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Dispersive transport and symmetry of the dispersion tensor in porous media
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Ran Holtzman§

Robert H. Smith Faculty of Agriculture, Food and Environment, Hebrew University of Jerusalem, P.O. Box 12, Rehovot 76100, Israel
(Received 29 November 2016; published 10 April 2017)

The macroscopic laws controlling the advection and diffusion of solute at the scale of the porous continuum are
derived in a general manner that does not place limitations on the geometry and time evolution of the pore space.
Special focus is given to the definition and symmetry of the dispersion tensor that is controlling how a solute
plume spreads out. We show that the dispersion tensor is not symmetric and that the asymmetry derives from
the advective derivative in the pore-scale advection-diffusion equation. When flow is spatially variable across a
voxel, such as in the presence of a permeability gradient, the amount of asymmetry can be large. As first shown
by Auriault [J.-L. Auriault et al., Transp. Porous Med. 85, 771 (2010)] in the limit of low Péclet number, we show
that at any Péclet number, the dispersion tensor Dij satisfies the flow-reversal symmetry Dij (+q) = Dji(−q)
where q is the mean flow in the voxel under analysis; however, Reynold’s number must be sufficiently small
that the flow is reversible when the force driving the flow changes sign. We also demonstrate these symmetries
using lattice-Boltzmann simulations and discuss some subtle aspects of how to measure the dispersion tensor
numerically. In particular, the numerical experiments demonstrate that the off-diagonal components of the
dispersion tensor are antisymmetric which is consistent with the analytical dependence on the average flow
gradients that we propose for these off-diagonal components.

DOI: 10.1103/PhysRevE.95.043103

I. INTRODUCTION

In a porous material, if fluid injection at some point creates
a localized change in solute concentration (or indeed any fluid
property) and if there is flow taking place either due to the
injection process alone or an already existent background
flow (or both), this change in solute concentration will be
transported downstream by the flow, spreading out into a plume
in the process. The flux due to the solute being carried along
by the average flow in each voxel of porous material is called
advection while the flux that results in the spreading out into
a plume is called dispersion.

This article is concerned with establishing the mass con-
servation and transport laws that describe such dispersive
transport at the scale of the porous continuum. Such laws are
important in the modeling of how contaminants and tracers
spread out in the Earth’s subsurface [1–4] and in a diverse
range of medical and industrial applications from modeling
how drugs and other solutes move through biological tissue
[5] to modeling filtration processes across porous membranes
[6]. Thousands of articles over the past 50-plus years have
used seemingly reasonable forms of the porous-continuum
solute transport laws; comprehensive overviews have been
provided by Bear [1], de Marsily [2], Dullien [3], and Sahimi
[4] among others. Due to differences in the proposed transport
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laws when fluid density and porosity are allowed to vary in
time, we provide in this paper a systematic derivation of the
porous-continuum dispersive transport equations. We place
particular emphasis on the definition and symmetry properties
of the dispersion tensor. An important aspect of this work is
the consideration of the nature of the off-diagonal terms of
the dispersion tensor that are generally ignored when one
of the coordinate directions aligns with the flow direction
and the material is isotropic. Our analytical considerations are
verified using lattice-Boltzmann simulations of the transport
process.

To understand the physical essence of what dispersion and
the dispersion tensor is representing, consider a small plume
of excess solute in a porous material. Steady flow in the
porous material is being driven by a directed force. Where
the concentration gradient of the plume is perpendicular to
the mean flow direction, as the local flow bifurcates around
a grain, fluid with a given concentration is both advected
into a pore up the concentration gradient and into a pore
down the concentration gradient. The up-gradient pore has its
concentration lowered by this process and the down-gradient
pore has its concentration increased which corresponds to
solute flux down the concentration gradient. This is called
transverse mechanical dispersion. Where the concentration
gradient of the plume is parallel with the mean flow direction,
the local flow in the center of the pores is greater than near the
solid grain boundaries which results in advection enhanced
solute diffusion that is analogous to Taylor-Aris dispersion
[7] in a tube and is called longitudinal mechanical disper-
sion. Recent numerical simulations [8,9] of the pore-scale
longitudinal and transverse mechanical dispersion through
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numerical reconstructions of actual sedimentary porous media
give greater insight into the dependence on the pore geometry.

In addition to the above two sources of dispersion, there
is also the usual random-walk diffusion that transports solute
down the concentration gradient. In a porous continuum, the
effects of mechanical dispersion and diffusion are combined
into a single dispersion tensor. Comparing a characteristic
advection with flow speed U to a characteristic diffusion with
diffusivity Dm taking place over a length scale ! (typical grain
size) defines the Péclet number Pe = U!/Dm. When Pe " 1,
mechanical dispersion dominates diffusion.

There can also be mechanical dispersion in a direction
perpendicular to the concentration gradient even in an isotropic
material. This effect has generally not received as much
attention in the literature and is responsible for the presence
of off-diagonal terms in the dispersion tensor even when one
of the coordinate directions is parallel with the macroscopic
flow direction. We show that these off-diagonal terms are not
symmetric when present. This paper will place an emphasis on
considering this “nonstandard” type of mechanical dispersion,
propose what it is most commonly due to (gradients in flow
across a voxel) and derive a flow-reversal symmetry that these
off-diagonal terms must obey. Such off-diagonal terms are a
complicated coupling between advection and diffusion and
increase from zero with increasing Péclet number.

The macroscopic (porous continuum) governing equations
for nonreactive solute transport have been obtained and
presented in different ways [10–14]; however, there are
some differences between presentations on how to define
the concentration of solute and where factors of porosity
and fluid density arrive in the equations if porosity and
fluid density are allowed to vary in time and space. Porosity
changes in time are caused by deformation of the framework
of grains associated with the fluid injection. For two-space
homogenization methods [13,14], there is required to be
an explicit separation of scales into pore dimensions ! and
macroscopic dimensions L so that a small parameter ε = !/L
exists that can be used to truncate an asymptotic development
of the pore-scale fields. We are interested in an approach that
is valid when there are more than two length scales present
so that two-space homogenization is not formally applicable.
Further, the boundary conditions on the individual voxels tend
to be periodic in homogenization approaches while Dirichlet
conditions on the solute concentration are the natural ones to
connect to.

II. MACROSCOPIC RESPONSE OF A VOXEL

We begin with some general considerations of the average
(macroscopic) response in porous media.

Figure 1 depicts a voxel of porous material #(r) located
at position r = r1x̂1 + r2x̂2 + r3x̂3 within a larger porous
system. For fields distributed at points x = x1x̂1 + x2x̂2 +
x3x̂3 throughout the interior of the voxel, the macroscopic
description requires only the average of these fields and the
gradient of the average across the voxel. We can consider an
averaging voxel of any shape but there is no loss in generality
in considering a simple cube of volume L3. The six bounding
faces of the voxel ∂# are located at xi = ±L/2 for i = 1,2,3.
The pore space within # is denoted #p and the intersection

FIG. 1. A cubic voxel of porous material #(r) centered on point
r = (r1,r2,r3) within the larger porous system and having local
coordinates x = (x1,x2,x3) as shown.

of the pore space with the external surface of the voxel is
denoted ∂#pe.

Consider first a scalar field ψ(x) associated with the pore
space (density, pressure, temperature, etc.). The average of this
field throughout the pore space is

ψ(r) = 1
Vp(r)

∫

#pe(r)
ψ(x) d3x, (1)

where Vp is the pore volume. The porosity is defined

φ(r) = Vp(r)
L3

(2)

and may possess a macroscopic gradient. We generally expect
that an average field ψ at a point r will change as the size L
of the averaging voxel changes.

In addition to the volume average ψ , there is assumed to
be present a macroscopic gradient ∇ψ across the voxel where
∇ = ∂/∂r is the gradient operator acting on volume-averaged
quantities. The gradient of a quantity averaged throughout
a voxel is the difference in the volume integrals for voxels
centered at r and r + dr. In the limit as dr → 0, the difference
in the two volume integrals becomes an integral over the
bounding surface involving the outward normal n to the
surface. The exact theorem is (e.g., Ref. [12] or [15])

∇[φψ] = 1
L3

∫

∂#pe

nψ(x) d2x. (3)

Upon inserting ψ = 1, we obtain the definition of the macro-
scopic porosity gradient

∇φ = 1
L3

∫

∂#pe

n d2x. (4)

Equation (3) can then be rewritten to give directly the gradient
of a field averaged over the pore space

∇ψ(r) = 1
φ(r)L3

∫

∂#pe

n [ψ(x) − ψ(r)] d2x. (5)

Simply and intuitively, when the field being averaged is larger
on one side of an averaging region compared to the opposing
side, there is a macroscopic gradient present.

Consider next a vector flux j(x) taking place through the
pore space (fluid flow, solute flux, etc.). The average flux

043103-2



DISPERSIVE TRANSPORT AND SYMMETRY OF THE . . . PHYSICAL REVIEW E 95, 043103 (2017)

through the pore space is

j(r) = 1
φ(r)L3

∫

#p

j(x) d3x (6)

so that the theorem of Eq. (3) yields the macroscopic
divergence theorem for pore-averaged fields

∇ · [φ j] = 1
L3

∫

∂#pe

n · j(x) d2x. (7)

Again using Eq. (4) for the porosity gradient, we rewrite
Eq. (7) as

∇ · j(r) = 1
φ(r)L3

∫

∂#pe

n · [j(x) − j(r)] d2x. (8)

So either the macroscopic divergence of an average vector
flux or the macroscopic gradient of an average scalar field are
independent of the average value of the field throughout the
pore space.

III. CONSERVATION OF FLUID MASS

We now use the above formalism to derive the macroscopic
statement of the conservation of fluid mass. The pertinent local
fields throughout the pore space are ρ(x) the local solution
mass density and u(x) the local solution flow velocity. The
conservation of solution mass for the voxel can be written

− ∂

∂t

[∫

#p

ρ d3x

]

=
∫

∂#pe

n · u ρ d2x. (9)

After dividing both sides by L3, the left-hand side is
identified as

∂

∂t

[
Vp

L3

1
Vp

∫

#p

ρ d3x
]

= ∂

∂t
[φρ]. (10)

When treating the integral of the right-hand side, we use the
divergence theorem of Eq. (7) along with the decompositions
throughout #p

u =u + δu(x), (11)

ρ =ρ + δρ(x) (12)

to obtain

− ∂

∂t
[φρ] = ∇ ·

[
1
L3

∫

#p

(ρ + δρ)(u + δu) d3x
]

(13)

= ∇ · [φ ρ u] + ∇ ·
[

1
L3

∫

#p

δρ δu d3x
]
. (14)

We have used that
∫
#p

δu d3x = 0 and
∫
#p

δρ d3x = 0.
The second term on the right-hand side of Eq. (14) is

nonstandard; i.e., it is usually not a part of the macroscopic
statement of fluid-mass conservation at the porous-continuum
level. It represents a dispersive flux of fluid mass that is distinct
from the average mass flux φ ρ u that is allowed for in the
first term on the right-hand side. The way that deviations in
solution density δρ develop is if there are deviations in fluid
pressure and solute concentration. There is a state function
ρ = ρ(p,ϕ) for every (isothermal) solution, where p is the

local fluid pressure and ϕ the local solute concentration (as
defined in the next section).

When there is a strong macroscopic pressure gradient ∇p
and/or concentration gradient ∇c present (the macroscopic
concentration measure c is defined in the next section), one
can imagine that there is a strong enough macroscopic gradient
in solution density ∇ρ to warrant allowing for the deviations
δρ(x) at the local level and the macroscopic dispersive total-
mass-flux vector Jρ defined by

Jρ = 1
L3

∫

#p

δρ δu d3x (15)

= −Dρ · ∇ρ (16)

= −Dρ ·
(
∂ρ

∂p
∇p + ∂ρ

∂c
∇c

)
. (17)

The solution-mass dispersion tensor Dρ (units of diffusivity)
is defined through the above equations. Its components will be
nonzero to the extent that flow-velocity gradients are present
across a voxel (that generate δu) and to the extent that solution
density gradients are present across a voxel (that generate δρ)
so that the product δρ δu does not simply average to zero
throughout the pore space.

For an average flow in the x direction created by a
macroscopic pressure gradient in the x direction that in
turn has a gradient in the y direction, we can make the
order-of-magnitude estimate that

|Jρ | = k

η

∣∣∣∣
∂2p

∂x∂y

∣∣∣∣L
(
∂ρ

∂p
|+p| + ∂ρ

∂c
|+c|

)
, (18)

where L is the size of a voxel of porous material, k is the
Darcy permeability and η is the solution viscosity. We can
further estimate the advective flux as

|Ja| = k

η

∣∣∣∣
∂p

∂x

∣∣∣∣ρ. (19)

With the estimate |∂(∂p/∂x)∂y| ≈ |∂p/∂x|/L, the impor-
tance of dispersive solution-mass flux compared to the ad-
vective flux is given by the order-of-magnitude dimensionless
ratio

|Jρ |
|Ja|

= |+p|
ρ c2

p

+ (∂ρ/∂c)|+c|
ρ

, (20)

where we used that the speed of sound cp in the solution
is c2

p = ρ ∂p/∂ρ. Because ρ c2
p ≈ 109 Pa for liquids, so

long as the pressure deviations across a voxel are much
smaller than 109 Pa, which they will be in all applications
of flow in porous media, we can ignore the solution-mass
dispersion due to pressure gradients. The relation between
the solute-mass to solution-mass ratio c and the molarity
M (mol/l) of the solution is M = ρc/µ where µ is the
molecular weight of the solute as read from the periodic table in
grams per mole. We thus have to leading order-of-magnitude
that +c ≈ 10−2(l/mol)+M . For saline solutions at ambient
pressure and temperature, the appendix of Ref. [16] shows
that ∂ρ/∂c ≈ 103 kg/m3 ≈ ρ. Further, a very large molarity
change across a porous voxel would be on the order of
+M ≈ 10−1 mol/l, so that perhaps the largest value we can
expect for the ratio |Jρ |/|Ja| is on the order 10−3 which we
will assume is negligible.
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We thus feel justified in writing the conservation of mass
in a porous continuum in the standard form

− ∂

∂t
[φρ] = ∇ · [φ ρ u] − ρsQsδ(r − rs), (21)

where a source term has been included to represent solution of
density ρs being injected into the porous material at the voxel
positioned at rs and at a volumetric rate Qs (m3/s). If solution
is being withdrawn (Qs < 0), then the density to use at the
withdrawal voxel is simply the ρ locally present.

Instead of the average fluid velocity u, we are usually
modeling both the Darcy velocity q (flux through the porous
material of fluid relative to the solid) and the average solid
velocity vs at the macroscopic scale of the porous continuum
(if poroelastic deformation is being allowed for). We have the
definitions that

q = φ(u − vs) (22)

and

vs = 1
Vs

∫

#s

vs(x) d3x. (23)

In terms of q and vs , we can then distribute derivatives in
Eq. (21) to obtain

∂φ

∂t
+ vs · ∇φ + φ

ρ

[
∂ρ

∂t
+

(
q
φ

+ vs

)
· ∇ρ

]

= −∇ · q − φ∇ · vs − ρs

ρ
Qsδ(r − rs), (24)

which may also be thought of as the differential equation that
determines how porosity changes,

As such, we can also derive Eq. (24) in an alternative manner
dropping the injection point source for convenience. Writing
the porosity asφ = Vp/V (ratio of pore volume to total volume
associated with a given mass element of porous material), we
take a total derivative to obtain

dφ

dt
= 1

V

dVp

dt
− Vp

V 2

dV

dt
= 1

V

dVp

dt
− φ

V

dV

dt
. (25)

The change in the pore volume is exactly the difference
between how much fluid enters or leaves an element and
how much the fluid within the pores compresses or dilates.
As was initially assumed by Biot and Willis [17] and later
proven by Pride and Berryman [15], the rate that fluid volume
is accumulating in a porous element divided by the volume of
the element is given by −∇ · q. The rate that the fluid volume
is compressing (causing an increase in fluid density) divided
by the sample volume is (φ/ρ)dρ/dt . Reference [15] further
demonstrates that ∇ · vs = (dV/dt)/V . We thus obtain

dφ

dt
+ φ

ρ

dρ

dt
= −∇ · q − φ∇ · vs . (26)

Comparing this expression to the earlier statement of Eq. (24),
we can identify with confidence the nature of the total
derivatives

dφ

dt
= ∂φ

∂t
+ vs · ∇φ, (27)

dρ

dt
= ∂ρ

∂t
+

(
q
φ

+ vs

)
· ∇ρ. (28)

In particular, these expressions unambiguously identify the
velocity vectors to be used in the advective derivatives when
both fluid and solid are allowed to move and deform. Quantities
that are associated with the porous frame, like porosity and
permeability, use the average solid velocity in the advective
derivative and those that are associated with the fluid, like
the average fluid density, use the average fluid velocity (u =
q/φ + vs).

IV. CONSERVATION OF SOLUTE MASS

We next derive the conservation of solute mass in a porous
material. Keeping track of the solute entering and leaving the
cubic voxel we have

− ∂

∂t

[∫

#p

ρϕ d3x

]

=
∫

∂#p

n · [−ρDm∇ϕ + ρϕu] d2x,

(29)

where ϕ is the concentration of solute expressed as a mass
ratio (mass of solute divided by mass of solution) and Dm is the
molecular diffusivity. The first flux term in brackets is diffusion
and the second is advection. In assuming the diffusion to be
described by Fick’s law, we are implicitly assuming the mean-
free-path length λ of the random movement of solute particles
is much smaller than the pore sizes. Because λ is on the order
of molecular dimensions for liquid solvents, Fick’s law always
provides an accurate description of the solute diffusion within
the pores.

As the macroscopic measure of concentration, we introduce

c =
∫
#p

ρϕ d3x
∫
#p

ρ d3x
= ρϕ

ρ
. (30)

We further write the local concentration ϕ(x) throughout the
pore space as

ϕ(x) = c + δϕ(x) (31)

and continue to use u(x) = u + δu(x) for the flow field. Upon
substituting Eq. (31) into the definition of c, we obtain that the
deviations δϕ(x) satisfy

∫

#p

ρ(x)δϕ(x) d3x = 0 (32)

or δϕ = 0 under conditions where ρ(x) = ρ is a uniform
spatial constant within #p.

The pore-scale boundary-value problem for ϕ(x) is [18]

∂ϕ

∂t
+ u · ∇ϕ = 1

ρ
∇ · (ρDm∇ϕ) in #p (33)

subject to the boundary conditions on the six bounding cube
faces that

ϕ(x) = co ± +ci on xi = ±L

2
(34)

and n · ∇ϕ = 0 on the grain surfaces ∂G. The +ci are defined
from the macroscopic concentration gradient as

∇c = x̂1
+c1

L
+ x̂2

+c2

L
+ x̂3

+c3

L
. (35)
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When all the +ci = 0, we have that ϕ(x) = co is the solution
of Eqs. (33) and (34) in which case c = co. When any of the
+ci &= 0 in the presence of advective flow, we can have c &= co.

Upon dividing both sides of the solute mass balance of
Eq. (29) by L3 and introducing the above definitions, we have

− ∂

∂t
[φρc] = 1

L3

∫

∂#p

n · [−ρDm∇δϕ + ρ(c + δϕ)u] d2x.

(36)

The term on the right-hand side that involves n · ρcu becomes
∇ · (φρcu) according to the mass balance of Eqs. (9) and (21).
The macroscopic divergence theorem of Eq. (7) then results in

− ∂

∂t
[φρc] = ∇ · (φρcu) + ∇ ·

[
1
L3

∫

#p

ρ[−Dm∇δϕ

+ δϕ(u + δu)] d3x
]
. (37)

Because u is a uniform constant throughout the pore space, the
integral of ρδϕ throughout the pore space is zero according
to Eq. (32). A final application of the total mass balance of
Eq. (21) then yields the macroscopic statement of conservation
of solute

∂c

∂t
+ u · ∇c = − 1

φρ
∇ · J, (38)

where the dispersive solute-mass flux vector J is defined

J = 1
L3

∫

#p

ρ[−Dm∇δϕ + δϕδu] d3x. (39)

The concentration deviations δϕ(x) only exist in the presence
of a macroscopic concentration gradient and are linear in the
macroscopic concentration gradient. As such, we can write

J = −ρ D · ∇c, (40)

where the dispersion tensor D (units of diffusivity) is defined
from

D · ∇c = −1
L3

∫

#p

ρ

ρ
[−Dm∇δϕ + δϕδu] d3x. (41)

This relation is one of the principal results of the paper and will
be the starting point for the next section where the individual
components Dij are defined in terms of the local fields. The
first term in the integral is local diffusion and the second term is
what creates mechanical dispersion. To the extent that the local
fluid density throughout the pore space is well approximated
by the average density ρ(x) = ρ, which is the same condition
required for neglecting the dispersive flux of solution mass in
the total mass balance, the solution density is not involved in
the definition of Dij .

If we introduce u = q/φ + vs and allow for a point source
of solution injection where cs is the concentration of solute
being injected into a voxel located at rs at a volumetric rate
Qs , we then obtain a final macroscopic statement of solute
mass balance

∂c

∂t
+

(
q
φ

+ vs

)
· ∇c = 1

φρ
∇ · (ρD · ∇c)

+ (cs − c)Qs

φ
δ(r − rs). (42)

V. DEFINITION OF THE DISPERSION TENSOR

The dispersion tensor associated with a given voxel #(r)
will be defined here in terms of local fields that have achieved
a steady state with respect to the imposed boundary values. If
such steady-state has not been achieved, then the operator D
in Eq. (40) would have to be considered a time-convolution
operator (or a complex frequency-dependent multiplicative
operator in the temporal-frequency domain). As such, we only
need to determine the local fields ϕ and u when the time
derivatives in the local governing equations are zero.

The flow velocity u(x) satisfies the Navier-Stokes equations
throughout the pore space and can be taken, at this local scale,
as being incompressible so that

∇ · u = 0. (43)

We further assume that the solution viscosity is independent
of ϕ to leading order so that the flow problem is completely
decoupled from the solute concentration problem.

Under the local incompressibility condition, along with the
idea that ϕ does not influence the solution density appreciably,
the local fluid density ρ(x) can be modeled as the constant ρ
so that Eq. (41) becomes

D · ∇c = −1
L3

∫

#p

[−Dm∇δϕ + δϕ δu] d3x, (44)

where, again, δϕ = ϕ − c.
We now divide the porescale concentration field into four

contributions

ϕ(x) = co +
3∑

i=1

δϕi(x), (45)

where the δϕi are solutions of the three Dirichlet subproblems
(i = 1,2,3):

∇ · (−Dm∇δϕi + δϕiu) = 0 in#p (46)

δϕi =
{
+ci/2 on xi = ±L/2
0 on xk = ±L/2 for k &= i

(47)

and n · ∇δϕi = 0 and u = 0 on ∂G (the grain surfaces). It
is easy to verify by direct addition that the sum over the
subproblems satisfies Eqs. (33) and (34) in the steady state
and when ∇ · u = 0.

For the purpose of analyzing the nature of Dij , we can set
co = 0 with no loss in generality. In this case, we have that
c = ϕ =

∑3
i=1 δϕi . Note that in the presence of advection,

satisfaction of the Dirichlet boundary conditions on the cube
faces can result in δϕi &= 0. However, when flow is not taking
place, we have that δϕi = 0.

To obtain the individual components Dij , we dot multiply
Eq. (44) from the left with x̂i and use ∇c = +cj x̂j /L for some
particular j . Taking +cj &= 0 and the concentration drops in
the other two directions to be zero defines the δϕj subproblem
above. As such, we obtain

Dij = −1
+cjL2

∫

#p

x̂i · [−Dm∇δϕj + δϕj δu] d3x. (48)

The volume integral in Eq. (48) can be written as the average
flux across a suite of parallel slices through the material that are
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perpendicular to the x̂i direction. In the steady state, the flux
across each such slice is necessarily the same. For convenience
in defining the symmetry properties of Dij in the next section,
we rewrite Eq. (48) as the average flux on the two terminal
faces of the cube

Dij = −1
2+cjL

{ ∫

xi=+L/2
x̂i · [−Dm∇δϕj + δϕj δu] d2x

+
∫

xi=−L/2
x̂i · [−Dm∇δϕj + δϕj δu] d2x

}
. (49)

This is our final definition of the individual components of
the dispersion tensor. In words, component Dij represents the
average dispersive flux into and out of the voxel across the
terminal faces in the i direction when there is a macroscopic
concentration drop in the j direction and no such drops in the
other two directions.

From the boundary conditions on the cube faces, the δϕi

are nonzero only on the two faces xi = ±L/2. As such, when
i &= j , we have that the advection contributions in Eq. (49)
are zero so that Dij is only due to diffusion across the cube
faces when i &= j . For i = j , both diffusion and advection
across the cube faces are contributing to the main diagonal
components of the dispersion tensor. In this case (i = j ),
because the advective flux will be positive on one face (say,
xi = +L/2) and negative on the other (say, xi = −L/2), the
diffusive contribution on opposing faces xi = ±L/2 must be
different even in the steady state; i.e., x̂i · ∇δϕj will be much
bigger on one face compared to the opposing face when j = i.

VI. SYMMETRY OF THE DISPERSION TENSOR

To explore the symmetry of the Dij , we focus, say, on the
1,2 pair of subproblems and form the following products:

δϕ2[0 = ∇ · (−Dm∇δϕ1 + δϕ1u)], (50)

δϕ1[0 = ∇ · (−Dm∇δϕ2 + δϕ2u)]. (51)

Upon using the identity that ∇ · (αb) = ∇α · b + α∇ · b, one
can show through direct substitution that the following two
equations are equivalent to the previous two equations:

0 = ∇ · [δϕ2(−Dm∇δϕ1 + δϕ1u)]

+Dm∇δϕ2 · ∇δϕ1 − δϕ1u · ∇δϕ2, (52)

0 = ∇ · [δϕ1(−Dm∇δϕ2 + δϕ2u)]

+Dm∇δϕ1 · ∇δϕ2 − δϕ2u · ∇δϕ1. (53)

Integrating the first term on the right-hand side of these two
equations over the cube and applying the divergence theorem,
the boundary conditions and Eq. (49), one obtains

∫

#p

∇ · [δϕ2(−Dm∇δϕ1 + δϕ1u)]d3x = +c1+c2LD21

(54)

and
∫

#p

∇ · [δϕ1(−Dm∇δϕ2 + δϕ2u)]d3x = +c2+c1LD12.

(55)

After volume integrating the remaining terms of Eqs. (52) and
(53), subtracting and using Eqs. (54) and (55), one has

+c1+c2L(D21 − D12)

=
∫

#p

u · (δϕ1∇δϕ2 − δϕ2∇δϕ1)d3x. (56)

The integral on the right-hand side will not be zero, in
general, unless u = 0, which is enough to show that D21 is
generally different from D12 at finite Péclet number. Identical
manipulations on the other pairs of subproblems leads to

+ci+cjL(Dji − Dij )

=
∫

#p

u · (δϕi∇δϕj − δϕj∇δϕi) d3x (57)

for i &= j so that Dij &= Dji potentially whenever u &= 0.
The terms that are entirely responsible for breaking the

symmetry of Dij are the advective solute fluxes. Advection
breaks the symmetry of the differential operator in the local
convection-diffusion equation in the sense above of rendering
the operator not to be self-adjoint. The asymmetry of the pore-
scale differential operator directly translates into asymmetry of
the macroscopic dispersion tensor. When u = 0, only diffusion
is at work, the local problem is self-adjoint and Dij = Dji

exactly for the off-diagonal terms. There may be off-diagonal
components in the purely diffusional case (vanishing Péclet
number) if the pore space is anisotropic; e.g., a set of connected
fractures having similar orientations that is not aligned with
one of the coordinate directions.

The structure of the integrand in Eq. (57) indicates that
if there is a systematic variation in the amplitude of u from
one side of the averaging region to the other, or even just a
concentration of the flow in one or more places, asymmetry
in the Dij can be significantly present at finite Péclet number.
As will be performed in a later section, numerical solution of
the advection and diffusion at the pore scale is one way to
investigate the symmetry of Dij and its relation to the spatial
distribution of the flow field u.

Finally, as first suggested in Ref. [14], there is a symme-
try that exists in the dispersion tensor. Specifically, if the
Reynold’s number is sufficiently small that the advective
derivative in the Navier-Stokes equation is negligible, then
the resulting linear Stokes flow has the property that

u(−f) = −u(f), (58)

where f is the macroscopic force (typically a pressure drop
across the voxel) that is driving the porescale flow u. In words,
if the sign of the force driving flow is changed, linearity
requires the resulting flow velocity to change sign as well. If
we go back and change the sign of the flow in the subproblem
that defines D12 we have

δϕ2[0 = ∇ · (−Dm∇δϕ1 + δϕ1u)], (59)

δϕ1[0 = ∇ · (−Dm∇δϕ2 − δϕ2u)]. (60)
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Going through the same steps as earlier, one then obtains that

+c1+c2L[D21(f) − D12(−f)]

=
∫

#p

u · (δϕ1∇δϕ2 + δϕ2∇δϕ1)d3x (61)

=
∫

#p

∇ · (u δϕ1δϕ2)d3x (62)

=
∫

∂#p

n · (u δϕ1δϕ2)d2x (63)

= 0. (64)

To get from Eq. (61) to Eq. (62), we require the flow to be
incompressible (∇ · u = 0). To go from Eq. (63) to Eq. (64)
we use the boundary condition on the concentration deviations
that either δϕ1 or δϕ2 is zero on each of the cube faces.

We have thus demonstrated the flow-reversal symmetry

Dij (q) = Dji(−q), (65)

where the Darcy flux q is proportional to f whenever a
linear Navier-Stokes equation holds (low Reynolds number).
Auriault et al. [14] obtain this symmetry to leading order in the
Péclet number using an asymptotic two-space homogenization
technique. The result of Eq. (65) is independent of Péclet
number and applies even when there are multiple length scales
of heterogeneity present (where two-space homogenization
breaks down). Flekkøy et al. [19] also obtain this symmetry
using general statistical mechanics arguments attributable to
Onsager. Equation (65) places an important constraint on any
functional relation for how Dij depends on q.

VII. FUNCTIONAL NATURE
OF THE DISPERSION TENSOR

The dispersion tensor is allowing for both the diffusion
and advection of solute concentration deviations. To partially
separate these two contributions, we write the key δϕi

concentration deviations as

δϕi = +ci

L

(
.i + .

(u)
i

)
, (66)

where .i is independent of the flow and satisfies the boundary-
value problem

∇2.i = 0 in #p (67)

.i =
{
±L/2 on xi = ±L/2
0 on xk = ±L/2 for k &= j,

(68)

while .
(u)
i is the portion influenced by the flow and satisfies

∇ ·
(
− Dm∇.

(u)
i + .

(u)
i u

)
= −∇.i · u in #p (69)

.
(u)
i =

{
0 on xi = ±L/2
0 on xk = ±L/2 for k &= j.

(70)

The sum of Eqs. (67) to (70) when combined with Eq. (66)
exactly reproduces Eqs. (46) and (47). The pore-geometry
potentials .i are independent of any solute or solution
properties in addition to not depending on the flow. The same
cannot be said for.(u)

i that depends on the solute diffusivity Dm

in addition to the pore topology and flow field (and, therefore,
solution viscosity).

We can now decompose Eq. (49) as Dij = D
(0)
ij + D

(u)
ij

where

D
(0)
ij = DmGij (71)

with

Gij = 1
2L2

[∫

xi=+L/2
x̂i · ∇.j d2x +

∫

xi=−L/2
x̂i · ∇.j d2x

]

(72)

and where

D
(u)
ij = −1

2L2

{∫

xi=+L/2
x̂i ·

[
−Dm∇.

(u)
j + L

2
δu

]
d2x

+
∫

xi=−L/2
x̂i ·

[
−Dm∇.

(u)
j − L

2
δu

]
d2x

}
. (73)

We may call Gij the “geometric conductivity tensor.” It is
the inverse of the “formation factor tensor” Fij and is purely
a function of the pore topology. It may be written more
compactly as

Gij = F−1
ij = 1

L3

∫

#p

∇.i · ∇.j d3x. (74)

To get from Eq. (74) to Eq. (72), we write ∇.i · ∇.j = ∇ ·
[.i∇.j ] − .i∇2.j , note that ∇2.j = 0, use the divergence
theorem and apply the boundary conditions for .i . Without
even using the symmetry argument from the previous section
(that nonetheless applies), we obtain the symmetry Gij = Gji

due to the fact that a · b = b · a.
For an isotropic material, we have

G = 1
F

= 1
L3

∫

#p

∇.i · ∇.i d
3x (75)

for any of i = 1, 2, or 3 and where F is the formation factor.
The formation factor is often modeled using Archie’s Law [20]
as F = φ−m where 3/2 ! m ! 2 for most granular media. The
formation factor is sometimes expressed F = τ/φ where τ is
called the tortuosity.

Although D
(0)
ij factors into a solute property Dm and a pore-

geometry term Gij , the same does not hold true for D
(u)
ij . For

a flow field where∫

xi=+L/2
x̂i · δu d2x =

∫

xi=−L/2
x̂i · δu d2x, (76)

we can rewrite Eq. (73) as

D
(u)
ij = DmG

(u)
ij , (77)

where

G
(u)
ij = 1

2L2

[ ∫

xi=+L/2
x̂i · ∇.

(u)
j d2x

+
∫

xi=−L/2
x̂i · ∇.

(u)
j d2x

]
. (78)

Because the potential field .
(u)
j has all of Dm, flow and pore-

topology dependence entangled within it as Eq. (69) makes
clear, so does G

(u)
ij . Further, we cannot rewrite G

(u)
ij in the

compact form of Eq. (74) because ∇2.
(u)
j = −(.j + .

(u)
j ) ·

u/Dm &= 0.
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In an isotropic porous material, the dispersion tensor is
usually assumed to take (but not proven to have) the symmetric
“standard form” [1,10,11]

D ≈ Dst ≡ Dm

F
I + γl

|q|
φ

x̂q x̂q + γt

|q|
φ

(I − x̂q x̂q), (79)

where

x̂q = q
|q|

(80)

is a unit vector in the direction of the Darcy flow, I is the
identity tensor, and γl and γt are the so-called longitudinal and
transverse “dispersivities” that have units of length. The first
term involving F is without reproach but the second and third
terms involving the dispersivities are conjectural. Delgado [21]
has compiled laboratory dispersion data from the literature for
sands and bead packs and finds that

γl ≈ 2!, (81)

γt ≈ !

40
(82)

fits the data fairly well over the range of roughly 50 < Pe <
105 when ! is taken as a characteristic grain diameter. At
such large Pe, the advection is dominating the diffusion and
is why the dispersivities are independent of Dm (or Pe). At
intermediate values of Pe, where advection and diffusion are
more comparable, the simple model of Eqs. (81) and (82)
breaks down and the dispersivities have a more complicated
Pe dependence that has not been theoretically determined
for arbitrary porous materials. Further, as the scale of a
plume increases, the length parameter ! in the dispersivities is
experimentally observed to increase in size [22].

The above standard form for the dispersion tensor satisfies
both Dst

ij (q) = Dst
ji(q) and Dst

ij (q) = Dst
ji(−q). If one of the

coordinate directions is made to align with the flow direction
x̂q , Eq. (79) produces a purely diagonal dispersion tensor that
is anisotropic (the various components Dst

11, Dst
22, and Dst

33 may
all be different). The symmetries are trivially satisfied because
there are no off-diagonal components in this case. Implicitly,
the form of Eq. (79) is only allowing for the dispersive flux that
is in the same direction as the concentration gradient present
and is ignoring any possible cross flux across the faces that are
perpendicular to the concentration gradient.

However, if flow in a given direction is stronger on one side
of a voxel than it is on the other side, then even if one of the
coordinates is in the x̂q direction, there will be off-diagonal
components of the dispersion tensor (flux in a direction
different than the concentration gradient) and Eqs. (57) and
(65) inform us to expect these off-diagonal components to
satisfy the symmetry constraints that Dij (q) &= Dji(q) and
Dij (q) = Dji(−q).

We thus expect that in addition to the dependence on the
mean flow q as expressed in the standard form Dst , there is
also a dependence on the macroscopic flow gradient that leads
to of-diagonal terms of D even in isotropic media and that we
conjecture has the form

D ≈ Dst − α[∇q − (∇q)T ], (83)

where α is a positive parameter that has the units of length
squared. Equation (83) is suggesting that when one of the

FIG. 2. The D2Q6 triangular lattice focusing on a particular node
xb sitting on the boundary surrounded by the six links i = 1,6
that have total mass populations Ni and solute mass concentrations
+i . The constant velocities ci are shown as arrows and are given
by c1 = x̂1, c2 = x̂1/2 +

√
3x̂2/2, c3 = −x̂1/2 +

√
3x̂2/2, c4 = −x̂1,

c5 = −x̂1/2 −
√

3x̂2/2, c6 = x̂1/2 −
√

3x̂2/2.

spatial coordinates is aligned with the average flow direction so
that Eq. (79) has no off-diagonal terms in an isotropic material,
the off-diagonal terms are due entirely to the presence of a
flow gradient across the system and that Dij is anti-symmetric
(equal in amplitude and opposite in sign) to Dji . We will test
this hypothesis numerically in the examples that follow.

We will also test to see whether the length
√
α itself depends

on the flow gradient. We expect that as the flow gradient
increases, high (or low) solute concentration becomes increas-
ingly pushed up against the δϕ = 0 Dirichlet conditions on the
lateral sides of the cube. As the flow-induced concentration
gradients at the lateral walls become larger with increasing
flow gradient, we expect the off-diagonal components of the
dispersion tensor to increase. Whether such increases are linear
in the applied flow gradient will be numerically investigated.

VIII. LATTICE-BOLTZMANN NUMERICAL EXAMPLES

We now numerically solve the suite of three independent
subproblems given by Eqs. (46)–(47). The flow velocity
is driven by an applied force f. We use lattice-Boltzmann
simulations to solve for the local concentration deviations,
fluid flow throughout the pore space and the components Dij

of the dispersion tensor using Eq. (49) or Eq. (48). For the
purpose of analyzing the symmetry of Dij , two-dimensional
simulations are sufficient.

A. Lattice-Boltzmann flux calculations

The lattice-Boltzmann model for miscible binary fluids
is well known and described in many places [23–25]. Here
we mainly focus on how the boundary conditions are imple-
mented.

Employing a triangular D2Q6 lattice with unit vectors ci ,
i = 1, . . . ,6 connecting the nodes of the lattice (cf. Fig. 2), two
populations are defined, Ni and +i with i = 1, . . . ,6. The first
of these govern the mass and momentum densities according
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to the following definitions

ρ(x,t) =
6∑

i=1

Ni(x,t) (84)

and

ρ(x,t)u(x,t) =
6∑

i=1

Ni(x,t)ci . (85)

The second population gives rise to a concentration

ϕ(x,t) =
6∑

i=1

+i(x,t), (86)

defined here as the ratio of solute mass to total mass present at
each site. We will not pause here to give the lattice-Boltzmann
update equations for the Ni and +i populations.

The solute flux through a given site is the average of the in-
and outgoing solute populations defined in the following way:

j(x,t) ≡ −Dm∇ϕ(x,t) + ϕ(x,t)u(x,t) (87)

= 1
2

6∑

i=1

ci[+i(x,t) + +′
i(x,t)]. (88)

Here +i(x,t) is the precollision population and +′
i(x,t) the

postcollision population defined as

+′
i(x,t) = +i(x,t) + λD

[
+i(x,t) − +

eq
i (ϕ,u)

]
, (89)

where +
eq
i (ϕ,u) is the equilibrium population which in the

Flekkøy (1993) scheme is given by

+
eq
i = wi ϕ(x,t)

[
1 + u(x,t) · ci

c2
s

]
. (90)

Here, wi are the lattice weights given by wi = 1/6 for
the triangular lattice and cs = +x/(+t

√
2) is the speed of

sound on the triangular lattice with +x = 1 and +t = 1 the
lattice spacing and time step in lattice units. The relaxation
parameter λD controls the particle collisions and determines
the molecular diffusivity in the scheme. Inserting Eq. (89) into
Eq. (88) gives

j = (2 + λD)
2

6∑

i=1

ci

(
+i − +

eq
i

)
+

6∑

i=1

ci+
eq
i (91)

= (2 + λD)
2

6∑

i=1

ci+
neq
i + ϕu. (92)

The second summation in Eq. (91) was performed exactly
using Eq. (90) and thus corresponds to solute advection.
The first summation that depends only on the nonequilibrium
portion of the populations corresponds to solute diffusion. A
Chapman-Enskog expansion of the lattice-Boltzmann update
equations for the +i gives the conservation law

∂tϕ + ∇ · j = 0, (93)

along with an expression for the molecular diffusivity

Dm = − (2 + λD)
2λD

c2
s+t. (94)

On an M1 × M2 lattice, the dispersion tensor components are
calculated using

Dij = Lj

+cj

1
2Mj

2Mj∑

b=1

x̂i · j(xb,t), (95)

where xb are the site positions on the two bounding faces
located at xi = ±Li/2. For the triangular lattice, the side
lengths are L1 = M1 and L2 = (

√
3/2)M2 (cf. Fig. 2). The

concentration drops +cj are as given in Eq. (34).
On the system boundaries, ϕ satisfies Dirichlet conditions

of the form ϕ(xb) = Cb with Cb some desired boundary
value. To satisfy such a condition one should not just set the
boundary populations as+i(xb) = wiCb because although this
will indeed satisfy the boundary condition for ϕ, it does not
allow for diffusion across the boundary.

To calculate the normal component of flux n · j at boundary
points where ϕ(xb) = Cb, we first note that at any boundary
point, the lattice-Boltzmann equation produces updates for
the +i populations on half of the links, say, i = 1,2,3, using
population data from sites interior to the system domain. To
properly handle diffusion across such boundaries, we then
prescribe values for the other three links from the requirement
that

n ·
3∑

i=1

ci+
neq
i (xb) = n ·

3∑

i=1

ci+3+
neq
i+3(xb). (96)

In words, the diffusive contribution from populations on links
that are being updated is identical to the contribution from the
populations that are not being updated. This is equivalent to
saying that the flux is locally uniform across the boundary.
Because ci+3 = −ci , we then obtain that

+i+3(xb) = +
eq
i+3(xb) + +

eq
i (xb) − +i(xb), (97)

where

+
eq
i+3(xb) = wiCb

[
1 − u(xb) · ci

c2
s

]
, (98)

+
eq
i (xb) = wiCb

[
1 + u(xb) · ci

c2
s

]
(99)

so that the proper boundary condition that allows for diffusive
flux across the Dirichlet boundary is

+i+3 = 2wiCb − +i. (100)

Equation (92) can then be written

j(xb) = (2 + λD)
3∑

i=1

ci+
neq
i (xb) + Cbu(xb), (101)

and this expression for j is then used to calculate the dispersion-
tensor components of Eq. (95). For each face of the L1 × L2
box, the boundary conditions are given in Table I.

A final problem remains that limits the accuracy of the Dij

calculations at large Pe. At large Pe, a given solute concen-
tration is pushed up against the ϕ = 0 or ± +ci boundaries
which results in large concentration gradients near some of
the boundaries. At large enough Pe, the distance over which
ϕ changes becomes comparable to (or smaller than) the lattice
spacing. In the lattice-Boltzmann model being employed [23],
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TABLE I. Boundary populations for the D2Q6 lattice that satisfy
the Dirichlet condition ϕ(xb) = Cb.

LBE determined BC determined
Face populations populations

x2 = +L2/2 +2, +3, +1 +5 = Cb/3 − +2

+6 = Cb/3 − +3

+4 = Cb/3 − +1

x2 = −L2/2 +5, +6, +4 +2 = Cb/3 − +5

+3 = Cb/3 − +6

+1 = Cb/3 − +4

x1 = +L1/2 +1, +2, +6 +4 = Cb/3 − +1

+5 = Cb/3 − +2

+3 = Cb/3 − +6

x1 = −L1/2 +4, +5, +3 +1 = Cb/3 − +4

+2 = Cb/3 − +5

+6 = Cb/3 − +3

this causes unwanted higher-order derivatives to enter into
the advection-diffusion equation as made evident through the
Chapman-Enskog expansion of the algorithm. The only cure
for this is to increase the resolution of the lattice by increasing
the number of nodes contained within the L1 × L2 box. This
remains the main source of error in the flux calculations that
follow and gets worse with increasing Pe.

In the simulations, we work with

ν = η

ρ
= 0.1 +x2/+t, (102)

Dm = 0.02+x2/+t, (103)

where ν is the kinematic viscosity (or viscous diffusivity),
+x = 1 is the lattice constant and +t = 1 the time step.
The key dimensionless numbers that control the nature of the
dispersive flux are the Péclet number and the Reynolds number
given by

Pe ≡ |ϕu|
|Dm∇ϕ|

≈ UmaxL

Dm

, (104)

Re ≡ |ρu · ∇u|
|η∇2u|

≈ UmaxL

ν
= Dm

ν
Pe = Pe

5
, (105)

where Umax is the maximum flow speed in the simulation
domain and L is a typical grain size except in those simulations
where there are no solid grains in which case we take it to be the
system size. When there are solid obstacles present, we want
Re to be less than one so that we are in the laminar flow regime
where flow reversal occurs when the force driving the flow is
reversed. This then limits the maximum Pe we can consider
to say Pe = 3 according to Eq. (105). When there are no solid
obstacles present, the flow considered in the simulations is
independent of Re (the rate of momentum advection ρu · ∇u
is identically zero) and we can increase Pe to much larger
values by increasing the flow velocity (force driving the flow).
However, as discussed above, at larger Pe, the concentration
gradient near the boundaries becomes large and its numerical
simulation is limited by the lattice spacing. In the numerical
simulations given below, this effect limits us to the regime of,
say, Pe < 40.

FIG. 3. Sinusoidal forcing f = x̂2 sin(2πx1/L) with Pe = 3.0.
(a) The flow field. (b) The concentration distribution near steady state
when the applied concentration gradient is in the vertical direction.
(c) When the concentration gradient is in the horizontal direction.
Yellow denotes zero concentration, white positive, and blue negative
concentration.
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FIG. 4. The dispersion components corresponding to the geom-
etry and forcing in Fig. 3 but with Pe = qmaxL1/Dm = 0.75, 1.5,
and 3.0 from bottom to top. The diffusion time constant is defined
tDiff = L2

1/Dm. The lower curve near the origin is D21(−f ) for
each Pe.

B. Simulations of the off-diagonal components Di j

Larger flow velocity gradients within the system produce
larger values of the off-diagonal components Dij . In Fig. 3
we employ a sinusoidal forcing field to produce such flow
gradients in a nontrivial pore-space geometry. The flow field
and the concentration distribution in steady state are shown
with concentration drops in both the vertical and horizontal
directions. In Fig. 4 the flow-reversal symmetry Dij (f ) =
Dji(−f ) is demonstrated with discrepancy increasing with
increasing Pe as the concentration gradients get larger near the
edges of the system. Going to smaller lattice spacing at higher
values of Pe is observed to reduce the discrepancy.

To explore the conjecture of Eq. (83), that the nondiagonal
part of the dispersion tensor has the form α[∇q − (∇q)T ], we
introduce a linear gradient in the flow velocity and remove all
solid obstacles since satisfying the boundary conditions on the
grain surfaces is another source of numerical error. In this sce-
nario, because there are no solid grains present, we use the sys-
tem size as the length in the definition of Pe. If we equate q and
u under these conditions, we assume a flow field of the form

q2(x1) = qo + +q2

L1
x1. (106)

The flow field and concentration distribution in this scenario
for concentration gradients in the vertical and horizontal
directions are shown in Fig. 5. The off-diagonal dispersion-
tensor components are then plotted in Fig. 6 both for normal
forcing +f and reversed forcing −f . Figure 6 demonstrates
that the off-diagonal components are indeed antisymmetric and
satisfy the flow-reversal symmetry as Eq. (83) predicts. The
results when the force driving the flow is reversed have an error
associated with them (the observed wiggles) that increases
with increasing Pe. This error is a lattice-Boltzmann artifact.

We have verified numerically that if there is no flow gradient
(+q2 = 0) and only a uniform flow qo present, the off-diagonal
components are zero as is also expected analytically. We have
also verified that in the presence of a flow gradient (+q2 &= 0),
the off-diagonal components are independent of qo and are

FIG. 5. (a) The flow field corresponding to Eq. (106) when no
solid obstacles are present. (b) The concentration field near steady
state when there is an imposed concentration gradient in the vertical
direction (in the same direction as the flow field). (c) When the
concentration gradient is in the horizontal direction.

monotonic in +q2. Indeed, when we plot the steady-state
off-diagonal terms D12 and D21 in Fig. 7 as a function of
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FIG. 6. The dispersion coefficients corresponding to the geome-
try and forcing in Fig. 5 with Pe = +q2L1/Dm ranging from 1 to 5.
The wiggles in the reversed-flow (−f ) results is a numerical artifact.

Pe = |∇q|L2
1/Dm = |+q2|L1/Dm, we observe that D21 ex-

hibits the functional dependence on Pe given by

D21(Pe)
Dm

= Pe(0.15 − 0.034 ln Pe) (107)

FIG. 7. Upper panel: The off-diagonal components D12(f ) and
D21(f ) as a function of Pe. The data fits are made using D21 =
Pe(a + b ln Pe) with a and b given by Eq. (107). The numerical
results demonstrate the anti-symmetric behavior D12(f ) ≈ −D21(f ).
Lower panel: The difference [D21(f ) − D12(f )]/Dm [which is ≈
2D21(f )/Dm]. Both panels correspond to the steady-state behavior
observed in Fig. 6.

FIG. 8. The α(Pe) coefficient corresponding to Fig. 6 and ob-
tained from Eq. (111).

with a similar fit to D12 other than for the antisymmetric
behavior that D12 ≈ −D21.

For the above modeling scenario, the conjecture of Eq. (83)
takes the form

D12 = −α
+q2

L1
, (108)

D21 = α
+q2

L1
, (109)

where the sign of the force driving flow is the same for both
D12 and D21. We then have

D21 − D12

Dm

= 2α
+q2

DmL1
, (110)

so that upon using the definition that Pe = +q2L1/Dm we
have

α(Pe) = L2
1

2Pe
(D21 − D12)

Dm

. (111)

The result is shown in Fig. 8. The function α(Pe) is monoton-
ically decreasing in Pe and this is due to the Pe dependence
of D21 − D12 not being purely linear in the flow gradient but
also having a logarithmic dependence. The numerical data is
well fit by the function

α(Pe) = +x2(330 − 74 ln Pe), (112)

where +x = 1 in lattice units. The range of 2 < Pe < 35
explored in Fig. 8 represents the maximum Pe we can treat at
a given resolution of the lattice-Boltzmann simulations due
to the diffusion lengths near the ϕ = 0 lateral boundaries
(i.e., the distance over which the concentration gradients have
significant support) becoming smaller than the lattice spacing
at higher ranges of Pe. How the diffusive flux across lateral
boundaries increases as the lateral-boundary concentration
gradients increase with increasing Pe is not explicitly allowed
for in the model of Eq. (83) and as such more work is required
to understand the observed logarithmic α(Pe) dependence.

IX. CONCLUSIONS

The numerical simulations show that when one of the
coordinate axes aligns with the mean direction of flow, to
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obtain nonzero off-diagonal components of the dispersion
tensor in an isotropic system requires a gradient in flow
to be present across the system. We showed analytically
that the off-diagonal components satisfy the flow-reversal
symmetry Dij (+q) = Dji(−q) at any Péclet number. We
then conjectured that the off-diagonal components have the
analytical form α[∇q − (∇q)T ] which is both antisymmetric
and satisfies the flow-reversal symmetry. The numerical results
confirmed this conjecture but showed α to be not just a
constant but to have an additional logarithmic dependence
on the flow-gradient amplitude over the range 2 < Pe <35
that was treated numerically. Analytical predictions of such
logarithmic nonlinearity in the flow-gradient dependence of
the dispersion tensor components were not provided in this
study. In ongoing work, we will further pursue how the disper-
sion tensor depends on the nature of the flow field in higher-
accuracy finite-volume numerical simulations of the pore-scale
transport.

In addition to these discoveries about the dispersion tensor,
we also obtain the solute mass conservation laws at the

macroscopic scale under conditions when the pore-space
geometry and fluid density are possibly changing. However,
to address the symmetry properties of the dispersion tensor,
we assume any sources of nonlinearity in the system, such as
evolving pore topology or changing fluid density, are absent
because nonlinear response renders the transport tensor asym-
metric. Although the fluid flow is assumed to be decoupled
from the evolving solute concentrations in the analysis of the
dispersion tensor symmetry, the presence of advection by itself
is enough to cause the dispersion tensor to be asymmetric.
This is because the advection makes the pore-scale differential
operator controlling the changes in solute concentration to be
asymmetric.
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