Title
Graph Structure Supports Graph Description

Permalink
https://escholarship.org/uc/item/4670g20j

Journal

ISSN
1069-7977

Authors
Katz, Irvin R
Xi, Xiaoming
Kim, Hyun-Joo
et al.

Publication Date
2002

Peer reviewed
Graph Structure Supports Graph Description

Irvin R. Katz (ikatz@ets.org)
Center for New Constructs, Educational Testing Service
Princeton, NJ 08541 USA

Hyun-Joo Kim (hk312@columbia.edu)
Applied Linguistics Program, Columbia University
New York, NY 10027-6696 USA

Xiaoming Xi (xxm@ucla.edu)
Dept. of Applied Linguistics & TESL, Univ. of California
Los Angeles, CA 90095 USA

Peter C.-H. Cheng (peter.cheng@nottingham.ac.uk)
School of Psychology, University of Nottingham
University Park, Nottingham, NG7 2RD U.K.

Abstract
This research adapts theories of graph comprehension to investigate the factors affecting how easily a graph can be described. We find that the structure of a graph—the number of visual chunks (visually distinct units of information) to be described—influences the communicative quality of elicited descriptions. The work extends our understanding of graph comprehension by investigating the relationship between comprehension and description processes. This research occurs in the context of understanding how to design graphical description tasks for the Test of Spoken English.

Introduction
Graphs are a ubiquitous communication tool. Instructors describe graphs to communicate concepts, perhaps requiring students to uncover a graph’s main point. A doctor might describe a graph to a patient to make a point about treatment (“see how your cholesterol level has been decreasing since you began the new diet?”). Yet we know little about the cognitive processes engaged when people describe a graph. Research on graph description can contribute to our understanding of how people integrate visual and verbal information in the performance of everyday tasks. From a practical standpoint, such research can provide guidelines for designing graphs that facilitate description.

Instead, much of the research on graphs has focused on graph comprehension—how we encode and interpret elements of a graph to draw out key pieces of information (Carpenter & Shah, 1998; Lohse, 1993; Pinker, 1990), typically in response to relatively narrow tasks (e.g., “Who had a greater market share in 1983?”). The few studies that investigate spontaneous descriptions of graphs have focused on what is described (e.g., global trends vs. local, piecemeal descriptions [Carswell, 1993; Carswell et al., 1998]; trends vs. comparisons [Zacks & Tversky, 1999]) and the organization of the descriptions (Shah, Hegarty, & Mayer, 1999; see below) rather than on the communicative quality of the description. One reason for this oversight might be the lack of a rigorous measure of communicative quality.

In the work presented herein, we apply a theory of graph comprehension to predict the characteristics of graphs that facilitate descriptive communication. To measure the quality of descriptions produced by alternative graphs, we use a theoretically grounded and empirically validated measure of communicative quality: the scoring rubric from the Test of Spoken English (TSE®).

The Test of Spoken English

The real-world problem
The goal of the Test of Spoken English (TSE) is to measure a test-taker’s communicative competence in Northern American English. It is taken by approximately 30,000 non-U.S. citizens each year, who are seeking to be teaching assistants or healthcare professionals in the U.S. The test consists of 12 questions that elicit a range of communication functions (e.g., describe, compare, state opinion) through a variety of visual and verbal prompts. The questions are presented visually in a booklet and aurally by a taped interviewer; test-takers’ spoken responses are recorded. Responses are scored by trained raters employing a well-defined scoring rubric (see below).

One question (illustrated in Figure 1) prompts for a description of a statistical graph. Test-takers are given one minute to respond. The task mirrors the type of communication using graphs done by teaching assistants and healthcare professionals. None of the other 11 questions presents a data graph.

The graph below shows what people of two age groups value about their work. Describe the information given in the graph.

WHAT PEOPLE VALUE ABOUT WORK

<table>
<thead>
<tr>
<th>Good Hours</th>
<th>Salary</th>
<th>Interesting Work</th>
<th>Low Stress</th>
<th>Pleasant Colleagues</th>
</tr>
</thead>
<tbody>
<tr>
<td>40%</td>
<td>30%</td>
<td>20%</td>
<td>10%</td>
<td>10%</td>
</tr>
</tbody>
</table>

Figure 1: Illustrative graph question [Fewer visual chunks].

This type of graph-description question occasionally poses problems for TSE scoring. According to the raters, certain graphs elicit speech that displays a lower ability in
English than would be expected based on responses to all other test questions. However, many graphs evidenced no such difficulties. Analyses of data from the past two years of TSE administrations confirm that graph description questions are more likely than questions with non-graph prompts to elicit such discrepant performance (Katz, Xi, Kim, & Cheng, 2002).

The issue of what characteristics of a graph lead to descriptions that communicate better is critical to the TSE. If a graph is hard to describe, it might give an unfair advantage to test-takers with better graph-reading skills (i.e., a more sophisticated “graph schema”; Pinker, 1990), who can make sense of poorly constructed graphs. A test-taker’s ability to read and interpret graphs should not influence their score on a graph question. Indeed, the accuracy of a person’s response to a graph item is not considered in the score, only the degree to which the person evidences certain competencies associated with spoken English.

The challenge is to create graphs that contain enough information so as not to trivialize the description (which would eliminate any differences between test-takers) yet are straightforward to describe, allowing test-takers to show off their communicative skill without other factors getting in the way. Ultimately we seek to develop guidelines for the development of graph questions that validly measure communicative competence.

TSE Scoring Rubric

Responses to TSE prompts are scored according to the published “TSE SCORE BAND DESCRIPTOR CHART” (TOEFL, 2001). This scoring rubric defines four key communicative competencies: discourse, functional, sociolinguistic, and linguistic competence. The chart also specifies the types of response characteristics for these competencies at each of the five possible score levels (20, 30, 40, 50, and 60). Although these several competencies are considered during scoring, each response receives a single, holistic score representing the raters’ judgment of which score band level was best evidenced in the response. The score band chart and associated training materials were developed based on research into the components of communicative competence (Douglas & Smith, 1997; Powers, Schedl, Wilson-Leung, & Butler, 1999).

Two communicative competencies are particularly relevant to the issue of graph comprehension: discourse competence and functional competence.

Discourse competence relates to the coherence and cohesiveness of a response. Is the response well organized and well developed, and does the speaker cue the listener to the organization (e.g., “First we see that….,” “In contrast….”)? For the graph in Figure 1, a partial response demonstrating low discourse competence is: (ellipses refer to short pauses in speech)

> the good hours...ah for age...ah...between age ...50
> (1) and 60 is ten percent...And...the pleasant
> colleagues...for...ah...for age...20 to 30...is ten percent...and...ah for...50 to 60 is twenty percent....

Responses low in discourse competence tend to be list-like, consisting of phrases connected by “and” but showing neither a strong organizing structure nor development. A response showing stronger discourse competence is:

> …for adults...uh....between age two,...20 to 30...they value interesting work as their most important thing....well...for the old man...that's not important...Other points I should compare is uh...is the low stress...for the old man they...they prefer low stress and...while for the younger men...

This response guides the listener better by using phrases such as “for the old man...” and “Other points I should compare...”.

Functional competence is the ability to use language to transfer information and ideas to accomplish a goal. It is demonstrated by the extent to which a person communicates an intended goal. For example, we all know people who “beat around the bush” while you are wondering when they will get to their point. For the graph in Figure 1, a partial response demonstrating low functional competence is:

> Ok, people...around the age...20 to 30...I guess started like...ah...just youngsters...they are...um...
> (3) they good hours up like twenty percent ...and...
> only...ah...at the age of 20 to 30...the people who are interested...are only forty percent

This response does not communicate what information was provided in the graph, partially because the speaker misrepresents the meaning of “good hours” and “interesting work.” Response (1), in contrast, does a good job of describing the information and so was rated higher on functional competence than was response (3).

The other two competencies appear less likely to be affected by the particular characteristics of a graph. **Sociolinguistic competence** is the ability to demonstrate an awareness of audience and situation. **Linguistic competence** refers to more basic speech issues such as vocabulary selection, pronunciation, and syntax.

The Theory

Most theories of graph comprehension include the processes of (a) encoding a visual feature of the graph or data (sometimes referred to as a “visual chunk”) and (b) interpreting that feature with respect to basic graph knowledge (e.g., a line going up means something is increasing) and specific graph content (e.g., “bicycle sales are increasing”). Carpenter and Shah (1998) provide evidence that comprehension occurs through repeated cycles of encoding and interpretation, building up more inclusive understanding of the graph. Thus, the more information (the greater the number of visual chunks) in a graph to integrate, the longer it takes to comprehend a graph.

We hypothesize that fewer visual chunks similarly lead to higher quality descriptions. Fewer pieces of information to describe leaves more time and cognitive resources for
communicative tasks such as providing cues for the listener as to the organization of the description, describing each piece of information succinctly, and so forth.

What are the visual chunks in multi-variable bar graphs? Shah, Hegarty, and Mayer (1999) argue that each group of bars associated with a particular value on the x-axis form a visual chunk. Consistent with this theory, participants’ descriptions of bars graph tend to be organized around these chunks. However, this impoverished definition depends solely on the x-axis scale of the graph, accounting neither for the visual properties of the data nor what information is represented by each group of bars. The present work requires a richer definition of visual chunks.

Our theoretical claim is that a visual chunk should play the same role as a proposition in text comprehension models (e.g., Kintsch, 1998). That is, in addition to being visually distinct as guided by Gestalt principles, a visual chunk must encode a single unit of information. A group of bars need not be a single visual chunk as is claimed by Shah et al. Rather, that group would be encoded as a single unit only if it represented a single unit of information (e.g., “Older people value salary the most”).

Consider the graphs shown in Figures 1 and 2. These graphs represent the same data set, but switch the variables represented along the x and z (bar shades) dimensions. Which should be easier to describe? Figure 1 incorporates fewer visual chunks than does Figure 2 (two vs. five), so according to our hypothesis should elicit descriptions with higher communicative quality. Figure 1 has two groups of bars, each with one category that is much higher than the rest: describing this feature succinctly summarizes the data represented in the group. Thus, a straightforward description would be to make the global comparison within one age group (e.g., “For Age 20-30, interesting work is the most important”) and then the other age group. While such a response does not necessarily capture every nuance of the data, it does capture the essential difference between the two groups. By our enriched definition of visual chunks, it is important that each x-axis group of bars in Figure 1 contain an obviously maximal value. Otherwise, each group might be perceived as separate chunks (each bar), potentially diminishing the quality of descriptions that the graph elicits.

Figure 2, in contrast, has five visual chunks: the relative height of the bars within each category. Thus, more time is needed to comprehend the graph, and the communicative quality of any descriptions of this graph should be lower than those of Figure 1.

This task analysis is not necessarily intuitively obvious. Although there are fewer visual chunks in Figure 1, the graph introduces five different shade-category mappings that might need to be either remembered or refreshed by looking at the legend (Lohse, 1993). From this alternative task analysis, Figure 1 might impose a heavier working-memory (WM) burden than Figure 2 because the latter has only two shades representing the two age groups. This alternative task analysis predicts that Figure 2 would elicit descriptions of superior communicative quality.

To test the visual chunk hypothesis, we conducted an experiment that manipulated two factors with the potential to affect the descriptive ease of a graph. First, as illustrated by Figures 1 and 2, we created two graph organizations for each of four data sets by switching the variables represented along the x-axis and by the differently shaded bars (the z-variable). One graph organization presents a smaller number of visual chunks (2-3 chunks depending on the data set) than the other organization (4-6 chunks). These two graph organizations will be referred to as the few-chunks (e.g., Figure 1) and many-chunks (e.g., Figure 2) graphs. The few-chunks graphs’ organization minimizes the amount of information to be described, and is therefore predicted to elicit better descriptions.

An alternative to the visual chunks hypothesis is that a comparison between two groups is simply a more natural way to describe a graph. In other words, any superiority of the few-chunks graphs might be due to a particular descriptive strategy.

This alternative hypothesis suggests the possibility of drawing participants’ attention to the fewer chunks even within a many-chunks graph (e.g., seeing the maximal values for the two age groups in the many-chunks graph). To investigate this possibility, we introduced alternative task prompts. Open-ended prompts were the same for all graphs and asked the participant to “Describe the information given in the graph.” Directive prompts identified the critical contrast in the graph, suggesting more directly what should be described. For example, for Figure 1 the prompt was “Describe the changes in work values between the two age groups.”

Method

Participants
Thirteen-nine students (19 female, 18 male) participated in the experiment. Ten students1 were recruited from each of four universities in the U.S., and students participated at their local institution. Eighty-five percent of participants were

1 Due to technical difficulties, one participants’ data were lost, so one school contributed only nine students.
doing graduate or post-graduate work; others were juniors or seniors. Participants ranged in age from 21 to 45, with an average age of 29. Students’ reported fields of study were medicine (20%), math or science (18%), humanities (12%), business (8%), and social science (7%).

Each institution was asked to recruit eight non-native English speakers and two native English speakers. Most of the participants (n = 19) were native speakers of a Chinese dialect; other languages were reported by no more than two or three participants (a mix of Asian, European, and Middle Eastern languages). There were seven native English participants because one institution recruited only one native English speaker instead of the request two. Most of the students had been living in the U.S. for fewer than two years (n=22); the remaining students were evenly split between those that had lived in the U.S. 10 or more years (n=9) and between 2 and 10 years (n=8).

Materials
We constructed four data sets to be graphed as bar charts. Each data set had its own story line, which had been reviewed by professional test developers for comprehensibility to non-native speakers of English. The data represented the interaction of two independent variables, with one variable having fewer levels (2-3) than the other (3-5). The variables with fewer levels were either years or age groups (as in Figure 1). The other variables were either nominal categories (e.g., work values) or intervals (e.g., hours in a day).

We created two graphs from each data set, for a total of eight graphs. One graph in a pair placed the 2-3 level variable along the x-axis and represented the other variable on the z dimension (the different shades of bars)—this organization created the few-chunks graphs. As per our enriched definition of visual chunks, on the few-chunks graphs, each group of bars included one bar (unique to that group) clearly higher than the others. The many-chunks graph was created by switching the variables represented along the x and z dimensions.

Design
The independent variables of graph organization and prompt directness were implemented in a completely within-subjects design: each participant received all four graph types. The organization type alternated, with half the subjects receiving few-chunks graphs first and half receiving many-chunks graphs first. Because of the possibility of one prompt type influencing the next, that variable was implemented using an ABBA design, with half the subjects receiving an open-ended prompt first and half receiving a directive prompt first.

Preliminary analyses suggested no a priori differences among the participants from each school in terms of their communicative competence in English or in their familiarity with reading graphs.

Procedure
Each university conducted one data collection session of 10 students. Sessions were typically conducted in a language lab or similar equipped facility. Besides a test booklet, each student had a tape recorder and headphones. Students heard the prompts over their headphones and spoke their responses, which were recorded on audiotape.

The questions were administered in two sets, with a short break between the sets; each set consisted of nine non-graph questions followed by two of the experimental questions. After both sets were administered, students were given a brief graph familiarity questionnaire. The questionnaire consisted of several questions concerning graph interpretation, a section on self-reported graph familiarity, and a short demographic questionnaire.

Measures
We obtained three types of dependent measures from each response: response latency, holistic scores, and four component scores. Response latency is the number of seconds between the end of the spoken prompt and when the participant began speaking. The timing was done by a research assistant unaware of the purpose of the experiment, using an on-line stopwatch while listening to each tape.

Each response was also scored by highly experienced TSE raters, each rater having participated in many rating sessions each year for five or more years. Raters produced a holistic score in a way identical to how actual TSE responses are scored. To provide finer-grain scores than the 5-level scale described earlier, each rater was asked to indicate whether a score fell into the high, middle, or low end of the score band. Thus, raters provided scores such as “high 40” or “low 60.” Raters often discuss responses in this way, so producing this additional information was not difficult. In converting these relative rankings into scores, “middle” scores were unadjusted to facilitate comparison between these scores and the typical score scale for the TSE.

In the analyses, a “high” score adds 3.3 to the band level (e.g., “high 40” becomes 43.3) whereas a “low” score subtracts 3.3 from the band level (“low 60” becomes 56.7).

Finally, each rater was asked to provide a score for each of the component competencies in the TSE Score Band Chart, as described earlier. Thus, each response received a discourse, functional, sociolinguistic, and linguistic score. These scores were rated on the typical 5-level (20-60) scale.

Results
We look at the effects of graph organization and prompt type from three perspectives. First, what are the effects on response latency? According to Carpenter and Shah (1998), a greater number of visual chunks should lead to longer latencies because of the greater number of encode-interpret cycles need for comprehension. Second, what are the effects on holistic scores? As we are looking at within-subject performance, any effects suggest an influence other than a person’s own communicative competence on the score (i.e., variance irrelevant to the construct intended to be
measured). Finally, as a follow-up to the effects on score, we look at the effects on the components of the score—the individual scores on discourse, functional, sociolinguistic, and linguistic competence.

We ran a 2x2 repeated-measures MANOVA, with graph organization (few- or many-chunks graphs) and prompt type (directive or open) as within-subjects factors and response latency as the dependent measure. There was a significant main effect of graph organization (F(1,37)=4.0, p=.034). Participants spent less time inspecting the few-chunks graphs before responding (M=5.5; SD=3.7) compared to the many-chunks graphs (M=6.8; SD=4.6). The main effect of prompt type was not significant nor was the interaction of graph organization and prompt.

Similar results were obtained for holistic scores. An identical 2x2 repeated-measures MANOVA revealed a significant effect of graph organization (F(1,38)=8.1, p=.007). Participants received higher scores when responding to the few-chunks graphs (M=47.7; SD=9.1) compared to the many-chunks graphs (M=46.1; SD=9.5). The main effect of prompt type was not significant nor was the interaction of graph organization and prompt.

The effects of graph organization on response latency and holistic scores were also observed in the sub-sample of seven native English speakers, albeit attenuated due to ceiling effects. Native speakers were quicker to respond to few-chunks graphs (3.6 sec) than to many-chunks graphs (4.2 sec) and produced better responses to those few-chunks (60.7 versus 59.5). These trends are consistent with the idea that the effects of graph structure are not just due to language skill, but rather that by using non-native speakers we accentuated differences that otherwise might have been difficult to detect.

Table 1. Mean (SD) scores by graph type.

<table>
<thead>
<tr>
<th>Competence Component</th>
<th>Few-chunks</th>
<th>Many-chunks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Discourse</td>
<td>47.1</td>
<td>45.3</td>
</tr>
<tr>
<td></td>
<td>(8.6)</td>
<td>(9.9)</td>
</tr>
<tr>
<td>Functional</td>
<td>47.1</td>
<td>45.8</td>
</tr>
<tr>
<td></td>
<td>(8.7)</td>
<td>(9.9)</td>
</tr>
<tr>
<td>Sociolinguistic</td>
<td>46.2</td>
<td>45.5</td>
</tr>
<tr>
<td></td>
<td>(8.8)</td>
<td>(9.1)</td>
</tr>
<tr>
<td>Linguistic</td>
<td>48.0</td>
<td>47.2</td>
</tr>
<tr>
<td></td>
<td>(8.8)</td>
<td>(8.5)</td>
</tr>
</tbody>
</table>

*Note. Each graph type score is the mean of the two scores for each participant. N = 37 per cell because one participant’s component scores were unavailable. p < .05

2 Due to technical difficulty, one participants’ latency was not obtained.

What types of effects does graph organization have on participants’ responses? Are responses to few-chunks graphs more expressive or more linguistically precise? While we might expect graph organization to affect how well organized a response is (i.e., discourse competence), it might be the case that a poorly organized graph increases WM load, so impinges on all language competencies.

Table 1 shows the effect of graph organization on each of the competency scores. As expected, discourse scores were significantly higher (via two-tailed, paired-samples t-test) for the few-chunks graphs: responses to these graphs were rated as more coherent and cohesive. There was an almost significant difference on the functional scores, whereby participants’ responses to few-chunks graphs reflected language more appropriate to the task than did their responses to many-chunks graphs. There were no differences between the graph types in participants’ ability to express their knowledge of audience (sociolinguistic) or in their pronunciation or grammar (linguistic).

Thus far, the results are consistent with the model that better performance is achieved with graphs that have fewer visual chunks. But are participants describing the visual chunks predicted by the theory? For the few-chunks graph in Figure 1, participants’ descriptions should include the global comparison between the highest category in a bar group and the other bars in that group (e.g., “Interesting Work is most important for the 20-30 year olds”). For the many-chunks graph, descriptions should instead include discrete comparisons within a category (e.g., “Interesting Work is more important to the 20-30 year olds than to the 50-60 year olds”).

To address whether participants describe the expected visual chunks for these two graphs, we analyzed the first piece of information mentioned in their responses. Given the speeded nature of the task, the first graph feature mentioned should be the most salient to the participant. Participants’ descriptions were consistent with their describing the two graphs in terms of the predicted visual chunks (Table 2). Participants mentioned first the global features of the data significantly more often when the graph was organized to accentuate these features (few-chunks graph) and mentioned first the discrete comparisons (the relative-height visual chunks) of the many-chunks graph (χ²(1)=11.8, p<.001).

Table 2. Graph type by first description.

<table>
<thead>
<tr>
<th>Graph Type</th>
<th>Global Comparison</th>
<th>Discrete Comparison</th>
</tr>
</thead>
<tbody>
<tr>
<td>Few-chunks</td>
<td>19</td>
<td>1</td>
</tr>
<tr>
<td>(Figure 1)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Many-chunks</td>
<td>8</td>
<td>10</td>
</tr>
<tr>
<td>(Figure 2)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Discussion

The research presented in this paper replicates and extends basic research on graph comprehension. The results provide support for the hypothesis that graphs with fewer visual chunks are easier to describe. Participants took less time to scan the few-chunks graphs before speaking, which replicates Shah and Carpenter’s (1998) results. Graphs with fewer chunks also elicited descriptions of greater communicative quality. Furthermore, the organization of a graph had a very specific influence on the descriptions provided by participants: graphs with fewer visual chunks led to more cohesive and coherent descriptions. If the many-chunks graphs were worse because of lower overall comprehensibility, we would expect more aspects of descriptive competence to be affected. Future research might further extend Shah and Carpenter’s processing model to explain the mechanisms by which the higher quality descriptions are facilitated.

Interestingly, incorporating a directive prompt had no influence on participants’ descriptions. Although it is dangerous to draw conclusions from null results, this lack of effect is consistent with the idea that visual chunks are a visual processing phenomenon and might not be influenced by directions on problem-solving strategy.

The visual chunks hypothesis—fewer visual chunks leading to descriptions of higher communicative quality—has practical implications, suggesting desirable characteristics of graph questions for the Test of Spoken English. For example, two or three visual chunks in a graph might be the limit of what is reasonably possible to describe within one minute. For multi-variable bar graphs, this recommendation would mean limiting the number of bar groups placed along the x-axis and, as per the enriched definition of visual chunks, ensuring that each group encodes a single unit of information.

The visual chunks hypothesis is applicable to a wider range of graph types, as long as we can adequately define the visual chunks. For example, other research (Carpenter & Shah, 1998; Carswell, 1993; Shah, Hegarty, & Mayer, 1999) suggests definitions of visual chunks for multi-function line graphs: each non-parallel line is a visual chunk, although each “reversal” in a line (e.g., changing from an upwards to a downwards slope) is perceived as a separate chunk. By assuring that any line graphs have no more than two or so visual chunks according to these definitions, we would predict such graphs to be straightforward to describe.

In line with the overall theme of the conference, applied research should adapt theories and results from the basic research literature to solve real-world problems, and then contribute back to the theoretical literature from which it drew. By applying theories of graph comprehension to produce empirically supported recommendations for the design of TSE graph questions and, in the process, enriching the theoretical construct of visual chunks, the applied research presented in this paper achieves these goals.

Acknowledgments

This research was funded by the Test of Spoken English program of the TOEFL Policy Council. Peter Cheng was supported by the UK Economic and Social Research Council through the Centre for Research in Development, Instruction, and Training. We thank Shauna Cooper, Susan Lynn Martin, and Venus Mifsud for their assistance with this work, and Malcolm Bauer, Ann Gallagher, Patrick Kylonen, and Valerie Shute for useful comments on earlier drafts of this paper. We are grateful to the TSE program staff—especially Emilie Pooler, John Miles, and Evelyne Aguirre Patterson—and to the TSE raters for their contributions to this project.

References

