MODERN CONTROL TECHNOLOGY WITH MODEL T COMPUTERS

James R. Guggemos, Donald J. Rondeau

October 1973

Prepared for the U. S. Atomic Energy Commission under Contract W-7405-ENG-48

For Reference
Not to be taken from this room
DISCLAIMER

This document was prepared as an account of work sponsored by the United States Government. While this document is believed to contain correct information, neither the United States Government nor any agency thereof, nor the Regents of the University of California, nor any of their employees, makes any warranty, express or implied, or assumes any legal responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by its trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof, or the Regents of the University of California. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof or the Regents of the University of California.
In 1968, it was decided to convert one of the Bevatron control systems to a small computer based digital control system. The External Proton Beam was to be expanded from 15 to 64 magnets which would make the analog system in use very cumbersome. A PDP-8 with a tape transport was available and a system was designed and built to control up to 64 pulsed magnets. A 6 megaword disc was soon added to the system. When the system was operational, a second PDP-8 was added to be utilized as a backup computer.

The next step was to start a system to control the pulsing of the Bevatron main guide field. A third PDP-8 was purchased and the pulsing system was developed and put into operation.

We now had an accelerator with the guide field precision of 1 part in 30000 and an extraction magnet system with the resolution of 1 part in 4000 which made for very stable operation. We also had the only accelerator in the world with a major part of its control systems being controlled by computers.

The last system to be developed was the rf control system. The system used a 12-bit 8 K external memory to store the correction curve to control the beam during acceleration. The system also can close the loop radially on the accelerating beam. A fourth PDP-8 was utilized for this system. Later the external memory was replaced by a 16-bit 32 K memory to store the entire frequency curve required to accelerate beam in the Bevatron.

At this time, a second 6 megaword disc was added to the system and two more PDP-8's were purchased to be used as the human interface to the data stored on the disc by the control computers and for development and experimenter support.

As needed, overlays were added to the control computers and now they have approximately 2 K of overlays each.

With the advent of the new 750 keV ion source, 50 MeV linac, 50 MeV transport line, and Bevalac transfer line, it was decided to procure three more PDP-8's to control and monitor these systems. The development of these system is now in progress and by February 1974 we will have a 9 PDP-8 (4 K each) multiprocessor system with common bulk storage operating the Bevatron and Bevalac systems.

* This work performed under the auspices of the Atomic Energy Commission.
LEGAL NOTICE

This report was prepared as an account of work sponsored by the United States Government. Neither the United States nor the United States Atomic Energy Commission, nor any of their employees, nor any of their contractors, subcontractors, or their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness or usefulness of any information, apparatus, product or process disclosed, or represents that its use would not infringe privately owned rights.