frac{1}{2} \pi \) so that \(\text{Im} F \geq 0 \). The corresponding complex section of the phase contours in the \(t \) plane is shown in Fig. 6.1 (a). This diagram shows part of the physical sheet in \(\text{Im}(t) > 0 \), and also part of the unphysical sheet reached through the \(t \) branch cut along the real axis. There are many such unphysical sheets that depend on how many threshold branch cuts are crossed. On all these unphysical sheets there will be poles or shadow poles corresponding to resonances. In Fig. 6.1 (a) we have considered only one such sheet. We have indicated zeros on this sheet in addition to the resonance poles, since they are required for a consistent pattern of phase contours. There are no such zeros from the term (6.1) alone, but there will be zeros when a correction term is added, that has a slowly varying phase.

The resonance poles occur at the usual values for an amplitude of even signature, namely at the zeros of

\[\sin \left[\frac{1}{2} \pi \alpha(t) \right], \]

\[\alpha(t) = 2n, \quad n = 1,2,3,\ldots \quad \text{(6.8a)} \]

\[t = t_2, t_4, t_6,\ldots \quad \text{(6.8b)} \]
The S-state pole will lie below threshold on the real axis of the unphysical sheet, since we have assumed that there are no bound state poles on the physical sheet.

(b) $s + i0, \ t - i0, \text{ with } s \to +\infty \text{ and } t > 4m^2$

The phase contours near and on the boundary of the physical sheet in this limit are quite different from those considered above in case (a). Now we have $\alpha_2 < 0$, and the phase of (6.4) will be in the same quadrant as that of

$$\exp \left[i\pi \left(-\frac{1}{2} + \frac{1}{2} \alpha \right) \right], \quad (6.9)$$

instead of (6.5). From (6.1) the asymptotic phase of F will satisfy

$$\varphi(s + i0, \ t - i0) \sim \frac{3}{2} \pi - \alpha_1 \pi - X_b(t), \quad (6.10)$$
as $s \to \infty$, where

$$-\frac{1}{2} \pi < X_b(t) < \frac{1}{2} \pi, \quad (6.11a)$$

$$X_b(t) \to 0, \text{ when } \alpha_1 = n. \quad (6.11b)$$

There is some ambiguity in choosing the phase of $(-\frac{1}{2} \pi)$ in (6.9). We determine it by continuity of φ from the region $0 < t < 4m^2$, where the asymptotic phase must satisfy $0 < \varphi < \frac{1}{2} \pi$.

$$\varphi(s,t) = (-2n + \frac{1}{2}) \pi, \quad (6.12)$$
when \(\alpha_1(t) = (2n + 1) \). This value of \(\alpha_1 \) does not correspond to a resonance pole since the amplitude has even signature. The phase contours (6.12) go through the zeros of \(F \), while the phase contours (6.13) related to \(\alpha_1(t) = 2n \), go through the resonance pole,

\[
\phi(s, t) = - (2n - \frac{3}{2}) \pi.
\]

(6.13)

Before obtaining the phase contours in the full \(s, t, u \) plane, we require information about the asymptotic phase in three more types of limits on to the boundary of the physical sheet.

(c) \(s + i\tau, \ t + i\tau \). With \(t \to +\infty, s > 4m^2 \)

By symmetry, this limit gives phases that are exactly analogous to those in (a) above

\[
\phi(s + i\tau, t + i\tau) \sim \frac{1}{2} \pi + X_a(t), \text{ as } t \to +\infty, \]

(6.14)

where \(X_a \) satisfies the conditions (6.7).

(d) \(s - i\tau, \ t + i\tau \). With \(s \to +\infty, t > 4m^2 \)

The Regge term in the amplitude on this boundary, that is analogous to (6.1), is

\[
\frac{b(t) s^\alpha \exp \left[i \pi \left(1 + \frac{1}{2} \alpha(t) \right) \right]}{\sin \left[\frac{1}{2} \pi \alpha(t) \right] \Gamma' \left[\alpha(t) \right]} \]

(6.15)

Hence the asymptotic phase will be
\[\phi(s - 10, t + 10) \sim \frac{1}{2} \pi + \alpha_1 \pi + X_d(t), \text{ as } s \to +\infty, \]

(6.16)

where \(X_d(t) = 0 \) when \(\alpha_1 = n \), and satisfies conditions analogous to (6.7).

(e) \(s - 10, t - 10 \). With \(s \to +\infty, t > 4m^2 \)

The phase in this case follows from (6.15) and (6.4), giving

\[\phi(s - 10, t - 10) \sim \frac{3}{2} \pi + X_e(t), \text{ as } s \to +\infty, \]

(6.17)

where \(X_e(t) = 0 \), when \(\alpha_1 = n \), and satisfies conditions analogous to (6.7).
7. CROSSING SYMMETRIC PHASE CONTOURS

Using the results of Section 6 we can obtain the simplest family of phase contours for the Regge model in the region t real above threshold. Combining these with the contours obtained in Section 5 for t real below threshold, we obtain the phase contour diagram shown in Fig. 7.1. In this figure we have assumed that, in the physical s-channel, the conditions of Section 5 subsection (b) hold. Thus the phase contours in this region are the same as those shown for the s-channel in Fig. 5.6. The phase in the u-channel can be obtained by crossing symmetry near $t = 0$ and then by continuity along $(u - i0)$ for decreasing real t. This gives the phase labels shown in Fig. 5.6. The labeling in Fig. 7.1 in the u-channel corresponds to that obtained through asymptotic values of s in $\text{Im}(s) > 0$ from the s-channel for each fixed $t < 0$. The dotted lines from the zeros on the u and s overlapping branch cuts are complex in $\text{Im}(s) > 0$ along $\text{Re}(s) = \text{Re}(u)$ for decreasing real t. For case (b) of Section 5, these zeros remain on the physical sheet as t decreases indefinitely. In addition there are complex zeros along $\text{Re}(s) = \text{Re}(u)$ in $\text{Im}(s) > 0$, that come from the zeros of residues. In this case the two kinds of zeros do not identify with each other on the physical sheet. This contrasts with case (a) considered in Section 5.
Above \(t = 4m^2 \), as \(t \) increases, complex zeros come out of the \(s \) and \(t \) overlapping branch cuts from real points along \(\text{Re}(s) = \text{Re}(t) \). These zeros remain on the physical sheet as \(t \) increases and go to infinity as \(t \to +\infty \). For finite \(t \) we have the \(s \) plane analogue of Fig. 6.1(b), which shows the \(t \) plane for real \(s \). Note that the complex path of these zeros for increasing real \(t \) is different from the complex path for decreasing real \(u \). The latter is the analogue, on the \(s,t \) crossed cuts, of our discussion in Section 5 on the \(s,u \) crossed cuts. In the present case we do not expect the zeros to go to infinity for finite real \(t \) above threshold.

A complex section, based on Fig. 7.1 is shown in Fig. 7.2. This section shows the complex \(s \) plane for real \(t \) at a value above \(4m^2 \), when two of the zeros are complex and the third is nearly real but still on the unphysical sheet. The right hand and left hand branch cuts (\(s > 4m^2 \) and \(t > 4m^2 \)) have been pulled down to show part of the unphysical sheets. The lack of symmetry is due to the fact that we are above the threshold in \(t \), at a real point \(t = 10 \) approached from the \(t \) physical sheet \(\text{Im}(t) < 0 \).

If, instead of case (b) of Section 5, we had taken case (a), the lower half of Fig. 7.1 would change to the pattern indicated in Fig. 5.4, with complex sections in \(t < 0 \) as shown in Fig. 5.5. However, the contours for \(t > 0 \) will remain the same as those shown in Fig. 7.1. In case (a)
the \(\pi, \pi, \pi \), pattern applies in all physical channels. The same phases are obtained in case (a) above threshold in \(t \), either by crossing near \(t = 0 \) (or \(u = 0 \)) through asymptotic values of \(s \), or by crossing at each fixed value of \(t \) (or \(u \)), through asymptotic values of \(s \). This shows that the number of zeros encircled is the same either way, and confirms our remark above that the zeros, emerging from the symmetry points \(s = t \), do not leave the \((\text{Im}(s) > 0)\) physical sheet as \(t \) increases through positive real values (along \(t - i0 \)). Thus, as \(t \) increases, the zeros on the right of Fig. 7.2 will move upwards in \(\text{Im}(s) > 0 \), and more zeros will emerge from the unphysical sheet.
8. SUMMARY

The method of phase contours has been used to study analyticity in a crossing symmetric Regge model based on rising trajectories. Families of solutions have been obtained that show how zeros and poles of scattering amplitudes can be related by means of phase contours.

Zeros of the amplitude were shown to arise from three initially independent sources. The first source, discussed in Section 4, may be called symmetry zeros, since they occur along $\Re(s) = \Re(u)$ and are introduced from crossing symmetry arguments. The symmetry zeros may move on to the unphysical sheet if "scattering length" parameters could be varied sufficiently. The resulting phase contours would be those considered in Section 3.

The second source of zeros comes from the zeros of Regge residues $\beta(t)$ in $t < 0$. Two main possibilities were considered in subsection (a) and (b) of Section 5. In the first one (a), as t is increased through negative real values, the residue zeros move in from infinity along $\Re(s) = \Re(u)$ in $\Im(s) > 0$, and leave the physical sheet at the real symmetry zeros. In this case the phase in the physical regions for fixed $t < 0$ does not cycle as s moves along the real axis, but only oscillates about the value
The high energy behavior is directly related to the zeros and the oscillations of the phase in the region where the s and u branch cuts overlap. This is indicated by the phase contours in Fig. 5.5 (d), for example.

In case (b) of subsection 5, the residue zeros and the symmetry zeros cannot be identified by connecting curves of zeros on the physical sheet. Both types remain on the physical sheet after they have entered it, but their paths do not meet. Presumably they will meet on an unphysical sheet since a continuous variation is possible from case (a) to case (b) in which the complex curves of zeros flip at certain critical values of the parameters.

The third type of zero is deduced as a consequence of interference between resonance poles. For $t \to +\infty$, these zeros will move along $\text{Im}(s) \to +\infty$. As t is decreased the interference zeros successively leave the physical sheet through the symmetry zeros. A typical section of the complex s plane is shown in Fig. 7.2, for a real value of $t(t - i0)$ such that only three of the interference zeros remain complex.
9. CONCLUSION

We have started a new program of exploiting the analytic properties of scattering amplitudes by a general study of their phases. As a first illustration, the method of phase contours has been used to obtain consistency conditions imposed by analyticity when crossing symmetric Regge behavior is assumed for a scattering amplitude.

Traditionally, analyticity is used through dispersion relations. A dispersion relation allows one to represent a scattering amplitude at any point in the complex plane, in terms of properties of its nearby singularities. The effects coming from far-away singularities (including infinity) are suppressed, if the function vanishes asymptotically. If this is not the case, subtractions are required, and the number of subtractions will depend on the knowledge of the asymptotic bound of the amplitude. The use of subtraction allows one to approximate the effects of far-away singularities by that of a polynomial.

For the case of the Regge model, detailed behavior of the scattering amplitude at infinity is known. One can effectively replace those subtraction constants in dispersion relations by Regge parameters of leading Regge poles. If the scattering amplitude is now evaluated in the physical region, a sum rule relating low energies and high energy Regge parameters can be derived.
It has since been recognized that the Regge expansion will in principle represent the effects of singularities of a scattering amplitude at low energies as well as effects due to singularities at high energies. The Regge representation, when considered as an asymptotic expansion, gives a unique description of a scattering amplitude in terms of Regge parameters. In practice, only the parameters of the first few leading Regge poles are known; the constraints imposed at low energies by the knowledge of high energy behavior are expressed in the form of finite energy sum rules.

A finite energy sum rule correlates parameters of leading crossed channel Regge poles with the average of a scattering amplitude at low energies. This correlation is good if the average is made up to that energy where the Regge expansion in terms of these parameters is good. In this sense, finite energy sum rules are just a different feature of Regge pole phenomenology. However, when a resonance approximation is made for amplitudes at low energies, the use of finite energy sum rules becomes a quantitative bootstrap model.

The method of phase contours, on the other hand, allows a qualitative description of the properties of scattering amplitudes at low energies imposed by the assumption of simultaneous Regge behavior in all channels. Instead of a quantitative correlation, the knowledge of the asymptotic behavior in all channels determines the behavior of a scattering amplitude at both low and high energies, expressed by the
general topology of phase contours.

The major ingredient, aside from asymptotic assumptions, which we employ in obtaining our consistent solution, is the fact that there are no divergent singularities in scattering amplitudes on the physical sheet except for stable particle poles. This guarantees that no two phase contours corresponding to different values will intersect except at poles and zeros, and each phase contour is a continuous curve on the physical sheet. This greatly simplifies the general topology of our solution for the phase contours.

Throughout this paper, we have neglected the local distortion of phase contours at low energies due to dominant direct channel resonances. We do take account for resonances in their crossed channel high energy effects, and in the resulting interference that determines the continuation between phase contours in the regions of crossed branch cuts. However, the mechanism of dominant resonances is not essential to the derivation of a consistent topology of phase contours under the conditions assumed in this paper, although it would be important if we impose a stronger form of bootstrap consistency.

The consistency conditions we have studied are not a bootstrap method in any complete sense, since we have not included unitarity except weakly. We expect that full
unitarity will provide strong additional conditions that further limit the type of phase contours that may occur. In particular, it may shed light on how to incorporate the effect of dominant direct channel resonances in a more systematic manner.

The method of phase contours used in this paper has a number of other applications. The applications that we regard as most promising include: (1) The use of phase contours for the interpretation of experiments. This has been discussed in I. (2) A new formulation of the problem of relating asymptotic behavior at fixed momentum transfer and asymptotic behavior at fixed angle by the study of phase contours and zeros of scattering amplitudes.
ACKNOWLEDGMENT

I am very grateful to Professor Geoffrey F. Chew for his invaluable guidance and encouragement throughout my graduate study. I also wish to thank Professor Richard J. Eden for his indispensable discussions and assistance.

This work was done under the auspices of the U.S. Atomic Energy Commission.
FOOTNOTES AND REFERENCES

FIGURE CAPTIONS

Fig. 3.1. Phase contours in the physical region for the s-channel, based on the simplified form of a Regge model given by Eq. (3.4). The continuous curves correspond to \(\text{Im} F = 0 \), and the broken curves to \(\text{Re} F = 0 \).

Fig. 3.2. Crossing symmetric phase contours in the limits \((s + i0, t + i0, u + i0)\) taken in pairs, with \(s, t, u\) real on the physical sheet, when there are no zeros on the physical sheet.

Fig. 3.3. Phase contours for a symmetric amplitude in the limit \((s + i0, t - i0, u - i0)\) on the boundary of the physical sheet, for a simplified Regge model, with no zeros on the physical sheet.

Fig. 3.4. Complex sections of phase contours of Fig. 3.3 in the complex \(s \) plane for real \(t \), (a) \(t \) negative, (b) \(t \) small and positive, (c) \(t \) well above \(t = 4m^2 \).

Fig. 4.1. Curves of zeros of a symmetric amplitude in the triangle below threshold, shown in the real \((s, t)\) plane: (a) there are no real zeros but since \(\phi = 0 \) or \(2\pi \), there will be complex zeros,
(b) real zeros along the closed curve, (c) the real zeros indicated by a broken line lie on the unphysical sheet, (d) some of the unphysical sheet zeros have become complex, (e) all zeros are complex on the physical and unphysical sheets except for isolated points shown as small black circles, the attached dotted lines denote complex zeros on the physical sheet.

Fig. 4.2. Complex sections based on Fig. 4.1 (b). In diagram (a) we show phase contours for complex s when there are two real zeros when \(t = 0 \). Diagram (b) shows the phase contours when \(t \) has become negative so that the zeros are complex. Diagram (c) shows alternate routes that lead to different phase values from (b).

Fig. 4.3. Phase contours for a crossing symmetric amplitude in the limit \((s + 10, t - 10, u - 10)\). The small black circles denote real zeros, and the attached dotted lines denote complex zeros on the physical sheet.

Fig. 4.4. The \((s + 10, u - 10)\) phase contours. This is an enlarged version of the neighborhood of some zeros in Fig. 4.3. It shows phase contours for intermediate values of the phase, to indicate how
they cross the symmetric line $s = u$, only at zeros of the amplitude.

Fig. 5.1. (a) The real (s,t) plane.

(b) to (f) The complex plane for various Regge amplitudes showing how they vary along ABC in Fig. (a), when the residues have zeros.

Fig. 5.2. The variation of the phase as a function of the leading Regge trajectory, (a) when the first and second Regge terms have negative real parts, (b) when they have real parts of opposite sign.

Fig. 5.3. The dotted lines show curves of zeros in the section $\text{Re}(s) = \text{Re}(u)$, with $\text{Im}(s)$ and real (t) as coordinates. The residues have zeros at t_1^n. Fig. (a) corresponds to Section 5 (a) and Fig. (b) to Section 5 (b). The points a_1, a_2, \ldots denote real zeros.

Fig. 5.4. Phase contours in the limit $(s + i0, u - i0)$ for case (a), corresponding to Fig. 5.3 (a). The dotted lines denote complex zeros that go to infinity for finite t, at t_0, t_1, t_2, \ldots, and are real at $t = a_1, a_2, a_3, \ldots$.

Fig. 5.5. Phase contours in the complex $(s - u)$ plane for successively decreasing values of t real,
corresponding to case (a) and the real section shown in Fig. 5.4. The s and u branch cuts overlap in each of these figures.

Fig. 5.6. Phase contours for real values of the variables, in case (b), corresponding to Fig. 5.3 (b). The complex zeros from the residue zeros are not shown here. The dotted lines are complex zeros coming from the real symmetry zeros.

Fig. 5.7. The complex $(s - u)$ plane showing phase contours for fixed negative t in case (b), corresponding to Fig. 5.3 (b) and to Fig. 5.6.

Fig. 6.1. Phase contours in the complex t plane for real s, showing part of the unphysical sheet. Crosses denote resonance poles and small black circles denote zeros of the amplitude. Fig. (a) shows the sheet relevant to $(s + 10, t + i0)$, and (b) shows the sheet relevant to $(s + 10, t - i0)$.

Fig. 7.1. Crossing symmetric phase contours in the real limit $(s + 10, t - i0, u - i0)$, for case (b) of Section 5. Large black dots indicate real zeros and dotted curves indicate complex zeros.
Fig. 7.2. The complex s plane for fixed real t above threshold, showing parts of the unphysical sheets above the s and u thresholds. These phase contours correspond to the real section given in Fig. 7.1. Poles are denoted by crosses and zeros by large black dots.
Fig. 3.1
Fig. 3.2
Fig. 4.1
Fig. 4.2
Fig. 5.1
Fig. 5.2
Fig. 5.5
Fig. 5.7
Fig. 6.1
Fig. 7.1
This report was prepared as an account of Government sponsored work. Neither the United States, nor the Commission, nor any person acting on behalf of the Commission:

A. Makes any warranty or representation, expressed or implied, with respect to the accuracy, completeness, or usefulness of the information contained in this report, or that the use of any information, apparatus, method, or process disclosed in this report may not infringe privately owned rights; or

B. Assumes any liabilities with respect to the use of, or for damages resulting from the use of any information, apparatus, method, or process disclosed in this report.

As used in the above, "person acting on behalf of the Commission" includes any employee or contractor of the Commission, or employee of such contractor, to the extent that such employee or contractor of the Commission, or employee of such contractor prepares, disseminates, or provides access to, any information pursuant to his employment or contract with the Commission, or his employment with such contractor.