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Understanding and improving the mechanical properties of tungsten is a critical task for the
materials fusion energy program. The plastic behavior in body-centered cubic (bcc) metals
like tungsten is governed primarily by screw dislocations on the atomic scale and by ensem-
bles and interactions of dislocations at larger scales. Modeling this behavior requires the
application of methods capable of resolving each relevant scale. At the small scale, atomistic
methods are used to study single dislocation properties, while at the coarse-scale, continuum
models are used to cover the interactions between dislocations. In this work we present a
multiscale model that comprises atomistic, kinetic Monte Carlo (kMC) and continuum-level
crystal plasticity (CP) calculations. The function relating dislocation velocity to applied stress
and temperature is obtained from the kMC model and it is used as the main source of con-
stitutive information into a dislocation-based CP framework. The complete model is used to
perform material point simulations of single-crystal tungsten strength. We explore the entire
crystallographic orientation space of the standard triangle. Non-Schmid effects are inlcuded
in the model by considering the twinning-antitwinning (T/AT) asymmetry in the kMC calcu-
lations. We consider the importance of 〈1 1 1〉{1 1 0} and 〈1 1 1〉{1 1 2} slip systems in the
homologous temperature range from 0.08Tm to 0.33Tm, where Tm=3680 K is the melting
point in tungsten.
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1 Introduction

Tungsten and tungsten alloys are being considered as leading candidates for structural and
functional materials in future fusion energy devices. The most attractive properties of tung-
sten for the design of magnetic fusion energy reactors are its high melting point and thermal
conductivity, low sputtering yield and low long-term disposal radioactive footprint. However,
tungsten also presents a very low fracture toughness, mostly associated with inter-granular
failure and bulk plasticity, that limits its applications [1–3].

The plastic behavior of bcc refractory metals like tungsten is governed by the kink-pair
mediated thermally activated motion of 1

2 〈1 1 1〉 screw dislocations [4–7]. Dislocation slip
in bcc metals has been reported in the literature on {1 1 0}, {1 1 2} and {1 2 3} slip planes.
While some authors have suggested that the temperature range determines the activation of
slip planes ({1 1 0} and {1 1 2} planes at lower temperatures, {1 2 3} planes at higher temper-
atures) [8–10] , other works propose the decomposition of slip into {1 1 2} and {1 2 3} planes
on alternating {1 1 0} planes, suggesting that slip occurs only on {1 1 0} slip planes at room
temperature [11–15]. Schmid’s law, which is used to determine the active slip planes for a
specific stress state [16] is known to break down for bcc metals. This particularity with a
big impact on the plastic flow is referred to as non-Schmid behavior, and it implies that the
critical resolved shear stress defining the onset of dislocation glide on a given slip plane varies
with the sign of the applied stress and the orientation of the loading axis with respect to the
lattice [17, 18].

A whole variety of crystal plasticity (CP) constitutive models have been proposed and dis-
cussed in the literature to solve multiple plasticity problems in materials. There are two main
groups of constitutive models differentiated by the nature of the state variable they use: phe-
nomenological models mostly use a critical resolved shear stress as state variable for each
slip system [19–22], while physically-based constitutive models rely on the dislocation den-
sity as state variable since dislocations are considered the main carriers of plasticity [23–25].
Most of the existing CP frameworks have been focused on fcc metals [26–29], while only a
few studies have been devoted to study bcc plasticity. The selection of active slip systems in
the constitutive framework will also affect the predictions of the model. The incorporation of
non-Schmid effects can be used as a differentiating feature among the models for bcc materi-
als. Table 1 presents the most important examples of CP models for bcc metals classified by
the previous criteria.

In this work, we present a CP framework to obtain the yield strength in single-crystal
tungsten. The constitutive model is built on physically-based mobility functions 1 for 1

2〈1 1 1〉 screw dislocations obtained via kMC simulations, which include the characteristic
non-Schmid behavior of bcc metals. Another important aspect in our simulations is the con-
sideration of the entire family of {1 1 0}〈1 1 1〉 and {1 1 2}〈1 1 1〉 slip systems (twelve each)
and combinations thereof. We simulate uniaxial tensile tests along 231 different crystallo-
graphic orientations in the standard triangle. The temperature range covered goes from room
temperature to 1

3 Tm, where Tm=3680 K is the melting point for tungsten [51]. The ori-
entation dependence of the stress-strain curves and the temperature dependence of the yield
stress predicted by our model are in qualitative agreement with previous results in other bcc
metals [52–54].

1 The mobility function represents the relation between the dislocation velocity and the state variables stress and
temperature.

www.gamm-mitteilungen.org c© 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim



GAMM-Mitt. 38, No. 2 (2015) 215

Table 1 CP constitutive models for bcc metals.

Slip planes

{1 1 0} {1 1 0}, {1 1 2} {1 1 0}, {1 1 2}, {1 2 3}

Schmid

Peeters et al.
(2000) [30]

Stainier et al.
(2002) [31]

Raphael et al.
(1985) [32]

[33]
Kitayama et al.

(2013) [34]

Holscher et al.
(1991,1994) [35, 36]

Raabe et al.
(1994,1995)
[8, 37, 38]

Ma et al. (2006) [9]
Hamelin et al.

(2011) [39]

non-Schmid

Koester et al.
(2012) [40]

Weinberger et al.
(2012) [41]

Narayanan et al.
(2013) [42]
Patra et al.
(2014) [43]
Lim et al.

(2015) [44, 45]

Lee et al.
(1999) [46]

Kuchinicki et al.
(2008) [47]
Lim et al.

(2013) [48]
Alankar et al.
(2013) [49]

Knezevic et al.
(2014) [50]

-

The paper is organized as follows. The formulation of the constitutive model proposed is
described in Section 2. Simulation details and the predictor-corrector scheme are presented in
Section 3. In Section 4 we report the CP calculations in single-crystal tungsten as a function
of the Schmid behavior, glide plane, loading direction and temperature. Final concluding
remarks are given in Section 5.

2 Constitutive model

We use the multiplicative decomposition of the deformation gradient F:

F = FeFp (1)

where Fe and Fp are the elastic and plastic deformation gradients, respectively [55]. The
plastic deformation evolves as:

Ḟp = LpFp (2)

where Lp is the deformation velocity gradient. In the case of dislocation slip as the only
deformation process (no mechanical twinning or martensitic transformations considered), Lp

can be formulated as:
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Lp =
∑
α

γ̇αMα =
∑
α

γ̇αmα ⊗ nα (3)

Here, the running index α goes from 1 to n, where n is the total number of slip systems; mα

and nα are unit vectors representing the normalized slip direction and the normal to the slip
plane of the system α, respectively; γ̇α is the shear rate on system α, given by the Orowan
equation:

γ̇α = ραbvα (4)

where b is the magnitude of the Burgers vector, ρα is the density of mobile dislocations and
vα is the dislocation velocity on slip system α.

2.1 Dislocation velocity function

In bcc metals such as tungsten, screw dislocations with Burgers vector b = 1
2 [1 1 1] are the

main carriers of plastic shear due to their low mobility, which is a cosequence of their non-
planar core structure [56–58]. At low temperatures, screw motion proceeds via thermally
activated nucleation and subsequent lateral propagation of kink pairs. By contrast, edge dis-
locations display viscous motion (linear with the applied stress) and thus screw motion is the
rate-limiting step for plastic shear. Molecular dynamics (MD) is commonly used to simulate
dislocation motion [59–61], although it is generally not suited to capture rare-event mecha-
nisms (such as nucleation). In bcc crystals, MD simulations naturally include non-Schmid
effects as part of the simulated dynamics of screw dislocation motion, but they provide over-
driven dynamics and are limited to glide on {1 1 2} planes due to limitations with boundary
conditions and said non-Schmid effects [60,61]. An alternative technique that is not subjected
to this limitation is kMC [62–64]. Therefore we choose a mobility function extracted from
the kMC simulations described by Stukowski et al. [64], where the twinning/anti-twinning
asymmetry non-Schmid behavior has been captured.

Then, in the present model, {1 1 0}〈1 1 1〉 and {1 1 2}〈1 1 1〉 slip is described via screw dis-
location mobility functions obtained beforehand using kMC simulations. The twinning/anti-
twinning asymmetry is reflected in the fact that the dislocation velocity depends on the sign
of the angle between the glide plane and the plane of maximum resolved shear stress. The
dislocation mobility formulas capture this effect in an effective way, from data obtained dur-
ing tens of different kMC runs. These laws provide the dependence of the velocity function
on the stress and temperature:

v(s, T ) = A · sn · f(s, T ) · [1−B · f(s, T )] · sign(τα)

f(s, T ) = exp
{
−ΔH0

kBT
(1− sp)

q

} (5)

where kB is the Boltzmann constant; T is the absolute temperature; A, B, n, p, and q are
all fitting parameters obtained from the kMC simulations and τα is the resolved shear stress.
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Thus, non-Schmid effects are not an integral part of the CP formulation, but they enter the
model via the above equations. Then, the resolved shear stress is defined as the geometric
projection of the applied load on the slip system is considered. For small elastic strains, it
reads as

τα = σ : Mα ≈ S : Mα; (6)

where S is the second Piola-Kirchhoff stress tensor, that can be expressed assuming hypere-
lasticity as a function of the elastic deformation gradient Fe and the stiffness tensor C:

S =
C

2
(FT

e Fe − I) (7)

We have chosen to work with a non dimensional scalar form of the stress tensor defined as

s =
|τα| − τpass

τp
, (8)

where τp is the Peierls stress; τpass is the passing stress, defined as a function of the shear
modulus μ, the local dislocation densities ρα

′
, and the interaction parameters ξαα′ that char-

acterize the interaction strength between slip systems α and α′ as a result of the possible
interaction types self, coplanar, collinear, mixed-asymmetrical junction (orthogonal), mixed-
symmetrical junction (glissile) and edge junction (sessile) [65]:

τpass = μb

√∑
α′

ξαα′ρα′ ; (9)

ΔH0 is the activation enthalpy when s is equal to zero.

2.2 Dislocation density law

The evolution of the dislocation density on each slip system serves as an internal variable
describing the current microstructural state. Different models that calculate the flow stress
from dislocation densities have been discussed in the literature [23–28, 66, 67]. In this work
we have used the model presented by Roters [68],

ρ̇α = ρ̇αmult + ρ̇αann (10)

The evolution model is initialized by the dislocation density at t = 0, ρα0 . In eq. (10),
ρ̇αmult and ρ̇αann represent the dislocation multiplication and dislocation annihilation rate terms
on slip system α, respectively. In this model, dislocation multiplication is treated as being
proportional to the inverse mean free path of the dislocations, λα:

ρ̇αmult =
|γ̇α|
bλα

, (11)

defined as a function of the grain size dgrain and a hardening constant c,
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1

λα
=

1

dgrain
+

√
ρα

c
(12)

Dislocation annihilation occurs spontaneously when dipoles approach a spacing below dedge:

ρ̇αann = −2dedge
b

ρα|γ̇α| (13)

3 Simulation details

The constitutive model described in Section 2 has been implemented in the the Düsseldorf Ad-
vanced Material Simulation Kit (DAMASK) [69]. This open source software allows the inte-
gration of the constitutive models within different solvers for mechanical equilibrium: a spec-
tral method based solver and two commercial FEM solvers such as Abaqus and MSC.Marc.
Based on its performance for single crystals, we have chosen the spectral method solution
described in [70, 71] to perform tensile tests in single-crystal tungsten.

LpFp

Fe S

Ḟp = LpFp

Fe = FF−1
p

S = C
2 (F

T
e Fe − I)

Lp = f(S) =
∑
α
γ̇αmα ⊗ nα

Fig. 1 Predictor-corrector scheme to calculate the stress S as a function of F.

The set of nonlinear equations (1), (2), (3) and (7), for which the dependency is summarized
in Fig. 1, needs to be solved iteratively. In DAMASK, a Newton-Raphson scheme is used to
do that and the velocity gradient Lp is chosen as a predictor. Since Lp is used as a predictor,
the tangent δLp

δS
needs to be computed as well by the plasticity model. More details about

the implementation are given in [72]. Choosing Lp as initial step represents an advantage for
the inversion of the Jacobi matrix during the Newton-Raphson algorithm, since the dimension
of the Jacobi matrix is equal to the number of independent variables of the quantity that it
is used as predictor, and these are its 9 components. However, when starting with Lp, slip
rates γ̇α need to be calculated from the stress, which may generate important deviations as a
consequence of the exponential nature of the shear rates [67, 69].

www.gamm-mitteilungen.org c© 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
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A schematic diagram of the multiscale procedure that links atomistic, kMC and CP simu-
lations is shown in Fig. 2, where the relation between Lp and the dislocation velocities vα is
achieved via Eq. 3. The core of the dislocation-based CP model is in the formulation of this
Eq. 3. While some models include mechanical twinning and phase transformations, we have
only considered dislocation glide as the main carrier of plastic deformation.
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Stukowski et al. [64] Stukowski et al. [64] This work

Fig. 2 (online colour at: www.gamm-mitteilungen.org) Schematic diagram of the multiscale approach
that links atomistic, kinetic Monte Carlo and crystal plasticity simulations. In step I we use semiempiri-
cal interatomic potentials to calculate the energetics of single dislocation motion. In step II we use kMC
parameterized with atomistic data to fit a mobility function to the velocity vs. stress vs. temperature.
Finally, in step III, we use those mobility functions to characterize the velocity gradient in CP.

4 Results

In this section we perform uniaxial tensile tests in single-crystal tungsten under different crys-
tallographic orientations in the standard triangle using the CP framework just described. We
study the crystal response as a function of the number and type of slip planes, whether or not
non-Schmid behavior is considered, and temperature.

The values of the parameters defined in the constitutive model are listed in tables 2 and
3. Most of the parameters of these tables have been obtained directly from kMC simulations
[64] or first principle and atomistic calculations [73] with the EAM interatomic potential
[74] used to parameterize the kMC model. For those parameters not derived from atomistic
or kMC simulations ( ρα0 , dgrain, c, dedge, ξαα′ ) the values used merit some discussion.
The initial dislocation density is defined as ρα0 ≈ 1/L2 ≈ 1012m−2, with L = 4000b the
average dislocation segment length. The critical distance for dislocation annihilation is taken
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Table 2 Fitting parameters of the mobility function defined in Eq. 5 (obtained from [64]).

Schmid Non Schmid

{1 1 0} glide {1 1 2} glide {1 1 0} glide {1 1 2} glide

T ≤ 600 K T > 600 K

A 3693.4 755.59 1444.23 2084.19 3415.97

B 0.97 0.50 0.72 0.68 0.89

n 2.47 0.38 1.78 1.39 2.72

p 0.16 0.22 0.26 0.81 0.19

q 1.00 1.01 1.40 2.45 1.32

Table 3 List of parameters for the constitutive model. The last row represents the six coefficients of the
interaction matrix.

Parameter Value Units Parameter Value Units

kB 8.617× 10−5 eV K−1 τp 2.03 GPa

ΔH0 1.63 eV μ 161 GPa

a0 3.143× 10−10 m |b| 2.72× 10−10 m

ρα0 1.0× 1012 m−2 dgrain 2.7× 10−5 m

c 10 dedge 2.72× 10−10 m

ξαα′ 0.009 0.009 0.72 0.05 0.09 0.06

from [51], where dedge = 2.7 × 10−5 m. The hardening constat c and the grain size dgrain
are set, respectively, to one and to an arbitrarily high value such that the term controlling
the dislocation mean free path is: λα ≈ (

√
ρα)

−1. The interaction coefficients ξαα′ were
computed for elastic isotropic iron [65], which make them suitable also for elastic isotropic
tungsten. Since this work focuses on the yield stress and not on the entire stress-strain curve,
the values assigned to these mentioned parameters that mainly influence the plastic regime of
the model are considered a valid approximation.

4.1 Uniaxial tensile tests

The boundary conditions chosen to represent the uniaxial tensile tests along the z-direction
are

www.gamm-mitteilungen.org c© 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
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Fig. 3 (online colour at: www.gamm-mitteilungen.org) Discretization of the standard triangle into a
regular grid of 231 points representing different crystallographic orientations. 3(a) represents the the
slip family with maximum Schmid factor. 3(b) shows the three dimensional surface of the Schmid
factor. The envelope of maximum Schmid factor is colored coded according to Fig.3(a).

Ḟ

10−3s−1
=

⎡
⎣ ∗ ∗ ∗

0 ∗ ∗
0 0 dz

dz,0

⎤
⎦ and

P

Pa
=

⎡
⎣ 0 0 0

∗ 0 0
∗ ∗ ∗

⎤
⎦ , (14)

with ”*” denoting components for which complementary conditions are prescribed. These
conditions are applied for 100 s in 300 equal increments resulting in a final z-tension of 0.1.
Different loading orientations in the standard triangle are characterized by their Bunge Euler
angles ϕ1, φ and ϕ2.

For a bcc slip system defined by slip direction mα and normal to the slip plane nα, the
Schmid factor for an applied tensile load along direction l can be calculated by

cosΦ cosλ =
l · mα

‖ l ‖ · ‖ mα ‖ · l · nα

‖ l ‖ · ‖ nα ‖ (15)

In this work, the Schmid factor has been computed for 231 crystallographic orientations uni-
formly distributed in the standard triangle. The maximum Schmid factor indicates the primary
slip system for each loading direction. Fig. 3(a) shows three regions where the operational slip
system corresponds to {1 1 0}, {1 1 2} or {1 1 2} anti-twinning (AT) families. These results
from Fig.3(a) are in agreement with experimental work from Franciosi et al. [75]. The en-
velope of maximum Schmid factor plotted in Fig. 3(b) shows not only the operational slip
family but also the value of the Schmid factors.

The resulting component of the first Piola-Kirchoff stress along loading direction is plotted
in Fig. 4 as a function of the Biot strain E(1) = U − I = (λi − 1)ui ⊗ ui, with λi and ui being
the eigenvalues and eigenvectors of the right stretch tensor U =

√
FT F. We have chosen to

plot the first Piola-Kirchoff stress versus the Biot strain because they represent the engineering
stress and engineering strain respectively.
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The uniaxial loading directions shown in Fig. 4 are the three corners of the standard tri-
angle: [0 0 1], [1 0 1], [1 1 1]. As it is expected for an isotropic material like tungsten, there
is no orientation dependence on the Young’s modulus, represented by the slope of the elastic
regime 2. On the other hand, there is an orientation dependence of the yield strength that
matches observations from previous experiments and simulations in bcc metals [52, 76, 77].
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Fig. 4 (online colour at: www.gamm-mitteilungen.org) Mechanical response of bcc W single-crystal
predicted by our constitutive model under conditions of uniaxial tension along different loading di-
rections and slip systems. The stress-strain behavior is represented using the components of the first
Piola-Kirchoff stress and the Biot strain along the loading direction z. Parameters from Table 2 are taken
for (a) Schmid behavior and (b) non-Schmid behavior.

The yield strength σy has been determined using the 0.2% strain offset method, where
a straight line is constructed parallel to the elastic portion of the stress-strain curve for a
strain offset of 0.002. The stress corresponding to the intersection of this line and the stress-
strain curve as it bends over the plastic region is defined as the yield strength [78]. Figure 5
represents the yield strength as a function of the temperature for uniaxial tensile tests along
the three corners of the standard triangle. As it is reported in previous works for bcc metals
[52–54], yield strength decreases with temperature. Two different scenarios of slip have been
considered in Fig. 4 and Fig. 5: (i) only the twelve {1 1 0}〈1 1 1〉 slip systems are active; (ii)
{1 1 0}〈1 1 1〉 and {1 1 2}〈1 1 1〉 slip systems are active . We can see from Fig. 5 that the
values of yield strength are higher if the non-Schmid effects are considered. Below 600 K,
non-Schmid behavior also predicts slightly different results for the two scenarios of slip.

Figure 6 shows the loading directions corresponding to the five highest and lowest values
of yield strength. Figure 7 shows the yield strength under uniaxial tension for 231 uniformly
distributed loading directions within the standard stereographic triangle. The percentage dif-
ference between the yield strength with non-Schmid behavior, σNS

y (Fig. 7(b)), and the yield

strength with Schmid behavior, σS
y (Fig. 7(a)), is defined as

∣∣∣∣ σNS
y −σS

y

(σNS
y +σS

y )/2

∣∣∣∣, and its value di-

creases with temperature (Fig. 7(c)). We can conclude from Fig. 6 and Fig. 7 that the maxi-
mum yield stength is always achieved when loading along [1 1 1] while the loading direction
of minimum yield strength depends on the temperature range and whether non-Schmid effects
behavior are considered.

2 The value of the Young’s modulus for tungsten used in our simulations is 411 GPa [51].
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Fig. 5 (online colour at: www.gamm-mitteilungen.org) Temperature dependence of yield strength for
different tensile loading orientations and active slip systems. 5(a) represents Schmid behavior and 5(b)
represents non-Schmid behavior.
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Fig. 6 (online colour at: www.gamm-mitteilungen.org) Loading directions corresponding to the five
highest and lowest values of yield strength for uniaxial tensile tests at 300, 750 and 1200 K. The biggest
blue circle represents the absolute minimum and the biggest red circle represents the absolute maximum.

5 Conclusions

To summarize, the main findings of this chapter can be condensed into the following aspects:

• We have performed single material point simulations in monocrystalline tungsten using
a CP framework whose constitutive law is physically-based on the dislocation velocities
obtained using a kMC model [64]. Most of the parameters required to formulate the CP
framework are obtained using atomistic simulations and one EAM interatomic potential
[74].

• We have incorporated in our model non-Schmid effects and compared their influence
in the results with respect to the classic Schmid’s law. The results shown in Fig. 5
and Fig. 7 reveal that adding the contribution of non-Schmid effects rises the values of
yield strength. The difference between Schmid and non-Schmid behaviors also decreases
when increasing the temperature.

• We have compared the results obtained when activating only {1 1 0}〈1 1 1〉 slip systems
and a combination of both {1 1 0}〈1 1 1〉 and {1 1 2}〈1 1 1〉 slip systems. The results
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Fig. 7 (online colour at: www.gamm-mitteilungen.org) Yield strength for uniaxial tensile tests along
231 uniformly distributed crystallographic orientations in the standard triangle at different temperatures.
Schmid and non-Schmid behaviors are studied separately. {1 1 0}〈1 1 1〉 and {1 1 2}〈1 1 1〉 slip systems
are active. Fig. 7(c) represents the difference relative to unity between non-Schmid and Schmid.

shown in Fig. 5 confirm the low impact of activating additional {1 1 2} planes even when
they are considered active during slip. These results, in agreement with previous work
from Caillard [79,80], show that for the entire range of temperature studied, slip of screw
dislocations takes place primarily on {1 1 0} planes.
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• In agreement with previous works in other bcc metals [52–54], results in Fig. 5 show that
the yield strength rapidly decreases with temperature in single-crystal tungsten.

• The yield strength shown in Fig. 4, Fig. 5, and Fig. 7 clearly depends on the loading
orientation of the tensile test. Among the 231 uniformly distributed crystallographic
orientations studied here, we observe in Fig. 6 that the loading orientation of maximum
yield is always [1 1 1] while the loading orientation of minimum yield strength depends
on the temperature.
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