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The unique electronic band structure of indium nitride InN, part of the industrially significant III-N 

class of semiconductors, offers charge transport properties with great application potential due to 

its robust n-type conductivity. Here we explore the water sensing mechanism of InN thin films. 

Using angle-resolved photoemission spectroscopy, core level spectroscopy and theory we derive 

the charge carrier density and electrical potential of a two-dimensional electron gas, 2DEG, at the 

InN surface and monitor its electronic properties upon in-situ modulation of adsorbed water. An 

electric dipole layer formed by water molecules raises the surface potential and accumulates 

charge in the 2DEG, enhancing surface conductivity. Our intuitive model provides a novel route 

toward understanding the water sensing mechanism in InN – and more generally for understanding 

sensing material systems beyond InN. 

 

The III-N semiconductor family is the heart of an expanding multi-billion-dollar electronics 

industry – an industry driven by InGaN alloy systems in light emitting diode (LED) applications.1 
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Indium Nitride (InN) is an intensely studied member of this family, offering a high charge carrier 

mobility and small effective electron mass, and thus tremendous potential for photonics and high 

speed transistors operating at up to several THz.1-4 Innovations in molecular beam epitaxy5,6 and 

metal-organic chemical vapor deposition7,8 have made large scale production of very high quality 

InN feasible, and necessitated a revision of the fundamental optical gap from 1.9 eV to ~0.69 eV.9 

In the wake of these developments, alloys of InN with other III-Ns allow for precise control of the 

band gap over a wide energy range, paving the way for applications such as high-brightness white 

LEDs, high frequency electronics and solar cells accepting infrared to UV light10,11 In the infrared, 

InN based diodes even offer an environmentally benign alternative to GaAs based diodes.    

An intriguing application for InN, in line with incentives to apply the system’s robust n-type 

nature, is as a transducer in chemical- and bio-sensing.12-15 The charge-neutrality level (CNL) in 

InN, is well above the conduction band minimum, resulting in intrinsic n-type charge carrier 

doping of the “as grown” material. This leads to surface band bending and the formation of a 

particularly prominent electron accumulation layer.16 A quantum well (QW) forms, hosting a 

two-dimensional electron gas (2DEG) with quantized energy levels.17 This QW is highly sensitive 

to surface adsorbates, which modulate the 2DEG and surface charge carrier concentration, 

resulting in a macroscopic resistance change in the semiconductor.12 In addition to its robust yet 

electrically responsive surface properties, the biocompatible nature and thermal stability of InN 

make it an archetypal candidate for sensing applications – a rarely studied field for this material.18  

Here we explore the sensing properties of InN explicitly with respect to water on an entirely 

quantum mechanical level; We achieve this by uniting soft X-ray angle-resolved photoemission 

spectroscopy (ARPES) and core level spectroscopy (XPS) to monitor the 2DEG of InN alongside 

its surface chemical composition. Figure 1 presents our central result. Specifically, Fig. 1 (a) 

Page 2 of 16

ACS Paragon Plus Environment

Nano Letters

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



3 
 

shows O 1s core level spectra on an N-polar InN film collected as a function of exposure time to 

650 eV X-rays (where one scan is ~30 s). To mimic realistic device conditions, the film was 

pre-exposed to ambient humidity in air, followed by a mild annealing step in UHV to ensure 

sufficient surface quality for ARPES (as described in the experimental section). This produced an 

oxidized, slightly carbon contaminated surface (shown by the survey scan in Suppl. Fig. 1). In Fig. 

1 (a), peak ‘i.’ at ~530.3 eV is characteristic of surface oxidation, i.e. of In-O.19,20 The high-energy 

shoulder, peak ‘ii’, corresponds to OH groups – indicating significant amounts of dissociated H2O. 

Peak ‘iii.’ at 533.6 eV on the other hand represents molecular water at the InN surface due to 

previous exposure to humidity.21,22 A decrease in the spectral weight of peak ‘iii’ results from 

continuous desorption of water by the X-ray beam. This resulted in a shift of the main O 1s core 

level (peak ‘i’), as well as the main peaks in the In 4d (Fig. 1 (b)), N 1s (c) and C 1s core levels (d) 

– collected simultaneously to the O 1s spectra – towards lower binding energies (as also shown by 

the insets of Figs. 1 (b-d). The shifts reflect a reduction in the degree of surface band bending. As 

the core level line-shapes remained unaffected by the X-rays (shown by the peak fitted spectra in 

Suppl. Fig. 2), we distinguish molecular water desorption from other effects, such as water 

association from H and OH, or the creation of defect states,23 as the microscopic source of this 

energy shift (see the text related to Suppl. Fig. 1-2 for a deeper discussion of the related chemical 

phenomena).  

Due to a remarkably high photoemission cross-section of the 2DEG at 650 eV incident X-ray 

energy (as discussed in detail for Fig. 2), we could measure ARPES of the valence band (VB) and 

2DEG regions simultaneously to the core levels in plots (a-d). The VB and 2DEG spectra collected 

as a function of exposure time to the X-ray beam and integrated only over a small momentum 

range covering the 2DEG are shown in Fig. 1 (e). By comparison of the integrated spectral weight 
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of the 2DEG with the integrated spectra weights of the H2O, surface oxygen and OH peaks in Fig. 

1 (f), we find a direct link between the removal of adsorbed H2O by X-ray exposure and 

depopulation of the charge carrier density in the 2DEG. As we find out in more detail later, this is 

due to an electric dipole field produced by H2O molecules, enhancing the surface band bending.  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. H2O desorption from the surface of InN – (a) O 1s core level spectra as a function of 

exposure time to 650 eV X-rays. Peak ‘i’ is attributed to surface oxidation and peak ‘iii’ is 

attributed to adsorbed water. (b) Time dependent N 1s core level spectra upon X-ray irradiation. 

The inset summarizes the low energy shift in the peak position as a function of time. The 

equivalent spectra for the In 4d (c) and C 1s (d) core level regions. (e) The VB and CB (2DEG) 

region as a function of exposure time to 650 eV X-rays. (f) A comparison of the intensity of peak 

‘iii’ associated to H2O in (a) and the intensity of the 2DEG as a function of exposure time (one scan 
is ~30 s). 
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Having revealed that surface water directly controls the surface electron accumulation 

layer in InN, we will now examine the microscopic origin of this effect. We start by showing how 

high-resolution ARPES along with a simple and intuitive model can be used to access the 

fundamental performance gauges for gas sensing semiconductors,14 i.e. the surface charge carrier 

density, and the shape of the surface potential. We will then use this knowledge to further probe 

the mechanism by which surface adsorbed water modulates these parameters.   

 

 

 

 

 

 

 

 

 

 

Figure 2. ARPES overview of the InN valence electrons – (a) Unit cell of wurtzite-type InN (a 

= 3.538 Å and c = 5.704 Å). (b) 3D bulk BZ of the unit cell. (c) ARPES Fermi surface over several 

surface BZs (black dashed lines) using 162 eV p-polarized photons. The high symmetry points are 

labelled. ARPES intensity maps along the ΓK (d) and ΓM (e) high symmetry directions show the 

VB region (E < -1.36 eV) and the CB (2DEG) (hv = 162 eV, p-polarization). (f) A Fermi surface 

scan across an energy range of 32-800 eV, plotted using an inner potential of 18 eV. hv represents 

incident X-ray photon energies where we see photoemission intensity from the 2DEG.  
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Figure 2 presents the InN structure along with an ARPES overview of its valence electrons. 

The wurtzite-type crystal structure of InN is shown in Fig. 2 (a), along with the bulk Brillouin zone 

(BZ) in Fig. 2 (b).24 Along the c-axis, mirror symmetry is broken, thus, resulting in an intrinsically 

polar system. In Fig. 2 (c) we show a Fermi surface map measured over several surface BZs (black 

lines), with 162 eV p-polarized photons. At this photon energy, the Γ000-point of the hexagonal 

surface BZ coincides with the Γ0006-point of the bulk BZ. We observe circular electron pockets at 

the Γ-points, corresponding to a previously observed 2DEG in InN.17,25 Cuts along the ΓK (kx) and 

ΓM (ky) high symmetry directions in Fig. 2 (c) are shown as E (eV) vs. k (Å-1) ARPES intensity 

maps in Figs. 2 (d) and (e), respectively. The valence states (E < -1.36 eV) are composed of three 

hole-like bands of N 2p and In 5p character16: a heavy-hole (HH), a light-hole (LH) and a split-off 

hole band (CH), with the valence band (VB) maximum at -1.36 eV.16,26 Close to the Fermi level (0 

eV), we see a rapidly dispersing electron-like parabolic (conduction) band (CB) which forms the 

circular pockets of the 2DEG at the Γ-points in Fig. 2 (c). Its minimum is located at approximately 

-0.47 eV (see Suppl. Fig. 3. for a summary of the valence state energetic offsets), resulting in a 

direct band gap, Eg, of 0.89 eV, in line with calculations,27,28 but larger than the two-particle optical 

gap of ~0.70 eV.9,29  

The Fermi surface as a function of the out-of-plane momentum kz, measured over an X-ray 

energy range of 32-800 eV, is shown in Fig. 2 (f). Starting from Γ0004, the 2DEG intensity recurs at 

even Γ-points (black horizontal lines) of the bulk BZs (red lines mark BZ boundaries), reflecting 

the out-of-plane periodicity π/c of the recurring InN layers. The kz dispersion reveals a remarkable 

pseudo 3D character of the 2DEG. We will show below that this is indeed a direct consequence of 

the 2DEG wave functions penetrating significantly into the bulk. We also note the extraordinarily 

high photoemission cross-section of the 2DEG for photon energies all the way up to 800 eV (X-ray 
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energies corresponding to high photoemission cross-sections are labelled in (f)). This unusually 

high cross-section allowed us to monitor variations in the 2DEG with water desorption while 

simultaneously measuring core level XPS (requiring high incident X-ray energies) in Fig. 1. Thus, 

this physical property offered us key insight into physiochemical processes related to the InN 

water sensing mechanism.  

 

 

 

 

 

 

 

 

 

 

 
 

 

 

Figure 3. High resolution ARPES intensity maps of the 2DEG state and the calculated 

surface potential – (a) ARPES intensity map of the QW region showing the outer (‘1st’) and inner 

(‘2nd’) sub-bands, measured at hv = 70.5 eV in the p-polarization. (b) The corresponding ARPES 

Fermi surface map of the QW in (a). (c) Surface potential (black line) and wave functions (red 

lines) extracted using the QW model and experimental energy parameters obtained from (a). A 

third QW sub-band, ~10 meV below EF, is shown in grey. A comparison of the calculated (d) and 

measured (e) photon energy dependent Fermi surface close to Γ0004.  
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 Figure 3 presents an in-depth analysis of the 2DEG. The ARPES map in Fig. 3 (a) 

identifies two pronounced sub-bands in the QW: the first with an energy minimum at E1 = -0.47 

eV, crossing the Fermi level at kF1 = 0.14 Å-1, and a second, weaker sub-band at E2 = -0.13 eV with 

kF2 = 0.07 Å-1. Fitting the band dispersion within a standard Kane k·p approach30 (white dashed 

lines in (a)), the effective electron masses for the first and second sub-band are found to be m1* = 

0.13me and m2* = 0.10me, respectively. A kx-ky Fermi surface map of Fig. 3 (a) is shown in (b), 

revealing circular contours from both the first and second sub-bands. From their area, we calculate 

a sheet carrier density of ne ~1.1×1013 cm-2. Extrapolating this result, we estimate a near-surface 

bulk density of ~3.2×1019 cm-3. This value is consistent with our electronic transport data (5×1019 

cm-3),  and suggests that bulk transport in InN is mostly mediated by the surface.  

From the energies E1 and E2 of the two sub-bands, we gain further information on the precise 

shape of the QW potential hosting the 2DEG. Assuming an exponential surface potential well31 

V(z) = -V1e
–2z/a with a depth of V1 and a width of a, the energy Ei of subband i is given by the ith 

root of the Bessel function Jαi(β) = 0, where αi
2 = -(2mea

2
Ei)/ħ

2, β2 = -(2mza
2V1)/ħ

2, and mz ~ 

0.09me is the out-of-plane effective electron mass.32 Solving numerically for E1 and E2, we find a 

surface potential depth of V1 ~1.3 eV and a width a of ~58 Å (~10 unit cells (u.c.)). From the 

associated QW potential, V(z) (black solid line in Fig. 3 (c)), all additional bound state energies Ei 

as well as their corresponding wave function solutions Ψ(z) = Jαi(βe
–z/a) can be determined (red 

solid lines in Fig. 3 (c)). Calculating their quantum-mechanical expectation values, we find the 

charge density of sub-band Ψ1 to be localized around ~ 20 Å, i.e. 3.5 u.c. below the surface, while 

the second sub-band Ψ2 is located on average ~ 48 Å, i.e. 8.5 u.c. below the surface. Notably, our 

simulations also predict a third sub-band at E3 ~ -10 meV, located ~ 115 Å, ~20 u.c., below the 

surface (grey line in Fig. 3 (c)). Due to its bulk-like nature, it only shows diffuse spectral weight 
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close to the Fermi level in Figs. 3 ((a), (d) and (e)). This is reasonable if we consider that up to four 

sub-bands have been experimentally shown by our group on InN films with higher charge carrier 

concentrations.33 From the Fourier transform of Ψ, we further predict the kz dependence of the 

Fermi surface, shown in Fig. 3 (d), and compare it to the experimental ARPES result around Γ0004 

in Fig. 3 (e). Details of our model are presented in the Suppl. Material.  

The excellent agreement in between experiment and theory confirms that this model reliably 

accesses key parameters of the surface QW, and can thus be used as a reliable probe of changes in 

the 2DEG induced by surface-water interactions. We thus repeat the beam-dosing experiment 

from Fig. 1. However, this time we use ARPES with an X-ray energy of 70.5 eV (as in Fig. 3), and 

thus we strongly enhance the energy and the momentum resolution. This allows us to probe 

detailed changes in the surface potential with water desorption. In contrast to the data in Fig. 3, 

however, the following data is collected using a higher X-ray flux density – to achieve water 

desorption in a controlled but continuous way.  

 

 

 

 

 

Figure 4 The mechanism of water sensing by InN – ARPES intensity map of the 2DEG before 

(a) and after (b) desorption of water by exposure to 70.5 eV X-rays. (c) Corresponding decrease in 

downward band bending with water desorption. (d) Proposed mechanism for the alignment of 

electric dipoles with the N-polar surface of InN resulting in electron accumulation and downward 
band bending upon water adsorption.  
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Figure 4 (a) shows an ARPES map of the 2DEG state in an N-polar InN film at the onset of 

X-ray irradiation. Figure 4 (b) shows the same 2DEG state after 15 min of X-ray beam exposure. 

Comparing the spectra, we observe a rigid 120 meV upward shift of the 2DEG state. Furthermore, 

we observe a depletion of the 2DEG from ne ~ 6.3×1012 cm-2 (at the onset of X-ray exposure) to 

1.5×1012 cm-2 (after 15 min of exposure). Since this shift is rigid, and bulk screening effects are 

unlikely to be affected by adsorbents, the QW width a can be safely assumed to remain unaffected, 

while water desorption reduces the surface potential from V1 = 1.4 eV to V1 = 1.2 eV in this sample 

(see the discussion relating to Suppl. Fig. 4 for details on the extraction of these values).  

What is the microscopic origin of this potential modulation? – In principle, water might act 

as an electron donor to the QW, populating the 2DEG.34 However, this would vary the oxidation 

state of In and N at the surface. The associated core levels along with the O 1s core level (all shown 

in Fig. 1 along with the peak fitted data in Suppl. Fig. 2) remained unaffected by the X-ray beam. 

Charge transfer processes from the adsorbent to the substrate are consequently ruled out, in 

contrast to earlier studies of oxygen, potassium and water interactions with InN.19,35 We suggest a 

more universal scenario based on a model involving the spontaneous polarization of the InN film, 

and the electric dipole of water molecules.36  

In InN of N-polarity, bonds starting from the substrate are ordered from N to In. Thus, the 

orientation of spontaneous polarization points from the substrate to the surface of the film, making 

the free surface positively charged (this scenario is shown in Fig. 4 (d), top panel). Consequently, 

polar H2O molecules will stick to the free surface through the negatively charged O atoms. In this 

case, the H2O electric dipole moment (1.9 Debye) will direct away from the surface of the film (as 

depicted in the bottom panel of Fig. 4 (d)). The electric field of the system now points inwards and 
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draws additional charge from the bulk into the electron accumulation layer, populating the 2DEG. 

This results in further downward band bending. A similar electric field effect is routinely exploited 

to regulate charge accumulation layers in ionic liquid doped systems.13,14 We argue that a similar, 

albeit much weaker effect, is also obtained from H2O adsorption, likely due to a directed alignment 

of the water dipoles on the surface (see Suppl. Fig. 5).     

In summary, we employed ARPES in unison with core level spectroscopy to investigate the 

water sensing mechanism in InN. We demonstrate that a well-pronounced and robust 2DEG at the 

surface of InN serves as a water sensing monitor. A simple and intuitive QW model provides direct 

access to the surface charge carrier density as well as the surface potential upon water adsorption. 

We suggest that water at the surface of InN fosters an electric field effect, promoting downward 

band bending and electron accumulation with up to a six-times increased carrier concentration in 

the 2DEG. Our unique approach provides novel routes towards an advanced understanding of 

surface ad-layers on a series of materials important for sensing applications. 

Experimental Section  

InN films were grown on (0001) (c-plane) sapphire substrates by radio frequency 

plasma-assisted molecular beam epitaxy (PAMPE).36,37 The 0.5-1 µm thick films were nominally 

N-polar and intrinsically n-type (~5×1019 cm-3), with electron mobility’s of approximately 400 

cm2/V.s and an experimentally determined room temperature optical gap of 0.77 eV.37  

ARPES measurements were performed at ARPES beamline 10.0.1 and at the Microscopic 

And Electronics STRucture Observatory (MAESTRO) at beamline 7.0.2 of the Advanced Light 

Source, Lawrence Berkeley National Laboratory. The energy and momentum resolution were set 

to < 10 meV and 0.01 Å-1. Films were annealed in ultra-high vacuum (~1×10-11 torr) at 300 oC for 
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~30 min prior to measurements. All data was collected at temperatures between 10-90 K. Binding 

energies were referenced to the measured Fermi level of a tantalum or a copper block in direct 

electrical contact with the sample.  

The photon energy dependent ARPES Fermi surface was collected over a photon energy 

range of 32-800 eV at normal emission, k|| = 0 Å-1. The intensity has been normalized to the total 

electron current and is plotted as a function of the out-of-plane momentum kz (Å
-1) (probing along 

the Γ-A direction), using an inner potential V0 of 18 eV. 
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