Title
SOFT-GLUON EFFECTS IN CHARMED-MESON DECAYS

Permalink
https://escholarship.org/uc/item/49d9j1bn

Author
Shizuya, Ken-ichi.

Publication Date
2010-05-10

Peer reviewed
Presented at the 1981 Institute for Nuclear Study Symposium on Quark and Lepton Physics, Tokyo, Japan, June 25-26, 1981; and to be published in the Proceedings

SOFT-GLUON EFFECTS IN CHARMED-MESON DECAYS

Ken-ichi Shizuya

June 1981
Recent experiments suggest significant enhancements of non-leptonic decays of the D^0 meson, such as $\tau(D^+)/\tau(D^0) = 3 \sim 10$ and $\text{BR}(D^0\rightarrow K^-\pi^+)/\text{BR}(D^0\rightarrow K^0\pi^0) > 1$, which cannot be explained by charm-quark decay mechanisms alone.1 The observed nonleptonic enhancements are presumably dynamical, having their origins in quantum chromodynamics (QCD). In particular, in D^0- and F^+-meson decays, QCD effects are expected to activate W-exchange processes ("quark-annihilation" processes), as shown in Figs. 2 & 3, which by themselves are strongly suppressed because of helicity mismatch. For example, the D^0 meson, on gluon emission, can flip its spin so that the subsequent weak decay proceeds without helicity suppression. Hard-gluon emission from the D^0 meson, evaluated perturbatively,$^2-4$ enhances the D^0 decay rate (by $\sim 20\%$). Soft-gluon emission3,5 is an equally likely source of enhancements in charmed-meson decays, and indeed seems to be the dominant one.5

In this talk I would like to study this soft-gluon effect in charmed-meson decays by a nonperturbative method that has theoretical foundations in QCD. The basic tool is a multipole expansion in QCD.6 The analysis is divided into three steps.
Fig. 2 Nonleptonic decays of D^0 via quark annihilation with emission of soft gluons which eventually turn into light hadrons.

(I) Virtual color-fluctuation of charmed mesons.

A pair of c and \bar{u} quarks, that constitutes the D^0 meson, changes its color upon emission or absorption of gluons surrounding it. (I call these gluons soft gluons below.) Correspondingly, let us describe the D^0-meson state $|D^0\rangle$ as a color-singlet 1S_0 $c\bar{u}$ constituent-quark pair $|c\bar{u}\rangle$ surrounded by a color-singlet 0^+ soft-gluon cloud (of lowest energy) $|0\rangle$:

$$|D^0\rangle = |c\bar{u}\rangle \otimes |0\rangle$$ \hspace{1cm} (1)

The spatial spread of the gluon cloud that induces the virtual color-fluctuation will be of the order of $1/\lambda_c = (100-200 \text{ MeV})$, typical spatial spread of ordinary hadrons or a scale characterized by color confinement in QCD. Since the gluon cloud $|0\rangle$ consists of soft-gluon color fluctuations (of vacuum quantum numbers) extending over the typical hadronic size, it may approximately be regarded as the gluonic vacuum.

(II) Separation of long-distance and short-distance phenomena by use of the QCD multipole expansion.

Fig. 2a represents the W-exchange process for nonleptonic decays of D^0, accompanied by a soft gluon which eventually turns into light hadrons. Soft-gluon emission is a long-distance...
phenomenon characterized by the energy difference ΔE associated with the virtual color-fluctuation. On the other hand, $c\bar{c}$ annihilation by the weak current is a short-distance phenomenon characterized by the spatial spread of the c quark $1/m_c$. It will therefore be a reasonable approximation to factorize the soft-gluon and annihilation parts in the decay amplitude:

\[\mathcal{M}_2 = \langle \text{annihilation} \rangle \cdot \langle c' | \mathcal{O}(E,H) | 0 \rangle, \]

where $| c' \rangle$ denotes the soft-gluon state. The multipole technique is useful for the determination of the operator $\mathcal{O}(E,H)$ consisting of the soft-gluon color fields E and H: Let us look at Fig. 2a. The gluon field at \mathbf{y}, being soft, may be expanded in multipoles around the quark-annihilation position \mathbf{z}. Then the whole reaction is described by a series of local interactions at \mathbf{z}, as illustrated in Fig. 2b (and in Fig. 3 for the case of semileptonic decays of F^+). These multipole soft-gluon interactions are cast into gauge-invariant form by use of a suitable gauge transformation. For the process in Fig. 2,

\[\mathcal{O}(E,H) = (1 + m_d/m_c)H^a - i(1 - m_u/m_c)E^a, \]

where only color-M1 and color-E1 interactions have been retained.
(III) Evaluation of the soft-gluon effect in terms of a phenomenologically known gluonic vacuum condensate.

In the calculation of the decay rate, the sum over soft gluons may be approximated as follows

\[\sum_{g} |G| \frac{1}{(M_D - E)^2} (g) \sim \frac{1}{(\Delta E)^2} 1 \]

where the energy denominator has been replaced by its typical average value \(\Delta E \). This procedure yields the vacuum matrix element of the gluonic operator

\[\langle 0 | \mathcal{O}^{(E,H)}_{(E,H)} \mathcal{O}^{(E,H)} | 0 \rangle \]

Using Lorentz invariance of the QCD vacuum and some factorization hypothesis, this matrix element can be related to

\[\mathcal{V} = \langle 0 | (A^\mu A^\nu) \mathcal{F}_{\mu\nu} | 0 \rangle \sim 0.012 \text{ GeV}^4 \]

a quantity phenomenologically known from the charmonium sum rules of Shifman et al. The nonvanishing value of (6) is considered to be a consequence of strong soft-gluon interactions; i.e., it is predominantly saturated by soft-gluon color fluctuations. This will in turn justify the approximation eq. (4) which relies on the saturation of matrix elements involving soft-gluon operators by soft-gluon color fluctuations.

Results:

The soft-gluon effect activates the quark-annihilation process for \(D^0 \) nonleptonic decays, with the decay rate

\[\frac{\Gamma^{\text{sg}}_{(NL)}}{\Gamma_{(c+all)}} = 12 \left(\frac{M_D}{m_c} \right)^3 \left(\frac{f_D}{m_c} \right)^2 \left(1 + \frac{m_u^2}{m_c^2} \right) \mathcal{V} / (m_u^4 E^2) \]
where \(m_u = 0.34 \text{ GeV} \) and \(m_c = 1.65 \text{ GeV} \) have been used. An empirical scaling law gives an estimate of the D-meson decay constant\(^4\)

\[
f_D/\sqrt{2} \approx 150 \text{ MeV}.
\] \((8) \)

The energy difference \(\Delta \varepsilon \) may be estimated from the \(^3S_1 - ^1S_0 \) splitting of the D-meson system

\[
\Delta \varepsilon \approx M_D^* - M_D \approx 140 \text{ MeV}, \hspace{1cm} (9)
\]

or from the "binding energy"

\[
\Delta \varepsilon \approx m_c + m_u - M_D \approx 120 \text{ MeV}. \hspace{1cm} (10)
\]

Using eq. (8) and \(\Delta \varepsilon \approx 140 \text{ MeV} \) (120 MeV), one gets an estimate

\[
\tau(D^+)/\tau(D^0) \approx 2.5 \ (3.0). \hspace{1cm} (11)
\]

This result indicates that the soft-gluon effect could account for a significant portion of the \(D^0 - D^+ \) lifetime difference. The actual number in (11) depends on the unknown parameters \(f_D, \Delta \varepsilon, \) etc.; it, nevertheless, is generally sizable for a reasonable range of these parameters. The above qualitative conclusion will therefore, I believe, survive a more elaborate analysis.

Some other consequences of the present analysis are the following:

(i) The enhancement of \(F^+ \) nonleptonic decays, though sizable, is smaller than that of \(D^0 \) decays.

(ii) Semileptonic decays of \(F^+ \) are significantly enhanced and lead to energetic leptons.
(iii) The soft-gluon effects decrease rapidly (like $1/m_c^3$ as $m_c\to\infty$) as quarks become heavier. Consequently, they are not very important for B-meson and T-meson decays.

References

6) For references on the multipole expansion, see ref. 5).

Acknowledgment

This work was supported by the Director, Office of Energy Research, Office of High Energy and Nuclear Physics, Division of High Energy Physics of the U.S. Department of Energy under Contract No. W-7405-ENG-48.