Title
A Search for Gamma Rays from He6 and F18

Permalink
https://escholarship.org/uc/item/46x6m7ks

Author
Knox, William J.

Publication Date
1948-08-02
UNIVERSITY OF CALIFORNIA

Radiation Laboratory

TWO-WEEK LOAN COPY

This is a Library Circulating Copy which may be borrowed for two weeks. For a personal retention copy, call Tech. Info. Division, Ext. 5545

BERKELEY, CALIFORNIA
DISCLAIMER

This document was prepared as an account of work sponsored by the United States Government. While this document is believed to contain correct information, neither the United States Government nor any agency thereof, nor the Regents of the University of California, nor any of their employees, makes any warranty, express or implied, or assumes any legal responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by its trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof, or the Regents of the University of California. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof or the Regents of the University of California.
Cover Sheet
Do not remove

INDEX NO. UCRL-159
This document contains _ _ _ pages
and _ _ _ plates of figures.
This is copy _ _ _ of _ _ _ Series _ _ _

RESTRICTED
CLASSIFICATION CANCELLED BY AUTHORITY
BY THE DECLASSIFICATION COMMITTEE

Each person who received this document must sign the cover sheet in the space below.

<table>
<thead>
<tr>
<th>Route to</th>
<th>Noted by</th>
<th>Date</th>
<th>Route to</th>
<th>Noted by</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

R-41
A SEARCH FOR GAMMA RAYS FROM He\(^6\) and F\(^{18}\)

William J. Knox

August 2, 1948

UCRL 159

Physics General

A SEARCH FOR GAMMA RAYS FROM He\(^6\) and F\(^{18}\)

William J. Knox

August 2, 1948

Special Review of Declassified Report

Authorized by USDOE JK Bratton

Unclassified TWX P182206Z May 79

REPORT PROPERLY DECLASSIFIED

J N Green 8/16/79

Authorized Derivative Classifier Date

R W Wright 8/17/79

By Date

Berkeley, California
Argonne National Laboratory 1-8
Armed Forces Special Weapons Project 9
Atomic Energy Commission, Washington 10-11
Battelle Memorial Institute 12
Brookhaven National Laboratories 13-20
Carbide and Carbon Chemicals Corp. (K-25 Area) 21-24
Carbide and Carbon Chemicals Corp. (Y-12 Area) 25-28
Columbia University (Dunning) 29
General Electric Company 30-33
Hanford Directed Operations 34-38
Iowa State College 39
Los Alamos 40-42
Monsanto Chemical Company, Dayton 43-44
National Bureau of Standards 45-46
Naval Radiological Defense Laboratory 47
NEPA 48
New York Directed Operations 49-50
Oak Ridge National Laboratory 51-58
Patent Advisor, Washington 59
Technical Information Division, ORDO 60-74
UCLA Medical Research Laboratory (Warren) 75
University of California, Radiation Laboratory Information Division 76-80
Declassification Procedure 81-89
University of Rochester 90-91
Office of Chicago Directed Operations 92

Information Division
Radiation Laboratory
Berkeley, California
A Search for Gamma Rays from He6 and F18

William J. Knox

August 2, 1948

The series of beta-active nuclei with $(4n + 2)$ primary particles, He6, Be10, C14, F18, Na22, etc. has created much discussion because some of its members show allowed transitions while others are forbidden. It seemed possible that the allowed cases might represent transitions to excited states; if so, a consistent rule would govern the transitions to the ground states. However, the results given below seem to exclude this explanation, unless the unlikely assumption of a very low energy gamma ray is made.

Absorption measurements1 on F18 have shown a penetrating radiation which has the expected annihilation radiation energy of about 0.5 Mev. In order to exclude further the possibility of a true gamma ray of about 0.5 Mev energy, which would not be detected by half-thickness measurements, absorption curves on F18 and C11 have been compared to see if the ratio of positrons to photons is the same. C11 is assumed to have no gamma ray since the upper energy limit of its positron spectrum2 corresponds very closely to both the mass difference3 and the computed coulomb energy difference2 between B11 and C11, and the spectrum is apparently simple.

The C11 and F18 on which the measurements were made were produced by $(n,2n)$ reactions on polystyrene foils and LiF using 90 Mev neutrons produced by the 184-inch cyclotron. The shorter lived activities (O15, N13, C11) were allowed to decay out of the F18 samples before making measurements. The ratio of the number of counts coming

1 Knight, Novey, Cannon, and Turkevich, Report UC-2605 (April 1945)
2 Delassos, White, Barkas, and Creutz, Phys. Rev. 58, 586 (1940)
3 Haxby, Shoupp, Stephens, and Wells, Phys. Rev. 58, 1035 (1940)
from the sample when surrounded by 400 mg/cm² of Al to the number of counts extrapolated to zero absorber was observed to be .011 for C¹¹ and .010 for F¹⁸, both values with a probable error of about 10%. The brass walled, mica window Geiger tubes used for counting are expected to have a total counting efficiency of about 1% for the two 0.5 Mev photons from the annihilation process. It is concluded that greater than 80% of the positrons from F¹⁸ represent a transition to the ground state of O¹⁸.

He⁶ was obtained by bombarding powdered Be with 11 Mev neutrons produced by the 60-inch cyclotron. For the purpose of identification the half life was measured on an automatic photographic short half life measuring apparatus⁴, and five determinations gave a value of 0.82 ± 0.06 seconds in agreement with previously reported values⁵,⁶. For absorption measurements a continuous flow method was used in which the He⁶ was swept from the target with He⁴, filtered through a fine glass wool plug, and transported through about 85 ft. of 3/16" tubing to the cyclotron control room where background radiation was low enough to make measurements while the cyclotron was operating. An end window Geiger tube suspended above a graphite block and surrounded by a lead shield was used for counting. The He⁶ was swept through a chamber in the graphite block which was covered by a 1.5 mil Al window situated directly beneath the Geiger tube. In this manner essentially all of the He⁶ beta particles emitted in the vicinity of the counter with the exception of those actually counted were absorbed in carbon, thus minimizing Bremstrahlung. Flat aluminum absorbers were interposed between the counting tube and the gas chamber and counting was done with the cyclotron operating at a constant level and with

⁴ T. M. Putnam, to be published
⁶ Sommers and Sherr, Phys. Rev. 69, 21 (1946)
the He flowing at a constant rate. Under these operating conditions the reproducibility of a monitoring count using some standard amount of absorber was within ±4% for a given set of measurements. The absorption curve obtained is reproduced below together with comparison curves taken under similar conditions of geometry and absorber arrangement on samples of ^{32}P and UX$_2$. The initial portion of the curve was obtained with a (zero absorber) counting rate of about 10,000 c/m while the final portion was obtained with about five times this intensity. Coincidence corrections were made and all points were normalized to 100 at zero absorber. Probable errors due to counting are shown on the lowest points. The amount of radiation penetrating more than 2 μm/cm2 of absorber is about 0.05% of the total number of counts, which is the magnitude expected due to production of Bremstrahlung. Hence, it is concluded that there is no gamma ray associated with the disintegration of the He6 unless it is of very low energy (<100 KeV) or of low intensity ($<10\%$ of disintegrations if gamma ray were of 1 MeV). Further comparison of the He6 curve with the ^{32}P and UX$_2$ curves gives ranges of 1.85 and 1.68 μm/cm2 of aluminum, respectively. This corresponds to a maximum energy of 3.7 MeV, using the range-energy relationship $E_{\text{max}} = 1.85 R + 0.25^{(7)}$, with an estimated possible error of ±0.2 MeV. This value for the energy is in close agreement with previously reported values $^5,^6$.

Appreciation is expressed to Professor E. M. Mcmillan for suggesting this problem. This paper is based on work performed under Contract No. W-7405-Eng-48 with the Atomic Energy Commission in connection with the Radiation Laboratory, University of California, Berkeley, California.

7 Glendenin, Nucleonics 2 No. 1, (Jan. 1948)
ABSORPTION OF He^6 BETAS IN ALUMINUM AND COMPARISON CURVES ON P^{32} AND UX_2.
CLASSIFICATION CANCELLED BY AUTHORITY OF THE DISTRICT:
BY THE DECLASSIFICATION COMMITTEE