Title
Effect of nitrogen fertilization on atmospheric methane oxidation in boreal forest soils

Permalink
https://escholarship.org/uc/item/48k10791

Journal
Chemosphere - Global Change Science, 2(2)

ISSN
1465-9972

Authors
Whalen, SC
Reeburgh, WS

Publication Date
2000-09-23

DOI
10.1016/S1465-9972(00)00003-9

License
CC BY 4.0

Peer reviewed
Effect of nitrogen fertilization on atmospheric methane oxidation in boreal forest soils

S.C. Whalen *, W.S. Reeburgh

Department of Earth System Science, University of California, Irvine, CA 92717-3100, USA

Received 7 May 1999; accepted 9 September 1999

Abstract

Field plots of aspen and black spruce in the Alaskan boreal forest were fertilized repeatedly with nitrogen during the 1993 summer growing season, and weekly determinations of the influence of fertilization on atmospheric CH4 oxidation were made with static chambers. Repeated fertilization with (NH4)2SO4 solution or nutrient media used to culture methanotrophic or nitrifying bacteria gave a total addition of 140 or 580 kg N ha⁻¹. Time-integrated CH4 oxidation was not significantly different in fertilized soils versus watered controls because CH4 oxidation was localized in a subsurface soil zone that was probably not penetrated by surface-applied aqueous phase fertilizer. Insensitivity of CH4 oxidation by these soils to a high rate of N fertilization and the low current rate of atmospheric N deposition suggest that future increases in atmospheric N deposition will not alter the sink strength of high latitude boreal forest soils in the atmospheric CH4 budget.

Keywords: Methane oxidation; Forests; Nitrogen fertilization

1. Introduction

The atmospheric concentration of the radiatively important greenhouse gas CH4 has shown a well-documented, contemporary increase (Houghton et al., 1996). Methane is second only to CO2 as a greenhouse gas and contributes approximately 20% to global warming (Bouwman, 1990). Microbial oxidation in well-drained soils is the only identified biological sink for atmospheric CH4 and accounts for 3% to 9% of total annual atmospheric CH4 destruction (Prather et al., 1996). This is similar in magnitude to the current atmospheric increase of 37 Tg CH4 yr⁻¹ (Houghton et al., 1996). Consequently, alterations of the soil sink strength are a significant determinant of the rate of change in the atmospheric CH4 concentration (Prather et al., 1996) and absence of this sink will cause the atmospheric CH4 concentration to increase at 1.5 times the current rate (Duxbury, 1994).

Methanotrophic bacteria are generally considered to be responsible for atmospheric CH4 oxidation (Conrad,
1996; King, 1997), although NH₄-oxidizing bacteria are capable of oxidizing CH₄ at rates lower than methanotrophs (Jones et al., 1984; Bedard and Knowles, 1989). Hence, soils with high nitrification rates show low CH₄ oxidation because CH₄ oxidation is dominated by nitrifiers (Castro et al., 1995; Steudler et al., 1996).

Influences on rates of atmospheric CH₄ oxidation in well-drained soils include soil temperature, moisture and N status (reviewed by King, 1992, 1997; Mancinelli, 1995) as well as land use patterns (Ojima et al., 1993; Willison et al., 1995; Hudgens and Yavitt, 1997; Boeckx et al., 1998). Forest plots experimentally fertilized with N frequently show depressed atmospheric CH₄ oxidation relative to unfertilized controls (Steudler et al., 1989; King and Schnell, 1994; Sitaula et al., 1995). Consequently, the well-documented worldwide increase in atmospheric N deposition on terrestrial and aquatic environments (Matthews, 1994; Galloway et al., 1995) may result in a decrease in atmospheric CH₄ oxidation by upland forest soils (Castro et al., 1995).

The boreal forest occupies 13% of the earth’s continental surface (Schultz, 1995), and upland boreal forest soils are important in atmospheric CH₄ consumption (Whalen et al., 1991). Agriculture is expanding worldwide (Adams et al., 1990) and agricultural soils have lower area-based rates of CH₄ consumption than aerated forests, shrublands and savannah (reviewed by King, 1997). Since boreal forests are generally unsuitable for this land use, upland soils of this region will be critical in slowing future increases in atmospheric CH₄. Accurate prediction of future trends in soil CH₄ oxidation in these high latitude soils requires an improved understanding of the microbial community response to global change, including increased atmospheric N deposition.

This study was aimed at determining the impact of increased N input on atmospheric CH₄ oxidation by boreal forest soils and to qualitatively determine the relative importance of methanotrophs and nitrifiers in oxidizing CH₄ in these soils. We experimentally fertilized plots with (NH₄)SO₄ solution to simulate increased atmospheric N input. Further, we attempted to enhance populations of nitrifiers or methanotrophs in additional plots by fertilizing with liquid media used to culture these microbial groups. The rate of CH₄ oxidation in treated plots was compared with that of watered controls.

2. Materials and methods

2.1. Site description

Field sites were located along a successional sequence in Bonanza Creek experimental forest (64°N, 148°W) near Fairbanks, Alaska. The intermediate successional stage was represented by a south-facing aspen (Populus tremuloides; site AS2) community with a 3–5 cm floor of leaf litter and an insignificant understory. The advanced successional stage was represented by a north-facing black spruce (Picea mariana; site BS2) stand with a continuous ground cover of feather mosses (Pleurozium spp. and Hylocomium spp.) invaded by lowbush cranberry (Vaccinium vitis-idaea) and lichens. The organic horizon extends to about 10 cm. These sites have no soil zone of methanogenesis and are atmospheric CH₄ sinks (Whalen et al., 1992).

2.2. Experimental

Methane flux determinations were made using the static chamber technique (Whalen et al., 1991). Each chamber consisted of a skirted aluminum base permanently seated in the soil and a removable aluminum lid that utilized a water-filled channel for a seal. Lids were equipped with an o-seal fitting to allow syringe sampling of headspace gas and fitted with a capillary bleed to equilibrate with atmospheric pressure. Eight bases were deployed in June 1993 at each site. Methane fluxes were determined at each chamber on 8 July (Calendar day (CD) 189). Soils enclosed within two randomly selected bases at each site were then amended with 2-L of one of the following: (a) a growth medium for methanogens (King and Adamsen, 1992); (b) a growth medium for nitrifiers (De Boer et al., 1991); (c) (NH₄)₂SO₄ in deionized water; or (d) deionized water only. Methane oxidation was measured weekly from CD 194 through CD 243. Fertilization with the assigned treatment immediately followed each CH₄ flux determination. Fertilization added 73 kg NO₃-N ha⁻¹ (methanogen medium) or 18 kg NH₄-N (nitrifier medium and (NH₄)₂SO₄ treatment) to these soils on a weekly basis.

2.3. Methane analysis

Methane determinations were made by flame ionization detection gas chromatography with a precision of <1% (Whalen et al., 1991). Calibration gases are relatable to mixtures obtained from the National Institute of Standards and Technology.

2.4. Statistical analyses and calculations

Area-based rates of CH₄ oxidation were calculated from the time-linear decrease in CH₄ concentration in the chamber headspace during a 0.75 h deployment. Day rates of CH₄ oxidation for each chamber were time-integrated over the experimental period and treatment means within each site were compared by single factor analysis of variance. Data satisfied assumptions of normality and homoscedasticity without transformation. A significance level of α = 0.05 was used.
3. Results and discussion

Day-rates of CH$_4$ oxidation at AS2 varied over a factor of about 1.6 (0.46–0.76 mg m$^{-2}$ d$^{-1}$) during the study period (Fig. 1). Time-integrated rates of CH$_4$ oxidation varied from 29.2 to 32.3 mg m$^{-2}$ and were not significantly different across treatments. Day-rates of CH$_4$ oxidation at BS2 were somewhat higher and less variable than for AS2 (Fig. 1). Methane oxidation rates varied over a factor of 1.3, from 0.69 to 0.89 mg m$^{-2}$. Time-integrated rates of CH$_4$ oxidation varied from 36.8 to 40.1 mg m$^{-2}$ and were not significantly different across treatments. The temporal pattern of CH$_4$ oxidation was generally similar across treatments within each site. This probably reflects changes in soil moisture, which controls diffusion of CH$_4$ to the zone of oxidation, and hence is a primary determinant of rates of atmospheric CH$_4$ oxidation by soils (King, 1997). Increased N input to forests can increase the fine root biomass (Magill et al., 1997), which may decrease air-filled porosity and limit rates of diffusion and atmospheric CH$_4$ oxidation. Any increase in fine root biomass in response to fertilization here had no impact on soil–atmosphere gas exchange, as time-integrated rates of CH$_4$ oxidation did not differ significantly between control and fertilized plots at either site. The generally higher rates of CH$_4$ oxidation at BS2 than at AS2 is consistent with the higher gas-filled porosity at BS2 (Whalen et al., 1992), which allows for more rapid diffusion of atmospheric CH$_4$ into the soil.

The N load from repeated fertilization totaled about 140 kg NH$_4^+$-N ha$^{-1}$ for plots treated with (NH$_4$)$_2$SO$_4$ and the nitrifier medium and about 580 kg NO$_3^-$-N ha$^{-1}$ for plots fertilized with the methanotroph medium. Atmospheric CH$_4$ oxidation at both sites was unaffected by fertilization at these levels, which is consistent with a similar observation for a boreal spruce forest fertilized for three years with NH$_4$NO$_3$ at 60 kg N ha$^{-1}$ (Gulledge et al., 1997). However, most studies report inhibition of atmospheric CH$_4$ oxidation in N-fertilized forest soils. Pine forests fertilized with NH$_4$NO$_3$ at 30 and 90 kg N ha$^{-1}$ gave CH$_4$ oxidation rates that were 85% and 62%, respectively, of unfertilized controls (Sitaula et al., 1995), while a temperate softwood forest amended with the same fertilizer at 120 kg N ha$^{-1}$ showed a CH$_4$ oxidation rates that were 67% of unfertilized controls (Steudler et al., 1989). Urea fertilization of a pine plantation (180 kg N ha$^{-1}$) resulted in a 5- to 20-fold decrease in atmospheric CH$_4$ oxidation relative to controls (Castro et al., 1995), while application of urea, KNO$_3$ or NH$_4$Cl to forested peatland soils at 100 kg N ha$^{-1}$ significantly depressed CH$_4$ oxidation (Crill et al., 1994). Finally, fertilization of a mixed oak–pine forest with only 10 kg NH$_4$Cl-N ha$^{-1}$ inhibited atmospheric CH$_4$ oxidation by about 20% relative to control plots (King and Schnell, 1994).

Sensitivity of atmospheric CH$_4$ oxidation in forest soils to N fertilization may relate to the position of the CH$_4$ oxidizing community in the soil column. Maximum rates of atmospheric CH$_4$ oxidation are found 10–20 cm below the soil surface at both sites, and 91% and 98% of depth-integrated CH$_4$ oxidation at AS2 and BS2 occurs at soil depths >10 cm (Whalen et al., 1992). Hence, it is likely that liquid fertilizer additions did not penetrate to the active CH$_4$ oxidizing zone. Other studies also point to the locus of the CH$_4$ oxidizing zone as a key determinant of soil sensitivity to N fertilization. Surface localization of fertilizer in conjunction with a subsurface zone of CH$_4$ oxidation was offered as a possible explanation for the lack of a fertilizer effect on CH$_4$ oxidation in a humisol amended with 100 kg ha$^{-1}$ urea-N (Dunfield et al., 1995), while addition of NH$_4$Cl, KNO$_3$ and urea-N at this same level all inhibited CH$_4$ oxidation in forest soil where CH$_4$ oxidation was largely restricted to the 0–5 cm zone.

Nitrifiers are frequently located in the organic, NH$_4^+$-rich surface layers of forest soils (Lensi et al., 1991; Schnell and King, 1994; Castro et al., 1995), suggesting that the NH$_4^+$-N and nitrifier medium solutions...
contacted this component of the microbial community. Methane is co-oxidized along with NH$_4^+$-N by nitrifying bacteria (Bedard and Knowles, 1989) and urea-N fertilization (rapidly hydrolyzed to NH$_3$-N; Zhengping et al., 1996) in pine forest soil has been demonstrated to reduce atmospheric CH$_4$ oxidation by shifting the relative importance of methanotrophs and nitrifiers (Castro et al., 1995). Hence, insensitivity of CH$_4$ oxidation at AS2 and BS2 to amendment with NH$_4^+$-N or the nitrifier medium suggests that methanotrophs are primarily responsible for CH$_4$ oxidation in these soils. This is consistent with the observation that nitrifying activity is low in other boreal forest soils (Gulledge et al., 1997). In contrast to the nitrifier medium, the methanotroph medium probably never reached the target organisms. Hence, the rate of CH$_4$ oxidation was uninfluenced by this treatment.

Increased atmospheric N deposition is not likely to reduce rates of atmospheric CH$_4$ oxidation in boreal forest soils. The loading rate of 140 kg N ha$^{-1}$ for repeated fertilization with NH$_4^+$-N solution or nitrifier medium is 70-fold higher than the estimated annual deposition (wet plus dry) of 2 kg N ha$^{-1}$ for remote continental areas (Galloway, 1993). Moreover, experimental conditions were considerably more favorable than natural rainfall for delivery of nutrients to the active methanotrophic zone located at >10 cm below the soil surface. Each of the eight fertilizations simulated a 2.7 cm, high N rainfall while total annual precipitation exceeded 2 cm during the year this study was conducted (NOAA, 1993). Additionally, chamber bases extended to a depth of about 15 cm below the soil surface, ensuring that fertilizer did not move laterally following application. In concert, low annual precipitation and subsurface localization of the zone of atmospheric CH$_4$ oxidation ensure that any realistic increase in atmospheric N deposition will not alter the sink strength of upland boreal forest soils in the atmospheric CH$_4$ budget.

Acknowledgements

This work was supported by the US Environmental Protection Agency and the National Institute for Global Environmental Change. The Bonanza Creek Long Term Ecological Research Program is supported by the National Science Foundation. Chad Staiger assisted in laboratory and field analyses.

References

