Lawrence Berkeley National Laboratory

Recent Work

Title
PHOTOASSISTED CATALYTIC DISSOCIATION OF H2O AND REDUCTION OF N2 TO NH3 ON PARTIALLY REDUCED Fe2O3

Permalink
https://escholarship.org/uc/item/4964k685

Author
Khader, M.M.

Publication Date
1986-06-01
Submitted to Langmuir

PHOTOASSISTED CATALYTIC DISSOCIATION OF H$_2$O AND REDUCTION OF N$_2$ TO NH$_3$ ON PARTIALLY REDUCED Fe$_2$O$_3$

M.M. Khader, N.N. Lichtin, G.H. Vurens, M. Salmeron, and G.A. Somorjai

June 1986

TWO-WEEK LOAN COPY

This is a Library Circulating Copy, which may be borrowed for two weeks.
PHOTOASSISTED CATALYTIC DISSOCIATION OF H₂O AND REDUCTION OF N₂ TO NH₃ ON PARTIALLY REDUCED Fe₂O₃

Mahmoud M. Khader* and Norman N. Lichtin**
Gerard H. Vurens, Miquel Salmeron and Gabor A. Somorjai
Materials & Molecular Research Division, Lawrence Berkeley Laboratory
Department of Chemistry, University of California
Berkeley, CA 94720

ABSTRACT

H₂ and NH₃ were produced when suspension of Fe₂O₃ catalyst particles or sintered pellets in water were illuminated with light of energy greater than 2.3eV. Catalytic action was demonstrated by detecting H₂ yields many times the stoichiometric equivalent of the measured (by X-ray diffraction, Mossbauer spectroscopy and oxidimetry) Fe(II) content of the catalyst up to 80x for H₂ and 20x for NH₃. The initial rate of formation of H₂ was 40μmoles/hr.g catalyst and of NH₃ was 10μmoles/hr.g catalyst. The formation of O₂ was proved by mass spectrometric observation using ¹⁸O labelled water.

END OF ABSTRACT

We report here the catalytic photoassisted splitting of water into H₂ and O₂ and the photoassisted reduction of N₂ with water to NH₃. The catalyst consists of a mixture of approximately 90% α-Fe₂O₃ and 10% Fe₃O₄ as determined by x-ray diffraction. Mossbauer experiments also detect the presence of Fe₃O₄ in similar amounts. Other phases of the iron oxide, like γ-Fe₂O₃ could also be present in small amounts.

α-Fe₂O₃ is an n-type semiconductor with a band gap of about 2.3eV. It can absorb at least 40% of the solar flux. It has, accordingly, been investigated as a light absorbing electrode for photoassisted electrolysis of water ²-¹², and as a catalyst in the photoassisted reduction of N₂ to NH₃.

*On leave from the Dept. of Chemistry, Boston University.
**Dept. of Chemistry, Boston University.
ammonia by water13 or by aqueous organic solutions14. The photoassisted production of H_2 from H_2O using Mg-doped Fe$_2$O$_3$15,16 and of NH_3 from N_2 using Fe-doped TiO$_2$17,18 has already been reported. Because of the poor yields, the catalytic nature of these processes could not be assessed. The iron oxide catalyst that we report here is much more active than the iron containing samples that were previously utilized. The catalytic nature of the reactions could thus be demonstrated.

We used the catalyst both in the forms of powder and as sintered pellets. It can be prepared in powder form by exposing α-Fe$_2$O$_3$ (Alfa prod. 99.9\%) for 8 hours at 450°C and 1 atm to a flowing mixture of 70\% H_2 and 30\% H_2O vapor and then heating in O_2 or air at 450°C for 10 min. One-half inch diameter sintered pellets of iron oxide were prepared by pressing the powder to 7000 Kgf/cm2 and then heating in air for 20 hr at 1150°C. The pellets could be activated by reacting first with 70\%H_2-30\%H_2O at 500°C and 1 atm for 10 min. and then with O_2 or air at 450°C for 10 min.

The composition of the catalyst was estimated from its X-ray powder diffraction pattern by comparing the ratio of the integrated intensities of the (220) spinel and (012) corundum reflections with known standards of spinel and α-Fe$_2$O$_3$. This analysis indicated that the material contains more than 90\% Fe$_2$O$_3$ and less than 10\% Fe$_3$O$_4$. The Mössbauer spectrum also indicated that the major component is α-Fe$_2$O$_3$ ($H=515$ kOe, $\epsilon=0.12$mm/s, $I=0.60$mm/s with respect to SNP). Fe$_3$O$_4$ was detectable but constituted less than 10\% of the catalyst. Oxidimetric analysis of solutions of the dissolved catalyst in aq. HCl with KMnO$_4$19 indicated that 3-5 atom\% of the iron in the catalyst is Fe(II). BET measurement showed a surface area of 1.85 m2/g of the powdered catalyst.

To measure the hydrogen yield, the reaction was performed in a
closed loop with either N₂ or Ar circulating through a suspension of 30mg of catalyst in 30ml of deionized water in a thermostated pyrex cell (Temperature 29-30 C). The suspension was illuminated with 20mW of light from a 150W Xe lamp. The gas stream was periodically leaked into a UHV chamber where it was analyzed with a calibrated quadrupole mass spectrometer. In its pure form neither α-Fe₂O₃ nor the reduced form of the oxide, Fe₃O₄, are active as photocatalysts. Assuming that all the catalyst particles were active during the experiment, the initial rate of hydrogen formation was 40 μ moles/hr.g catalyst. To determine the yield of ammonia, N₂ gas was bubbled through the aqueous slurry of catalyst and illuminated by 20mW of light. The gas stream was subsequently passed through a trap containing dilute aq. HCl at 0-4°C. Aliquots of solution from both the cell and the trap were analyzed spectrophotometrically by the trichloramine method. The initial rate of ammonia formation was 10 μ moles/hr.g catalyst. We can roughly express the rate in terms of catalyst surface area. For our experimental conditions the result is 100 μ moles/hr.m² (which would be equivalent to 0.5 μ A/cm²), assuming that only half of the particles are illuminated on one side at any given time.

By using Ar instead of N₂ as the circulating gas, ammonia production was less than the detection limit of the trichloramine method (2 x 10⁻⁸ moles)²⁰. In the case of H₂, the yield was unaffected by using Ar instead of N₂ as the circulating gas. NH₃ and H₂ and O₂ thus appear to be formed in parallel processes.

The production of both H₂ and NH₃ was only observed when the catalyst was illuminated with light of wavelength shorter than 540nm. When the
reaction was carried in the dark neither H₂ nor NH₃ was observed.

The formation of O₂ was demonstrated by using a pellet suspended in 3ml of water labelled with ¹⁸O and detecting products of mass 36, 34 and 32 mass-spectrometrically.

The observed O₂ to H₂ ratios varied between 0.41 and 0.51 in four different measurements.

The oxidation products formed in the NH₃ reaction are not yet known at present.

The results of these experiments are presented in the figure. Our studies demonstrate that the catalyst remains active for production of both NH₃ and H₂ for about 450hr. Assuming that the catalyst contained 5 atom% of Fe(II) (in the form of Fe₃O₄), the yield of H₂ obtained in about 450hr would be equivalent to 80 times the stoichiometric reducing capacity of the catalyst while the yield of NH₃ obtained in about 580hr of illumination would be equivalent to 20 times the stoichiometric reducing capacity of the catalyst. In fact, no significant consumption of Fe(II) was detected either by X-ray diffraction or by oxidimetric measurements on samples of the used catalyst. It can be concluded that the observed reactions are catalytic. As can be seen in the figure a significant decay of catalytic activity was observed after several hundred hours of illumination. The reasons for this decay are under investigation. A more detailed account of these and other experiments will be published in a forthcoming paper.
ACKNOWLEDGMENTS

This work was supported by the Director, Office of Energy Research, Office of Basic Energy Sciences, Chemical Sciences Division of the U.S. Department of Energy under Contract No. DE-AC03-76SF00098. One of the authors (M.M.K.) thanks the Egyptian Ministry of Higher Education for the award of a support fellowship.

REFERENCES

FIGURE CAPTION

Cumulative amounts of H₂ and NH₃ obtained from photodissociation of H₂O and photoreduction of N₂ by 20mW of light of energy greater than 2.3eV. The catalyst consist of aqueous suspensions of partially reduced particles of iron oxide. For comparison we indicate the amounts of H₂ that would correspond to the stoichiometric oxidation of Fe(II) by H₂O in samples containing 100% and 5% Fe(II) respectively.
This report was done with support from the Department of Energy. Any conclusions or opinions expressed in this report represent solely those of the author(s) and not necessarily those of The Regents of the University of California, the Lawrence Berkeley Laboratory or the Department of Energy.

Reference to a company or product name does not imply approval or recommendation of the product by the University of California or the U.S. Department of Energy to the exclusion of others that may be suitable.