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INTRODUCTION

Determining the relationships between environ-
mental variability, prey field dynamics, and the
foraging ecology of marine mammals and other apex
predators has been an on-going research topic for
several decades (Fiedler et al. 1998). However, re -
cent pro gress in animal tagging has shed new
light on the mechanisms through which changing
environmental conditions may impact the habitat
selection of pelagic predators (Block et al. 2011,

Irvine et al. 2014). Such information is critical to
identify the underlying physical and biological
processes that control the foraging and migratory
behavior of higher trophic level species (Weise et
al. 2006, Bailey et al. 2009). Understanding the
linkages among environmental variability, prey
availability, and predator distribution should ulti-
mately lead to a better characterization of biologi-
cal ‘hot spots’ in the ocean and how these hot spots
may respond to changing climate conditions (Pala-
cios et al. 2006).

© Inter-Research 2016 · www.int-res.com*Corresponding author: fiechter@ucsc.edu

A fully coupled ecosystem model to predict 
the  foraging ecology of apex predators in 

the  California Current

J. Fiechter1,*, L. A. Huckstadt2, K. A. Rose3, D. P. Costa2

1Institute of Marine Sciences, University of California Santa Cruz, 1156 High St, Santa Cruz, CA 95064, USA
2Department of Ecology and Evolutionary Biology, University of California Santa Cruz, 1156 High St, Santa Cruz, CA 95064, USA 

3Department of Oceanography and Coastal Sciences, Louisiana State University, 1002-Y Energy, 
Coast & Environment Building, Baton Rouge, LA 70803, USA

ABSTRACT: Results from a fully coupled end-to-end ecosystem model for the California Current
Large Marine Ecosystem are used to describe the impact of environmental variability and prey
availability on the foraging ecology of its most abundant apex predator, the California sea lion
Zalophus californianus. The ecosystem model consists of a biogeochemical submodel embedded
in a regional ocean circulation submodel, both coupled with a multi-species individual-based sub-
model for forage fish (sardine and anchovy) and California sea lions. Sardine and anchovy are
explicitly represented in the model as they are commonly found in the diet of sea lions and exhibit
significant interannual and decadal variability in population abundances that reflect variations in
their environment and lower trophic level prey. Output from a 20 yr run (1989−2008) of the model
demonstrates how different physical and biological processes control habitat utilization and forag-
ing success of California sea lions on interannual time scales, with the dominant modes of variabil-
ity linked to sardine abundance and coastal upwelling intensity. The results also illustrate how
variability in environmental conditions, forage fish distribution, and prey assemblage affect sea
lion feeding success. While specifically focusing on the foraging ecology of sea lions, the modeling
framework has the ability to provide a more complete understanding of the physical and biologi-
cal mechanisms impacting trophic interactions in the California Current, or other regions where
similar fully coupled ecosystem models may be implemented.
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In coastal upwelling regions such as the California
Current Large Marine Ecosystem (CCLME), small
pelagic forage fish (e.g. sardine and anchovy) consti-
tute a significant part of the diet of apex predators.
Be cause the variability in abundance and distribu-
tion of small pelagic fish reflects spatial and temporal
changes in their environment (Bakun 2006, Field et
al. 2006), the foraging ecology of their predators is
also expected to depend on the fundamental pro-
cesses regulating ocean conditions and lower trophic
level production. Environmental variability in the
CCLME is seasonally tied to the coastal upwelling of
cool, nutrient-rich waters in response to prevailing
alongshore winds, leading to elevated levels of new
primary production along the majority of the US west
coast. The region between the coastal upwelling zone
and the offshore oligotrophic waters of the North
Pacific subtropical gyre (i.e. 100 to 300 km from the
coast) is known as the California Current transition
zone (CCTZ; Brink & Cowles 1991), and is primarily
influenced by mesoscale processes and wind stress
curl (Kosro et al. 1991). Physical and biological differ-
ences between the nearshore upwelling region and
the CCTZ also determine habitat for planktivorous
pelagic species, such as sardine that concentrate in
the CCTZ and anchovy that favor the nearshore
regions (Rykaczewski & Checkley 2008). In addition
to intense seasonal upwelling and eddy activity, the

CCLME also responds to known modes of regional
climate variability, such as the El Niño Southern
Oscillation (ENSO), the Pacific Decadal Oscillation
(PDO), and the North Pacific Gyre Oscillation
(NPGO) (Mantua et al. 1997, Lynn & Bograd 2002, Di
Lorenzo et al. 2008).

Here a fully coupled ecosystem model is used to
identify the effects of environmental conditions and
prey availability on the foraging ecology (i.e. habitat
utilization and feeding success) of adult male Califor-
nia sea lions Zalophus californianus off of central Cal-
ifornia (Fig. 1). The model framework consists of a re-
gional ocean circulation submodel, a biogeochemical
submodel, and a multi-species, individual-based sub-
model representing sardine, anchovy, and sea lions.
Sea lions are the most abundant apex predator in the
CCLME (Carretta et al. 2005), and their foraging be-
havior has been observed to shift from predominantly
nearshore to farther offshore during anomalously
warm conditions (Weise et al. 2006). Sardine and an-
chovy are specifically in cluded in the model, as their
population abundances exhibit significant interannual
and decadal fluctuations (Schwartzlose et al. 1999),
and they are commonly found in the diet of California
sea lions (Lowry & Carretta 1999) although with a sig-
nificant degree of year-to-year variability (Weise &
Harvey 2008, McClatchie et al. 2016). The main focus
of the present work is therefore to demonstrate that

the fully coupled model can be used to
track environmental and feeding con-
ditions experienced by sea lions on
daily to interannual timescales, and to
investigate the complex interplay be -
tween environmentally mediated be-
havioral re sponses and prey-mediated
feeding conditions as drivers for year-
to-year variations in their foraging
patterns and success off of central
California. As such, the results provide
insight into the physical and biological
mechanisms impacting the foraging
ecology of California sea lions in the
CCLME. Since the details and simula-
tion results of the physical submodel,
biogeo chemical submodel, and forage
fish component of the individual-
based submodel have been ex ten -
sively described elsewhere (Fiechter
et al. 2015, Rose et al. 2015), the em-
phasis is placed here on the sea lion
component of the individual-based
submodel and its coupling to the other
submodels.
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Fig. 1. Model domain for the California Current Large Marine Ecosystem (in-
set) and haul-out locations (red circles) identified from tracking data for Cali-
fornia sea lions Zalophus californianus along the coast of central California, 

USA. Color scale represents bottom topography (m)
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METHODS

Regional ocean circulation submodel

The ocean circulation submodel is an implementa-
tion of the Regional Ocean Modeling System (ROMS)
(Shchepetkin & McWilliams 2005, Haidvogel et al.
2008) for the CCLME. The domain ranges from 30 to
48° N and 116 to 134° W (Fig. 1, inset) with a hori zon -
tal grid resolution of 1/10° and 42 terrain-following
vertical levels. The ROMS submodel is forced on all
lateral boundaries by monthly averaged fields from
the Simple Ocean Data Assimilation reanalysis (Car-
ton et al. 2000). Surface forcing is derived from the
datasets for Common Ocean-Ice Reference Experi-
ments (CORE2) (Large & Yeager 2009), which consist
of 6-hourly atmospheric variables (wind, air temper-
ature, sea level pressure, and specific humidity),
daily short- and long-wave radiation, and monthly
precipitation.

Biogeochemical submodel

The biogeochemical submodel is based on the
11-component North Pacific Ecosystem Model for
Understanding Regional Oceanography (NEMURO;
Kishi et al. 2007). NEMURO includes 3 limiting
nutrients (nitrate, ammonium, and silicic acid), 2
phytoplankton groups (nanophytoplankton and dia -
toms), 3 zooplankton groups (micro-, meso-, and
pre datory zooplankton), and 3 detritus pools (dis-
solved and particulate organic nitrogen and partic-
ulate silica). Coupling to the ocean circulation is
done by solving a transport equation in ROMS for
each NEMURO variable in each grid cell at every
time step. Boundary conditions for nutrients are
based on monthly climatological values from the
World Ocean Atlas (Conkright & Boyer 2002), and
those for phytoplankton, zooplankton, and detritus
are set to a small value. A detailed description of
the NEMURO configuration and specific parameter
values for the CCLME is provided elsewhere (Rose
et al. 2015).

Multi-species, individual-based submodel

Since a complete description of the forage fish
component of the individual-based submodel (IBM)
is available elsewhere (Fiechter et al. 2015, Rose et
al. 2015), only a brief overview is presented here.
Specific details related to sea lion bioenergetics are

also provided in the Supplement at www. int-res. com/
articles/ suppl/  m556 p273_ supp. pdf.

Sardine and anchovy

The sardine and anchovy component of the IBM
uses a super-individual approach (Scheffer et al.
1995), where a fixed number of model individuals are
followed, and each model individual is worth some
number of identical population individuals. Growth
of anchovy and sardine model individuals is com-
puted based on bioenergetics and a functional re-
sponse relationship using zooplankton concentrations
from the NEM URO submodel. In the model, anchovy
mainly feed on larger prey types found in coastal wa-
ters, while sardine  prefer smaller prey types typically
found in offshore  waters. Mortality acts to decrease
the worth of sardine and anchovy super-individuals,
and ac counts for natural mortality rate, size-depen-
dent starvation (from weight−length relationships),
and dy nam ically imposed predation from California
sea lions.

The 3-dimensional position of each sardine and
anchovy super-individual is updated hourly and fol-
lowed both in continuous (longitude, latitude, depth)
space and ROMS grid cell location. A kinesis ap -
proach (Humston et al. 2004) with a combined cue
based on temperature and prey availability is used to
simulate horizontal movement of the fish, while ver-
tical movement is simulated more simply by position-
ing the individuals at the depth where consumption
is maximized. Optimal temperature conditions are
set to 14 ± 1°C for sardine (typical of offshore waters)
and 12 ± 2°C for anchovy (typical of upwelled coastal
waters). The choice of optimal temperatures and tol-
erances is based on reported ranges for preferred
growth and spawning conditions specific to sardine
and anchovy (Rose et al. 2015).

California sea lion

The sea lion component of the IBM simulates the
foraging ecology of adult males, where each model
individual represents 1 animal (as opposed to the
super-individual approach used in the fish IBM).
Emphasis is placed on male sea lions primarily to
avoid additional model complexity associated with
simulating reproduction costs and nursing con-
straints on foraging for female individuals. Further-
more, the observational evidence suggesting a shift
in foraging patterns during anomalous upwelling

http://www.int-res.com/articles/suppl/m556p273_supp.xls
http://www.int-res.com/articles/suppl/m556p273_supp.xls
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conditions that motivated this study was exclusively
based on tracking data for male sea lions (Weise et al.
2006).

Sea lion bioenergetics are represented by a mech-
anistic dynamic model (Lavigne et al. 1986), which
separates energy demands into production and
maintenance (i.e. growth is needed to maintain body
mass by compensating the energy expended during
foraging or resting). Because the costs associated with
reproductive growth can be neglected for male mam-
mals, the bioenergetics model simplifies to a balance
between consumption, metabolism, and waste. De -
pending on the daily balance between the en ergy
acquired from fish consumption and that required for
production and metabolism, individual sea lions
achieve either optimal growth, sub-optimal growth,
or negative growth. Energy consumption is calcu-
lated on an hourly basis using an estimate of daily
food intake as a function of body mass (Kaste lein et
al. 2000). The model assumes that sea lions feed pref-
erentially on sardine and anchovy (from the forage
fish component of the IBM), but if an individual is
unable to meet its desired consumption based on
these 2 species alone, the missing biomass can be
acquired by feeding on 2 additional prey source (i.e.
market squid and jack mackerel). Because sea lions
are opportunistic feeders and have a diverse diet, it is
reasonable to assume that they can on average fulfill
their intake needs by combining multiple prey sources
(although this probably occurs over the course of sev-
eral foraging trips instead of hourly as imposed in the
model for simplicity). Consumption was parameter-
ized so that relative diet contributions (in units of bio-
mass) were approximately 33% for anchovy, 17% for
sardine, 38% for market squid, and 12% for mack-
erel, which roughly reflect long-term diet information
from southern California (Lowry & Carretta 1999).
However, existing data suggest a significant degree
of spatial and temporal variability in diet composi-
tion, with sardines becoming more dominant (60− 80%
of diet) during El Niño conditions (Weise & Harvey
2008) or both sardine and anchovy percentages drop-
ping (<20% of the diet) during periods of lower pop-
ulation abundances for these species (Hassrick et al.
2014, McClatchie et al. 2016).

Horizontal foraging movement for sea lions is sim-
ulated using kinesis (Humston et al. 2004) with opti-
mal temperature conditions of 12 ± 2°C correspon-
ding to the signature of recently upwelled, produc-
tive waters. Kinesis uses a combination of inertial
and random displacements based on the proximity to
ideal conditions, whereby inertial or random behav-
iors are more heavily weighted when temperatures

are, respectively, near or far from optimal. Such
behavior allows an individual to maintain itself in a
favorable environment (inertial component) or to
perform a random search for a better environment
when conditions deviate too far from optimal (ran-
dom component). Because sea lions typically swim
near the surface while foraging and their feeding
dives are short (ca. 20 min) relative to the IBM time
step (1 h), vertical behavior is currently neglected
and individuals are only followed horizontally using
the surface layer of the ROMS grid. However, sea
lions are assumed to detect sardine and anchovy
individuals throughout the water column within a
specified horizontal search radius based on swim-
ming speed and model time step.

Foraging trip duration is primarily determined by
feeding success, with sea lion individuals targeting to
maintain a constant fat content. Since body mass
decreases when they are hauled out (i.e. negative
growth), losing the amount of fat stored during the
previous foraging trip triggers the start of the next
foraging trip. Similarly, sea lions keep foraging until
they regain the fat content lost while resting, at which
point they head back to land by biasing their move-
ment towards the closest haul-out location (Fig. 1). To
avoid unrealistically short foraging trips and to in -
crease model realism, a minimum duration of 1 d is
imposed for each haul-out period and foraging trip
(i.e. the individuals spend at least 1 d on land before
starting their next trip and stay at least 1 d at sea
before returning to land). Foraging trips are also lim-
ited to a maximum of 3 d, after which sea lions start
heading back towards the closest haul-out location
whether or not they regained sufficient fat content.
While arbitrary, these bounds on foraging and haul-
out durations are meant to reflect actual tracking
data from male sea lions off of California (Weise et al.
2006) suggesting that ca. 90% of foraging trips last
less than 3 d and ca. 97% of haul-out periods are
shorter than 2 d. More importantly, the limits im -
posed on behavior in the model serve the purpose of
correctly reproducing the average time fraction
spent by sea lions on land vs. at sea (i.e. 41% in the
IBM compared to 40% in the tracking data).

Model simulation and analysis method

The fully coupled ecosystem model simulation
spanned the period 1988 to 2008, which encom-
passes one of the strongest ENSO events on record
in 1997–98, a warm-to-cold PDO regime shift in the
late 1990s, and years identified as normal (2004)

276
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and ano ma lous (2005) for sea lion foraging based on
tracking data (Weise et al. 2006). To minimize model
spin-up, initial conditions (i.e. 1 January 1988) for
the physics, biogeochemistry, and sardine and an -
chovy component of the IBM were taken directly
from an existing 50 yr simulation for the period 1959
to 2008 (Rose et al. 2015). For the sea lion compo-
nent of the IBM, 1000 individuals were initialized on
1 January 1988 with a weight of 250 kg each, and
randomly assigned to 1 of the 11 haul-out locations
identified from tracking data for male animals off of
central California (Fig. 1).The first year of the simu-
lation (i.e. 1988) was discarded to allow for a redis-
tribution of the sea lion individuals amongst the var-
ious haul-out locations in response to environmental
conditions, leaving a 20 yr integration (1989 to 2008)
of the ecosystem model for further analysis and
interpretation (Fig. S1 in the Supplement).

While physical and biogeochemical variability clearly
modulates sardine and anchovy population dynamics
(Fiechter et al. 2015), the model analysis was focused
on ex ploring the complex interplay between environ-
mentally mediated behavioral response and prey-me-
diated feeding conditions as drivers for interannual
variations in the foraging patterns and success of sea
lions off of central California. An empirical orthogonal
function (EOF) decomposition was used to extract
dominant modes of variability, and to isolate relation-
ships between environmental, prey, and foraging
characteristics. EOF decomposition is a statistical
method similar to principal component analysis, but
with the advantage of identifying both spatial and
temporal patterns of variability by calculating ortho -
gonal basis functions (i.e. EOF modes) from the eigen-
vectors of the covariance matrix formed by the spatial
(rows) and temporal (columns) values for the variable
of interest (e.g. Thomson & Emery 2014). The basis
functions are determined so that they se quentially ac-
count for the largest remaining amount of the total
variance present in the original data, as determined
by the eigenvalues of the covariance matrix (i.e. each
eigenvalue represents the relative variance explained
by the corresponding EOF mode). Its intrinsic proper-
ties make EOF decomposition particularly attractive
for extracting patterns of variability in the full 3 di-
mensional (x, y, t) fields without reducing the dimen-
sionality of the data via arbitrary spatial or temporal
averaging. Because monthly variability in sea lion for-
aging locations in the model is predominantly associ-
ated with seasonal upwelling dynamics (i.e. the opti-
mal temperature for behavior is that of recently
upwelled waters), the analysis was rather focused on
interannual fluctuations, and EOF modes were there-

fore determined for annual (calendar year) values of
simulated sea lion abundances, sea surface tempera-
tures (SST), and sardine and anchovy population
abundances.

Using 12 h snapshots, annual sea lion abundances
were calculated by summing over time the total num-
ber of individuals present in each surface grid cell,
while annual mean sardine and anchovy abundances
were determined by averaging over time the total
number of fish individuals present in the water col-
umn below each surface grid. Annual mean SST val-
ues were obtained by averaging monthly mean tem-
peratures for each cell. EOFs were then computed
over the entire model domain, with each cell treated
as a time series of 20 values. Each EOF mode was
characterized by a single spatial map (in native
units), a normalized annual amplitude, and the per-
cent of the total variance explained by the mode
(Fig. S2). Pearson correlations between the EOF an-
nual amplitudes were used to determine the strength
of the relationships between sea lion abundance and
explanatory variables (i.e. SST and sardine and an-
chovy abundances). Foraging success was also sum-
marized per calendar year using 12 h snapshots of
simulated sea lion traits consisting of body mass, fat
depot (i.e. a proxy for optimal growth conditions),
resting time, trip duration, and diet. Non-spatial an-
nual mean values of the traits were ob tained by first
averaging over all model individuals every 12 h and
then averaging over all snapshots in a year. The rela-
tive importance of sardine and anchovy contributions
to the diet of the sea lions was evaluated by compar-
ing normalized changes in the annual consumption
of each species with respect to the 20 yr mean.

A binary discriminator test (Stow et al. 2009) was
used to assess the fidelity with which the ecosystem
model reproduced sea lion satellite tracking data
available for 2003 to 2006, namely whether observed
animal locations could be reliably predicted from
simulated foraging patterns. Model skill was quanti-
fied in terms of presence predictive value (PPV), ab -
sence predictive value (APV), and combined predic-
tive value (CPV):

(1)

True positive (TP) and true negative (TN) values
mean that the model correctly predicted presence or
absence of an actual sea lion, while false positive (FP)

PPV
TP

TP FP

APV
TN

TN FN

CPV
TP TN

TP TN FP FN

=
+

=
+

= +
+ + +
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and false negative (FN) values mean that the model
incorrectly predicted presence or absence of an actual
sea lion. Because the sea lion tracking data have re-
duced spatial coverage compared to the IBM (i.e. 18,
3, and 10 animals were respectively tagged in 2003-
04, 2004-05, and 2005-06 compared to 1000 model in-
dividuals followed each year), the binary discriminator
test was performed on a 0.5° × 0.5° grid, which is
roughly equivalent to evaluating the ability of the
model to predict the presence or absence of an actual
sea lion within a ca. 25 km radius. Finally, because sea
lion behavior in the IBM is cued on SST, model−data
correspondence was also evaluated by comparing the
temperatures experienced by simulated sea lion indi-
viduals against satellite SST measurements extracted
along the observed sea lion tracks.

RESULTS

Foraging patterns

The first EOF mode for annual sea lion abundances
explained 66% of the total variance and correlated
most strongly (r = 0.75) with the second EOF mode for
annual sardine population abundances (Table 1).
The spatial and temporal variability associated with
the first mode primarily identified coast-wide changes
in foraging patterns (although some variability was
also present at the scale of individual haul-out loca-
tions in the northern half of the domain) in response
to fluctuations in sardine abundance off of central
California (Fig. 2). The correlation be tween the sea
lion and sardine EOF modes suggests that sea lions
spent less time foraging at sea (i.e. reduced abun-
dance owing to fewer individuals being present) dur-
ing periods of increased sardine presence nearshore,
as evidenced by the region of negative sea lion abun-
dance anomalies (Fig. 2, left panel) corresponding to
the region of positive sardine abundance anomalies
(Fig. 2, right panel). This relationship can be further
tied to the occurrence of coherent positive SST
anomalies over the entire CCLME region (viz. first
EOF mode and domain-wide annual mean values in
Figs. S2 & S3), which is known to correlate strongly
with the PDO (Fiechter et al. 2015).

The second EOF mode for annual sea lion abun-
dances explained 13% of the total variance and was
most strongly related (r = 0.73) to the second EOF
mode for annual mean SST (Table 1). The spatial and
temporal variability associated with the second mode
isolated foraging variability that was either coastal
along most of central California (i.e. between 35 and
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Explanatory       CSL EOF 1      CSL EOF 2        Fat depot
variable

SST EOF 1               0.21                0.46                0.49
SST EOF 2               0.11                0.73                0.21
Anchovy EOF 1      −0.41                0.01                0.37
Anchovy EOF 2      0.07                0.56                −0.12
Sardine EOF 1        0.20                −0.35                0.17
Sardine EOF 2        0.75                0.36                0.71

Table 1. Pearson correlation coefficients for the first and
second empirical orthogonal function (EOF) modes of Cali-
fornia sea lion  (CSL) annual abundances and annual mean
fat depot against explanatory variables (first and second
EOF modes for annual mean sea surface temperature [SST]
and sardine and anchovy abundances). The strongest cor-
relations between explanatory variables and sea lion mode
1 (0.75, p < 0.01), mode 2 (0.73, p < 0.01), and fat depot
(0.71; p < 0.01) are highlighted in bold. These relationships 

are illustrated in Figs. 2, 3, & 5

Fig. 2. Coast-wide foraging variability. First empirical orthogonal function (EOF) mode for California sea lion (CSL) abundance
(log10[individuals]) and the second EOF mode for sardine abundance (millions of individuals). Left and right: spatial patterns 

and percent variance explained. Center: normalized annual amplitudes
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38° N) or offshore and near the northern ends of the
simulated range (Fig. 3). Based on the EOF time
ampli tude, sea lion individuals favored more offshore
and northern locations during the early and mid-
1990s, but switched to more coastal foraging from
1999 on. During the second half of the simulation
period, 2005 also emerged as a strongly anomalous
year during which sea lion foraging patterns switched
from nearshore to offshore. The relationship between
onshore−offshore sea lion abundance and coastal
SST indicated that spatial changes in foraging pat-
terns were primarily linked to upwelling variability
off of central California. Foraging occur red preferen-
tially nearshore during years of strong up welling and
farther offshore during anomalously warm conditions
(i.e. 1992-93, 1998, and 2005), as evidenced by the
re gion of positive sea lion abundance anomalies off-
shore (Fig. 3, left panel) during years of positive
coastal SST anomalies (Fig. 2, right panel). The link
between coastal upwelling intensity and the second
EOF mode for SST is further evidenced by its strong
correlation (r = 0.76) with periods of decreased near-
shore vertical velocities (i.e. a measure of upwelling
transport) off of central California (Fig. S3). The spa-
tial and temporal SST patterns associated with this
particular EOF mode (i.e. up welling variability off
central California) are known to correlate, albeit
weakly, with the El Niño 3.4 index and Bakun up -
welling index (Fiechter et al. 2015).

A direct comparison between model output and
tracking data acquired in 2003 to 2006 further illus-
trated the significant offshore shift in sea lion distri-
bution. Tracks in 2004 displayed mainly nearshore
foraging along the entire central California coast,
tracks in 2005 exhibited substantial offshore foraging

at most latitudes, and tracks in 2006 revealed an
intermediate pattern where sea lions foraged near-
shore in the southern half of the domain (34.5−
36.5° N) but ventured farther offshore in the northern
half (36.5−39° N; Fig. 4, top panels). Average temper-
atures experienced by sea lion individuals in the
model were also consistent with remotely-sensed
SSTs extracted along observed animal tracks, which
confirmed that simulated distributions were repre-
sentative of expected shifts in sea lion foraging pat-
terns in response to changes in coastal ocean temper-
atures off of central California (Fig. 4, bottom panel).

The agreement between simulated and observed
foraging locations was quantified by determining
predictive values for presence and absence. The bi-
nary discriminator test indicated that for 2004 the
model overestimated the offshore extent of foraging
locations along most of the central California coast
(Fig. 5, left panel). In contrast, for 2005 and 2006, the
model overestimated foraging locations in the south-
ern and northern parts of the domain, and underesti-
mated them in the central region (Fig. 5, center and
right panels). Nevertheless, the model exhibited rea-
sonable overall skill with a combined predictive
value of ca. 70% for each year over the region consid-
ered, although simulated foraging locations better re-
produced absence in 2004 (APV of 0.89) and presence
in 2005 and 2006 (PPV of 0.79 and 0.7, respectively).

Foraging success

Based on the annual EOF amplitudes for SST and
prey availability (i.e. sardine and anchovy abun-
dances), annual variation in fat depot correlated most
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Fig. 3. Onshore−offshore foraging variability. Second empirical orthogonal function (EOF) mode for California sea lion
abundnce (log10[individuals]) and second EOF mode for sea surface temperature (SST, °C). Left and right: spatial patterns 

and percent variance explained. Center: normalized annual amplitudes
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Fig. 4. Model−data comparison. Top: simulated (colored circles) and observed (black circles) foraging locations for male Cal-
ifornia sea lion (CSL) individuals off of central California in 2004 (left), 2005 (center), and 2006 (right); simulated locations are
for February and color scale represents offshore distance (km); observed locations are based on tracking data collected dur-
ing winter (November to March) of 2003-2004, 2004-2005, and 2005-2006. Bottom: mean sea surface temperature (SST, °C) 

experienced by model individuals (black) and tagged animals (red) during 2003−2006

Fig. 5. Model predictive skill. Simulated vs. observed locations where California sea lions were present or absent in 2004 (left),
2005 (center), and 2006 (right). Red and yellow indicate locations where the model correctly predicted presence (i.e. true posi-
tive) and absence (i.e. true negative), respectively. Green and blue indicate locations where the model incorrectly predicted
presence (i.e. false positive) and absence (i.e. false negative), respectively. Model skill is quantified as presence predictive value 

(PPV), absence predictive value (APV), and combined predictive value (CPV) (see ‘Methods’ for definitions)
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strongly (0.71) with the second mode for sardine
abundance (i.e. the mode associated with coast-wide
changes in foraging patterns; Table 1 and Fig. 6, top
panel). While sardine typically accounted for a smaller
fraction of the sea lion diet than anchovy (4.4 vs. 8.4
kg d−1), relative changes in annual sardine consump-
tion were, on average, twice as large (standard devi-
ation relative to the mean of 11 versus 6%; Fig. 6,
middle panel). As sardine have a higher energy den-
sity (7.3 kJ g−1) than the alternative prey of anchovy
(6.6 kJ g−1), market squid (4.4 kJ g−1), and mackerel
(6.4 kJ g−1), the ability for sea lions to accumulate fat
was particularly hindered during years when sardine

abundance was substantially reduced in the simula-
tion (i.e. 1991 and 1999).

In addition to decreasing energy content in the
diet, lower sardine abundance also resulted in sea
lions extending the duration of their foraging trips in
order to fulfill their daily food requirement (as indi-
cated by the first EOF mode for foraging patterns in
Fig. 2). Since the end of a foraging trip in the model is
triggered when the body mass lost while hauled out
has been regained, sea lion individuals can recover
weight faster if sardines are present nearshore (i.e.
higher energy content in diet) compared to instances
when anchovy are the more dominant prey source.
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Fig. 6. Foraging success and diet composition. Top: annual mean California sea lion fat depot (kg) (left y-axis and red squares)
and the normalized annual amplitude of the second empirical orthogonal function (EOF) mode for sardine abundance (right y-
axis and blue triangles). Middle: relative change of annually averaged anchovy (left y-axis and red squares) and sardine (right
y-axis and blue triangles) contributions to sea lion diet with respect to 20 yr mean. Bottom: annual mean sea lion foraging 

trip duration (d; left y-axis and red squares) and time spent on land (d yr−1; right y-axis and blue triangles)
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Hence, the average trip duration of individuals in -
creased substantially during periods of sardine scar -
city off of central California, which translated to shorter
resting times on land and the number of haul-out
days per year dropping by roughly 20% (ca. 120 d in
1991 and 1999 vs. 150 d on average; Fig. 6, bottom
panel). In 1991 and 1999, sea lion individuals also
reached the limit of 3 d allowed for trip duration in
the model, implying that foraging success was typi-
cally insufficient to achieve optimal growth for these
particular years.

Considering the inherent variability in the actual
apportion of sardine and anchovy in the diet of Cali-
fornia sea lions, the bioenergetics component of the
IBM was used to determine the robustness of the
results to a range of diet compositions around the
baseline values of 33% for anchovy and 17% for sar-
dine. For a fixed sardine fraction, decreasing (in -
creasing) the biomass of anchovy consumed has the
effect of amplifying (dampening) interannual fluctu-
ation in fat depot (Fig. S4, top left panel). With the
current parameterization, the results suggest that if
the anchovy diet contribution falls to 5%, individuals
no longer survive years of low sardine abundance.
Year-to-year changes in fat depot are similarly ampli-
fied (dampened) when sardine consumption is in -
creased (decreased) given a fixed anchovy fraction
(Fig. S4, top right panel). At 50% apportion, individ-
uals are no longer able to sustain body mass during
years of low sardine abundance. An additional simu-
lation of the fully coupled model was also performed
to determine sensitivity to the diet fraction contri -
buted by market squid and mackerel. When the rela-
tive contributions of the 2 species are allowed to vary
an nually instead of being fixed to the long-term
mean (Fig. S5), the results suggested that a shift
toward a higher abundance of squid (a lower energy
density prey) with respect to mackerel (a higher en -
ergy density prey) decreases the ability of sea lions to
cope with poorer foraging during periods of unfavor-
able environmental conditions and limited sardine
and anchovy availability, as evidenced by larger
losses in fat depot (Fig. S6).

As the ability of sea lions to fulfill their intake
needs in the model also depends on time spent feed-
ing at sea, the sensitivity analysis was extended to
the parameters controlling foraging trip and haul-out
durations. Although fat depot is relatively insensitive
to minimum foraging duration, the results suggest
that, not unexpectedly, increasing maximum trip
duration and reducing haul-out interval help sea lion
individuals cope during years of poorer feeding con-
ditions (Fig. S4, lower panels).

DISCUSSION

Despite simplifications to the full array of physical
and biological processes influencing bioenergetics
and behavior, the fully coupled ecosystem model pro-
vides a comprehensive framework to unravel the
complex interplay between environmental variability,
prey availability, and the foraging ecology of Califor-
nia sea lions in the CCLME. For example, using a
simple temperature cue in the model to represent for-
aging behavior was sufficient for onshore−offshore
shifts in sea lion distributions to emerge within the
simulation as a dominant mode of variability. How-
ever, while satellite tracking observations available
for 2003−2006 were critical to evaluate whether the
model reproduced onshore−offshore shifts in foraging
behavior, the necessarily limited spatial and temporal
resolution of the observations precludes an assess -
ment of the full range of interannual variability that is
captured in the 20 yr simulation. Based on the 1989−
2008 period, the model results identify potential envi-
ronmentally and prey-mediated impacts on the forag-
ing ecology of sea lions off of central California, with
connections to the PDO via increased sardine abun-
dance nearshore and to ENSO via modulation of
coastal upwelling intensity. The relationship between
positive temperature anomalies, increased nearshore
sardine abundances, and improved sea lion foraging
success that emerged from the simu lation is also gen-
erally consistent with population surveys suggesting
higher sea lion abundances off of central California
during warmer ocean conditions (e.g. El Niño years)
in response to better feeding conditions (Sydeman &
Allen 1999, Lowry &  Forney 2005).

While the model was parameterized to roughly re -
produce existing historical (1981−1995) diet composi-
tion for sea lions off of southern California (Lowry &
Carretta 1999), the data correspond to a period dur-
ing which the abundances of anchovy and jack
mackerel were relatively high and those of sardine
and market squid were relatively low. In contrast,
more recent information corresponding to a period of
lower population abundances for sardine and an -
chovy suggests that the 2 species contributed less
than 20% to diet composition (Hassrick et al. 2014,
McClatchie et al. 2016). Variability in prey impor-
tance might be further compounded by ‘ex treme’
events, as evidenced by data from Monte rey Bay (i.e.
at the center of the foraging range considered here)
suggesting that during the 1997−98 El Niño and 1999
La Niña, sardine contributed about half of the total
biomass consumed by sea lions, whereas anchovy,
market squid, and mackerel individually accounted
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for less than 10% (Weise & Harvey 2008). While an
increase in sardine in the diet also occurs in the
model in 1998, the substantial decrease in 1999 does
not seem consistent with the observations. This dis-
crepancy could stem from a potential behavior mis-
match in the model, where the temperature cues im -
posed for sea lion and sardine movement increased
encounter rates during warmer years (e.g. 1998) by
allowing sardine to move on shore, but limited too
severely the overlap of their spatial distributions dur-
ing colder years (e.g. 1999) by forcing sea lions closer
to shore and constraining sardine to offshore waters.

The behavioral component of the IBM is expected
to carry a significant amount of uncertainty in gen-
eral since very little information exists to determine
the exact cues that sea lions rely on for foraging (as
opposed to the bioenergetics component which can
be more solidly grounded using existing laboratory
data). For example, the tolerance around optimal
conditions used in kinesis to bias movement towards
inertial or random behavior can substantially alter
simulated foraging distributions and result in model−
data discrepancies such as those identified with the
binary discriminator test for 2004, 2005, and 2006.
Using a single cue (i.e. temperature) for behavior is
also likely to influence habitat selection and may in
part explain the model overestimating offshore for-
aging distance in 2004 (e.g. sea lions in the wild may
use topographic cues to concentrate their foraging in
nearshore waters when conditions are favorable
there). However, because little is known about actual
foraging cues used by sea lions, the model was inten-
tionally kept simple to avoid imposing rules that
would constrain movement too strictly.

While the bioenergetics and behavioral compo-
nents implemented in the IBM can always be im -
proved in the future, the current model framework
is sufficiently evolved to determine the impact of
long-term changes in prey assemblage on sea lion
foraging ecology off of central California. For exam-
ple, a diet sensitivity analysis performed with the
model confirmed that interannual variability in fat
de pot is significantly influenced by sardine con-
sumption, yet it also indicated that changes in the
absolute and relative fractions of sardine and an -
chovy biomasses ingested may enhance or mitigate
the ability of the sea lions to accumulate fat during
poorer feeding conditions. These effects are also fur-
ther compounded by fluctuations in the full prey
assemblage available to sea lions during any partic-
ular year (e.g. higher relative abundance of mack-
erel vs. squid may help sea lions cope with de -
creased sardine availability).

Another important aspect of the results presented
here is that, because behavioral cues are specified a
priori in the model, overlap of habitat preferences
between prey and predator species can be easily
determined. This information in turn provides a
means to characterize potential ‘hotspots’ (defined
here as spatiotemporal regions exploited for foraging
by species over multiple trophic levels), a topic to
which much attention has been recently devoted
with the increased availability of satellite tagging
data for a wide range of marine organisms (e.g. Bai-
ley et al. 2009, Hazen et al. 2012). While determining
preferred habitat features based on observed animal
tracks typically requires isolating foraging vs. transit-
ing behavior, ‘hotspots’ are readily identifiable in the
model solution by considering regions where both
prey and predator individuals favored inertial behav-
ior in kinesis (i.e. an indication of near optimal envi-
ronmental and feeding conditions). To illustrate this
point, the IBM results were used to produce habitat
preference maps describing seasonal and annual
mean locations where optimal conditions overlapped
for sardine, anchovy, and sea lions, and were there-
fore conducive to biomass aggregation over multiple
trophic levels (Fig. 7). It is worth noting that the maps
reveal a remarkable amount of intra-annual variabil-
ity, with optimal conditions present mainly offshore
during winter and limited to a narrow nearshore
region during summer. While the actual existence of
these seasonal ‘hotspots’ is rather difficult to validate,
there are noticeable similarities between the model
results and observed sea lion foraging locations iden-
tified using a state−space model (Jonsen et al. 2005)
applied to the 2003−2006 tracking data (e.g. most
observed foraging locations fall within the region of
preferred conditions derived from the simulation).

In a broader context, the results illustrate the bene-
fits of using an integrated ecosystem modeling
frame work that explicitly resolves the spatial and
temporal scales at which environmental variability
and forage base dynamics impact the distribution
and feeding success of their predators. As such, the
fully coupled simulations described here belong to
an emerging class of ‘end-to-end’ ecosystem models
that attempt to replicate environmental and food web
dynamics (and human impacts) in a way that allows
for a more direct understanding of the complex phys-
ical and biological interplay determining the distri-
bution and abundance of marine organisms from pri-
mary and secondary producers to forage fish species
and, ultimately, to apex predators (Rose et al. 2010,
Holt et al. 2014). Combined with recent advances in
animal tagging (Block et al. 2011), these models have
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the potential, as demonstrated here, to identify the
physical and biological mechanisms through which
changing environmental and climate conditions will
likely impact the foraging ecology of marine organ-
isms at local and regional scales and over multiple
trophic levels.
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