Title
PSEUDO-QUADRUPOLE COUPLING CONSTANTS AND NUCLEAR MOMENTS OF SEVERAL PROMETHIUM ISOTOPES

Permalink
https://escholarship.org/uc/item/4f26d3rh

Authors
Grant, R.W.
Shirley, D.A.

Publication Date
1962-09-01
DISCLAIMER

This document was prepared as an account of work sponsored by the United States Government. While this document is believed to contain correct information, neither the United States Government nor any agency thereof, nor the Regents of the University of California, nor any of their employees, makes any warranty, express or implied, or assumes any legal responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by its trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof, or the Regents of the University of California. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof or the Regents of the University of California.
PSEUDO-QUADRUPOLE COUPLING CONSTANTS AND NUCLEAR MOMENTS OF SEVERAL PROMETHIUM ISOTOPES

R. W. Grant and D. A. Shirley

September 1962
PSEUDO-QUADRUPOLE COUPLING CONSTANTS AND NUCLEAR MOMENTS OF SEVERAL PROMETHIUM ISOTOPES

R. W. Grant and D. A. Shirley

Lawrence Radiation Laboratory and Department of Chemistry
University of California
Berkeley, California

September, 1962

ABSTRACT

Nuclei of several isotopes of promethium were aligned at low temperatures by a pseudo-quadrupole interaction in cerium magnesium nitrate and by a magnetic hfs interaction in neodymium ethylsulfate. Pseudo-quadrupole coupling constants were determined for 143Pm, 144Pm, and 5.4 day 148Pm. Nuclear moments were derived for 143Pm, 5.4-d 148Pm, 41-d 148Pm, and 149Pm. The spins of 5.4-d and 41-d 148Pm were found to be 1 and 6 respectively. Evidence was obtained for spin assignments of 6 to states in 148Sm at 1.90, 2.09, and 2.19 MeV. Measurements on 144Pm tend to confirm the validity of the temperature scale for cerium magnesium nitrate.
The method of low-temperature nuclear orientation has been used with considerable success in recent years for elucidating certain basic features of nuclear decay processes.1,2 Like other experimental techniques, it is most fruitfully employed where it can yield information either uniquely or with greater ease or reliability than can other methods. Thus another area in which nuclear orientation can be particularly useful is in studying certain subtle aspects of internal fields in solids, for example magnetic hyperfine structure in metals.3,4 An additional example in this area is the detection of small quadrupole5 and pseudo-quadrupole6 effects in ionic crystals. In this paper such effects are reported for several promethium isotopes in a lattice of cerium magnesium nitrate (CMN). The pseudo-quadrupole interaction is discussed in terms of crystal field theory. Coupling constants and nuclear moments are derived from the experimental data. The Pm isotopes were aligned in both CMN and neodymium-ethysulfate (NES), and several nuclear parameters of these isotopes and their daughters are also reported.
II. EXPERIMENTAL PROCEDURE

Earlier experiments have shown that Pm isotopes can be aligned in both NES and CMN lattices. In the present series of experiments we have aligned (5.4 day) Pm148 and (41 day) Pm148 in the NES lattice and Pm143, Pm144, and (5.4 day) Pm148 in the CMN lattice.

Pm143 and Pm144 were prepared as discussed in ref. 7 and 8 respectively. The Pm148 isomers were made with roughly equal yield in the Berkeley 60" cyclotron by a (p,n) reaction on Nd148 (in enriched Nd$_2$O$_3$). The target material was passed through a cation-exchange column to separate Pm$^{3+}$ from Nd$^{3+}$. The promethium isotopes were then taken up in saturated solutions of NES or CMN and single crystals, weighing about 5 gm, of the corresponding salts were grown with Pm$^{3+}$ incorporated substitutionally into the Nd$^{3+}$ and Ce$^{3+}$ lattice sites. The crystals were then mounted in an adiabatic demagnetization cryostat described elsewhere. The temperature range covered in NES was $0.02 < T < 10^0$ K and in CMN was $0.003 < T < 10^0$ K. The magnetic temperatures of the salts were measured with coils and an AC mutual inductance bridge and the temperatures were converted to thermodynamic temperatures using the data of Meyer for NES and the data of Daniels and Robinson for CMN. The crystals were sufficiently isolated thermally to stay below the helium bath temperature for about 2 hours after each demagnetization. Counting, using multichannel analyzers, was done for a period of from 2 to 5 minutes immediately after each demagnetization. The crystal was then warmed to the helium bath temperature and a normalization count was taken. Appropriate corrections, amounting to about 10% of the anisotropic component of angular distribution, were made for such effects as the finite solid angles subtended by the counters.
III. EXPERIMENTAL RESULTS

A. \(_{144} \text{Pm} \)

The decay scheme of \(_{144} \text{Pm} \) after Ofer \(^{13}\) and Funk, et al. \(^{14}\) is shown in Fig. 1. From earlier alignment experiments on \(_{144} \text{Pm} \) in NES magnetic hyperfine structure constants, \(A \), for spins of 5 and 6 were available. We have aligned \(_{144} \text{Pm} \) in CMN and observed the anisotropies for the 474, 615 and 695 keV \(\gamma \)-rays. The intensity of \(\gamma \)-radiation emitted from oriented nuclei, as defined in the usual way \(^{15}\), is given as

\[
I(\theta) = \sum_{k} B_k U_{k} F_{k} P_{k} (\cos \theta). \tag{1}
\]

For low degrees of alignment this equation can be approximated by

\[
I(\theta) = 1 + B_2 U_2 F_2 P_2 (\cos \theta) \tag{2}
\]

where the higher order terms are negligible. The temperature dependence of \(I(\theta) \) for the 695 keV \(\gamma \)-ray at \(\theta = 0^\circ \) and \(\theta = 90^\circ \) is shown in Fig. 2.

The angular dependence of \(I(\theta) \) for the 615 keV \(\gamma \)-ray at 0.0031° K is shown in Fig. 3. The data for this temperature may be fitted by a curve of the form

\[
I(\theta) = (1.14 \pm 0.004) P_2 (\cos \theta) - (0.003 \pm 0.004) P_4 (\cos \theta) \tag{3}
\]

The values of \(I(0) \) at \(T = 0.0031^\circ \) K are given in Table I for the three \(\gamma \)-rays observed. These values show that \(U_{2} F_{2} \) of the 474 keV \(\gamma \)-ray is considerably \((24 \pm 7\%) \) less than \(U_{2} F_{2} \) for the other two \(\gamma \)-rays. The same effect was observed previously in NES. \(^8\)
For "stretched" transitions of the type I (L) I-1L (L) I-2L etc., the $U_k^F_k$ products, hence the angular distributions, should be identical for all γ-rays (i.e., $U_k^F_k (\gamma_1) = U_k^F_k (\gamma_{i+1})$, etc.). This can easily be shown by writing out the U_k and F_k functions explicitly in terms of 6-j symbols. The three 6-j symbols that are necessary to the proof all have the form

$$\begin{pmatrix}
\ell_1 & \ell_2 & \ell_1 + \ell_2 \\
\ell_1 & \ell_2 & \ell_3
\end{pmatrix}$$

A one-term expression for 6-j symbols of this form is given in Edmonds' book, and the proof reduces to a few lines of algebra. It is valid for all I, k, and L. Alternatively the same result may be derived from a similar result of angular correlation theory simply by substituting B_k, the orientation parameter, for F_k^F, the F coefficient for the first γ-ray in a "stretched" cascade.

The fact that the 615 and 695 keV γ-rays are stretched transitions explains why their $U_2^F_2$'s are equal. However if the spin of Pm^{144} were 6 and if the E.C. decays also involved only the minimum angular momentum change, the $U_2^F_2$ of the 474 keV γ-ray should also be the same as that of the succeeding transitions, and this is contrary to the experimental observation.

If one assumes that the spin of Pm^{144} is 6 and that both E.C. decays are of the type $L = 2$, this would lead to a 13% relative reduction in $U_2^F_2$ (474 keV). If one assumes that the spin of Pm^{144} is 5 and that the 45% branch of the E.C. decay is $L = 2$ and the 55% branch is $L = 1$ this would lead to a 15% relative reduction in $U_2^F_2$ (474 keV). Ofcr estimated the log ft of the 45% branch to be 8.0 and the log ft of the 55% branch to be 6.8. Thus the above assumption of a higher L for the E.C. of the 45% branch does not seem very reasonable. Another possible explanation for the decrease in $U_2^F_2$ (474 keV) could be that the lifetime of the 1.78MeV state was somewhat
longer than that of the 1.310 MeV and 0.695 MeV states. This longer lifetime could permit some degree of reorientation and a subsequent attenuation in the size of the effect. In any case the smaller size of $U_{2F_2}(474 \text{ keV})$ is not well understood.

B. Pm^{143}

Pm^{143} has been previously aligned in NES. The decay schemes proposed by Ofer for Pm^{143} and by Starfelt and Cederlund for Pr^{143} are shown in Fig. 4. We have aligned Pm^{143} in CMN and observed the anisotropy of the 740 keV γ-ray. The temperature dependence of $I(0)$ for this γ-ray is shown in Fig. 5. From this curve it is evident that a very high degree of alignment has been achieved because at the lower temperatures the curve is asymptotically approaching a limit. The angular distribution at $T = 0.0031^\circ$ K could be fitted by the theoretical curve $I(\theta) = 1 + 0.090 \times p_2(\cos \theta)$ to within experimental error, again showing that the terms with $k > 2$ in Eq. 1 were negligible.

The ground state spin of Nd^{143} has been measured as $7/2$ by Murakawa and Ross. This corresponds to an odd parity $f_{7/2}$ state according to shell model theory. Ofer found the 740 keV γ-ray to be predominate M_1, implying that the spin of the 740 keV state in Nd^{143} must be $5/2^-$, $7/2^-$ or $9/2^-$. All of these spins are consistent with the data shown in Fig. 5. The shell model predicts that the unpaired 61st proton of Pm^{143} will occupy either a $d_{5/2}$ or $g_{7/2}$ state. By comparing the data in Fig. 5 with the theoretical values of B_2 we can obtain U_{2F_2} for the 740 keV γ-ray. If we assume that the spin of Pm^{143} is $5/2$ we obtain $U_{2F_2} = -0.093 \pm 0.005$; for a spin of $7/2$ we obtain $U_{2F_2} = -0.094 \pm 0.004$.

In connection with our work on \(^{143}\text{Pm}\), we searched for a 740 keV \(\gamma\)-ray associated with the decay of \(^{143}\text{Pr}\). Starfelt and Cederlund\(^{18}\) found that the ground state of \(^{143}\text{Pr}\) lies 922 keV above the ground state of \(^{143}\text{Nd}\). It might therefore be expected that \(^{143}\text{Pr}\) would decay to the 740 keV state in \(^{143}\text{Nd}\).

We obtained 10 mc of \(^{143}\text{Pr}\) (from the Oak Ridge Radioisotopes Division). The \(^{143}\text{Pr}\) was subsequently purified on an ion exchange column and any short-lived \(^{143}\text{Pr}\) activities were allowed to decay away for a few days. The half-life we observed for \(^{143}\text{Pr}\) was 13.5 ± 0.6 days which agrees well with earlier determinations.

The \(^{143}\text{Pr}\) source was placed between Be absorbers to stop the \(\beta\)-rays and cut down on the production of bremsstrahlung. The photon spectrum observed with a NaI counter was linear out to about 770 keV on a semi-log scale (Fig. 6). A straight line was fitted through the data and then subtracted from the data to get the quantity \(\Delta\) shown in Fig. 7. The solid curve in Fig. 7 represents the curve we feel best fits the data. The broken line corresponds to a theoretical curve which should be observed if \(1.5 \times 10^{-4}\) of the \(^{143}\text{Pr}\) decays produced 740 keV \(\gamma\)-rays. We feel that this curve represents a reasonable upper limit for the \(\gamma\)-transition, yielding \(\log ft \geq 11.0\) for the \(\beta^-\) decay which populates this state. This beta branch thus probably involves at least two units of angular momentum carried away by the leptons.

Budick et al.\(^{20}\) have recently measured the spin of \(^{143}\text{Pr}\) as 7/2. Since the 740 keV state of \(^{143}\text{Nd}\) must have spin and parity \(5/2^+, 7/2^-\), or \(9/2^-\) by virtue of the M1 transition to the \(7/2^-\) ground state, the (thus ordinary first-forbidden) beta branch to the 740 keV state from \(^{143}\text{Pr}\) is incredibly hindered. The \(\log ft\) of 11.0 would be high even for a unique first-forbidden transition (which this would be if the spins involved were \(5/2^-\) and \(9/2^-\) in...
Pr143 and Nd143). For a nonunique transition this log ft is remarkably high and suggests a new selection rule for β^- decay in this region. A similar example21 is furnished by the decay of Nd147. A statement of this rule which fits the existing data is that the interactions of tensor rank 1 are forbidden, at least for $\Delta I \neq 0$.

C. (5.4 day) Pm148

The 5.4 day isomer of Pm148 was aligned in both NES and CMN. The decay schemes of the Pm148 isomers have been thoroughly investigated recently.$^{22-24}$ The decay scheme after Reich, et al.24 is given for reference in Fig. 8. The only γ-ray anisotropy we were able to measure accurately was that of the 1460 keV γ-ray. The 910 and 550 keV γ-rays had too much background under them from the 41 day isomer to enable any accurate determination of their anisotropies. The temperature dependence of $I(0)$ for the 1460 keV γ-ray in CMN is shown in Fig. 9.

Reich et al.24 were able to show that the spin of the 1460 keV state in Sm148 is 1. Based on this result and the data in Fig. 9 we can establish the spin of (5.4 day) Pm148 as 1$. \text{ For the decay of (5.4 day) Pm}^{148}$ to the 1460 keV state our data fit either a 1 \rightarrow 1 or 2 \rightarrow 2 transition very well but not a 2 \rightarrow 1 spin sequence. In order to obtain a large enough U_2 with the right sign for a 2 \rightarrow 1 spin sequence one would have to assume almost pure $L = 2$ for the β^- decay to the 1460 keV state and even in this rather unlikely case (log ft is only 7.8) a small deviation from linearity in $I(T)$ should be observed as indicated by the dashed curve in Fig. 9. The 1$-^g$ ground state spin assignment for Pm148 also fixes the spins of the 75 and 135 keV states in Pm148 as 2$-$ and 6$-$ respectively.24

The temperature dependence of $I(0)$ for the 1460 keV γ-ray in NES is
shown in Fig. 10. In both NES and CMN, \(I(\theta) \) was found to fit a \(P_2(\cos \theta) \) distribution, showing that terms of higher order than \(B_2 U_2 F_2 \) were negligible. The 1460 keV transition must be pure dipole, requiring an \(F_2 \) of +0.707. The parameter \(B_2 \) must be negative in CMN (see Sec. IV); therefore \(U_2 \) must also be negative. The \(\beta^- \) decay which populates the 1460 keV state must be predominantly \(L = 1 \) since \(L = 0 \) and \(L = 2 \) give positive contributions to \(U_2 \). The CMN data establish \(U_2 F_2 < -0.23 \). Thus \(U_2 \) for this \(\gamma \)-ray is less than -0.33; and the 1.1 MeV \(\beta^- \) branch must be more than 72% of the \(L = 1 \) type.

We obtained a very rough value of +0.01 ± 0.02 for \(B_2 U_2 F_2 \) of the 910 keV \(\gamma \)-ray at 0.0033°K in CMN. Thus \(\delta \), the \(E2/M1 \) amplitude mixing ratio, is -0.06 ± 0.06. From the angular correlation data, \(^{24} \delta \) is determined as \(\delta = +0.046 ± 0.001 \). Inasmuch as the sign of \(\delta \) must necessarily be different between the two experiments \(^{21,25,26} \) these results are in good agreement.

D. \((41\text{ day})\) \({ }^{148}\text{Pm} \)

The 41 day isomer of \({ }^{148}\text{Pm} \) was aligned only in NES. The decay scheme for this isomer is also given in Fig. 8. We were able to observe the anisotropies of the 550, 627, 723, 913 and 1011 keV \(\gamma \)-rays. All the \(I(\theta) \) for these five \(\gamma \)-rays showed a pure \(P_2(\cos \theta) \) behavior. The temperature dependence of \(I(\theta) \) for the 550 keV \(\gamma \)-ray is shown in Fig. 11. The temperature dependence of \(I(\theta) \) for the other \(\gamma \)-rays which we observed had the same form. The parameter \(I(\theta) \) for the five \(\gamma \)-rays at \(T = 0.02^\circ \)K is given in Table II. From this table it can again be seen that \(I(\theta) \) for the 550 and 627 keV \(\gamma \)-rays is the same to within experimental error since these are stretched transitions. We were able to establish limits on \(B_2 \) at 0.02°K of \(B_2 = 0.26 ± 0.03 \) by computing maximum and minimum values of
U_2 and F_2 for all five γ-rays which were consistent with the decay scheme, which then gave the range of allowed values for B_2. Since B_2 must be the same for all the transitions at any given temperature the overlap of these values was used to establish the above limits. Now we may combine our data with the angular correlation data

\[^{24} \] to establish the spins of the 1.90, 2.09 and 2.19 MeV states of Sm^{148}. The Reich et. al. data are consistent with spins 4 and 6 for the 1.90 MeV state. If the spin of this state were 4, B_2 would have to be 0.17 ± 0.01 at 0.02° K to agree with these data; therefore this spin possibility is ruled out. For a spin assignment of 6, B_2 at 0.02° K would have to be 0.25 ± 0.04 which agrees very well with our value of B_2 and establishes the spin of the 1.90 MeV state as 6.

For the 2.09 MeV state, the angular correlation data are consistent with spins 5 and 6. If the spin of the 2.09 MeV state were 5, B_2 at 0.02° K would have to be 0.19 ± 0.03 to agree with this data and this makes the agreement with our value rather poor. For a spin 6 state, B_2 would have to be 0.27 ± 0.04 which agrees well with our value of B_2 and makes 6 the most likely spin assignment for this state.

The 2.19 MeV state must have spins 4 or 6 to be consistent with the angular correlation data. If the spin of this state were 4, B_2 would have to be 0.20 ± 0.01 at 0.02° K which again is not consistent with our value. A spin assignment of 6 for this state leads to a value for B_2 of 0.28 ± 0.04, in good agreement with our value. Thus the spin of this state is 6.

It thus seems likely that the spins of the 1.90, 2.09 and 2.19 MeV states are all 6 and that the 723, 913 and 1011 keV γ-rays are all pure E2 transitions.
IV. HYPERFINE STRUCTURE CONSTANTS

The observables in nuclear orientation experiments are complicated functions of the interesting parameters. In all but the simplest case these functions are not easily inverted. Certain assumptions, usually about the multipolarities of unseen transitions, must often be made in using the data to derive such quantities as nuclear moments. As future experimental tests of these assumptions may make the nuclear orientation work subject to re-interpretation, it is desirable to state clearly the assumptions made in interpreting the data. Thus in this section the derivation of coupling constants is discussed.

First the form of the Hamiltonian for Pm43 in both the NES and CMN crystals requires separate discussion. Shirley et al. showed that for Pm144 aligned in NES the most important term leading to alignment was the magnetic hyperfine interaction

$$\mathcal{H} = AS I_z$$ (4)

This interaction produces equally spaced nuclear magnetic substates and as a consequence the leading term in B_2 goes as T^{-2}. We observed this same initial behavior of B_2 in (5.4 day) Pm148 (Fig. 10) and (41 day) Pm148 (Fig. 11).

Chapman, et al. showed that for Pm149 aligned in CMN the interaction has the quadrupolar form

$$\mathcal{H} = P^n [I_z^2 - (1/3) I (I + 1)]$$ (5)

This was shown from both the sign and temperature dependence of the γ-ray anisotropy. A quadrupolar interaction produces splittings in the nuclear
magnetic substates which are proportional to I_z^2 and consequently the leading term in the temperature dependence of B_2 is T^{-1}. Our results for Pm^{143}, Pm^{144}, and (5.4 day) Pm^{148} aligned in CMN are in complete agreement with Chapman's observation. In each case the sign of the γ-ray anisotropy in CMN is opposite to that in NES. Further, the temperature dependence of the anisotropy in each case is very accurately represented by an interaction of the quadrupolar form (Figs. 2, 5, and 9). This is especially obvious for Pm^{144} and (5.4 day) Pm^{148} in which the characteristic T^{-1} dependence of $I(\theta)$ is exhibited over the entire attainable temperature range.

Thus it is certainly justifiable to derive an experimental hfs coupling constant, A, from the alignment data in NES and a "quadrupole" coupling constant, P'', from the alignment data in CMN. The hfs coupling constants, A, were evaluated in a straightforward manner for (5.4 day) Pm^{148} and (41 day) Pm^{148} in NES and are given in Table III.

For Pm^{+3} in CMN a pseudo-quadrupole interaction is expected (Sec. V). The pseudo-quadrupole interaction is an old problem in atomic spectroscopy (see for example ref. 27). The quadrupole coupling constant, P, and the pseudo-quadrupole coupling constant, P', are not related in a known fundamental way; they are given by

$$P = C \, \frac{Q}{4I (2I - 1)},$$

(6)

which describes an electric effect, and

$$P' = C' \, \frac{\mu^2}{I},$$

(7)
which describes a magnetic effect. The constants C and C' are independent of nuclear parameters and thus have the same values for all Pm isotopes.

For the present axially-symmetric problem, however, the two coupling constants are indistinguishable and only their sum P'' is measurable. Thus the hfs portion of the ground-state spin-Hamiltonian for Pm^{+5} in CMN is

$$\mathcal{H} = (P + P') \left[I_z^2 - \frac{1}{3} I (I + 1) \right] \equiv P'' \left[I_z^2 - \frac{1}{3} I (I + 1) \right] \quad (8)$$

We shall refer to P'' as the total quadrupole coupling constant. From our data on Pm^{143}, Pm^{144} and (5.4 day) Pm^{148} in CMN we can evaluate the experimental total quadrupole coupling constants P'' and these are given in Table III.
V. CRYSTAL FIELD THEORY

In order to derive nuclear moments from our alignment data in CMN it becomes necessary to evaluate C' experimentally. This may be done only if the relative sizes of P and P' are known. To estimate these magnitudes we used the crystal field theory of Elliott and Stevens, extended by Judd to CMN, to work out the eigenvalues and eigenstates for the ground-state manifold of Pm^{4+} in CMN.

The crystal field parameters are found experimentally to change quite smoothly through the rare-earth series and the following set of parameters for Pm^{4+} was obtained by interpolation from the values given by Judd:

$$
A_6^0(r^6) = -40 \text{ cm}^{-1}, \quad A_6^3(r^6) = \pm 1850 \text{ cm}^{-1}, \quad A_6^6(r^6) = 700 \text{ cm}^{-1},
$$

$$
A_2^0(r^2) = -40 \text{ cm}^{-1}, \quad A_4^0(r^4) = -30 \text{ cm}^{-1}, \quad \text{and} \quad A_4^3(r^4) = \pm 400 \text{ cm}^{-1}.
$$

The signs of $A_6^3(r^6)$ and $A_4^3(r^4)$ are arbitrary but must be different. Energy matrix elements were evaluated for the 9 states of the lowest level, 5I_4. The 9×9 matrix reduces to three 3×3 matrices, and the eigenvalue problem involves only solving cubic equations. The eigenvalues and eigenvectors are given in Table IV.

The lowest energy state is a singlet which lies about 19 cm^{-1} below the next (doublet) state. We may now determine the relative sizes of P and P'.

Evaluating P' from 30

$$
\hat{H} = \frac{4 \beta^2 r^2 \mu^2}{l^2} \langle r^{-3} \rangle^2 (\vec{N} \cdot \vec{l})^2
$$

(9)

and using 31 $\langle r^{-3} \rangle = 36.6$ Å$^{-3}$ for $^{3+}$, we obtain

$$
P' = 1.48 \times 10^{-3} \frac{\bar{g}_N^2}{\Delta E} \text{ cm}^{-1}
$$

(10)

where ΔE is the splitting in cm$^{-1}$ between the ground state singlet and the lowest doublet. For a splitting of 18.8 cm$^{-1}$, we find

$$
P' = 8.39 \times 10^{-5} \bar{g}_N^2 \text{ cm}^{-1}.
$$

(11)

We can also evaluate the effect of direct coupling between the crystalline field and Q the nuclear quadrupole moment: 30

$$
P_1 = \frac{3A_2^0 Q}{l(2l-1)}
$$

(12)

Now to evaluate this quantity we must know $\langle r^2 \rangle$ since only $A_2^0 \langle r^2 \rangle = -40$ cm$^{-1}$ is known. To evaluate $\langle r^2 \rangle$ we used Ridley's Hartree radial wave functions32 which are available for $^{3+}$ and $^{3+}$. We graphically integrated and obtained $\langle r^2 \rangle = 1.445$ a.u. for $^{3+}$ and $\langle r^2 \rangle = 0.7505$ a.u. for $^{3+}$. By interpolation we obtained $\langle r^2 \rangle = 1.31$ a.u. for $^{3+}$. Using this value we calculated

$$
P_1 = \frac{-3.28 \times 10^{-6} Q}{l(2l-1)} \text{ cm}^{-1}.
$$

(13)
We next considered the interaction of the $4f$ electrons with the quadrupole moment.

This can be approximated as

$$P_2 \approx -\frac{9 e^2 Q}{4I (2I - 1)} \langle r^{-3} \rangle \langle J | \alpha | J \rangle (1/3) J (I+1) |+\rangle$$

(Eq. 14)

Evaluating this term for Pm^{4+} we obtain

$$P_2 \approx \frac{7.49 \times 10^{-4}}{I (2I - 1)} Q \text{ cm}^{-1}.$$

(Eq. 15)

Since all the other states in the lowest level (5I_4) lie considerably higher in energy and the first excited level (5I_5) is about 1586 cm$^{-1}$ higher in energy, perturbations due to higher states may be neglected by comparison. Using a spin of 6 and the magnetic moment of 1.75 n.m. for Pm^{14+}, we calculate $P = 1.13 \times 10^{-5}$ cm$^{-1}$ and $P' = 7.17 \times 10^{-6}$ cm$^{-1}$. Nuclear quadrupole moments in this region are of the order of 0.5 barns; thus P could be as high as 6×10^{-6} cm$^{-1}$. Even so these theoretical estimates are much smaller than the experimental value for P'' of $(7.3 \pm 0.4) \times 10^{-5}$ cm$^{-1}$.

The value of P' depends on the splitting between the lowest singlet and doublet. This splitting was theoretically investigated by varying the interpolated crystal field parameters and was found to be very sensitive to the values of $A_6^0(r^6)$ and $A_6^6(r^6)$. The size of the observed effect can easily be accounted for if the splitting is about 2 cm$^{-1}$ instead of 19 cm$^{-1}$, and this splitting can easily be obtained by reducing $A_6^0(r^6)$ and $A_6^6(r^6)$. In fact one could infer from our experiment that $A_6^0(r^6)$ is probably closer to -50 cm$^{-1}$ than -40 cm$^{-1}$ and that $A_6^6(r^6)$ is somewhat lower than 700 cm$^{-1}$. It should be pointed out that adjusting the energy spacing...
between the lowest singlet and doublet to fit the data is a valid procedure inasmuch as it requires changing \(A^0_0(r^5) \) and \(A^6_0(r^5) \) by amounts well within the accuracy to which they are known. The theoretical quadrupole coupling constant, \(\delta \), is not appreciably altered by this procedure. It follows from this discussion that \(\delta \leq 0.1 \delta' \) for \(\text{Pm}^{144}_{144} \); i.e., that \(\delta' \) is at least 90\% pseudo-quadrupole. Thus it seems valid to derive, from the experimental \(\mu \) and \(\delta' \) of \(\text{Pm}^{144}_{144} \), a spin-independent pseudo-quadrupole coupling constant \(\delta'' \). We shall account for the possibility of \(\delta'' \) for \(\text{Pm}^{144}_{144} \) being as much as 10\% \(\delta \) in the limits of error for \(\delta''. \)
VI. NUCLEAR MOMENTS

Once it has been established that the pseudo-quadrupole mechanism is mainly responsible for producing the alignment of Pm \(^{143}\) in CMN it becomes possible to derive nuclear moments for the various Pm isotopes. Shirley, et al.\(^8\) aligned Pm \(^{144}\) in NES and established that for \(I = 5\), \(|\mu| = 1.68 \pm 0.14\) n.m. and for \(I = 6\), \(|\mu| = 1.75 \pm 0.14\) n.m. From Table III we find \(P'' = +(1.1 \pm 0.1) \times 10^{-4} \text{ cm}^{-1}\) for \(I = 5\) and \(P'' = +(7.3 \pm 0.4) \times 10^{-5} \text{ cm}^{-1}\) for \(I = 6\). Using these values and Eq. 7 we can now calculate \(C' = +(1.01 \pm 0.17) \times 10^{-3} \text{ cm}^{-1} (\text{n.m.})^{-2}\).

A. \(\text{Pm}^{143}\)

The spin of Pm \(^{143}\) is almost certainly 5/2 or 7/2. For a spin of 7/2 and the experimental \(P'' = +(1.25 \pm 0.2) \times 10^{-3} \text{ cm}^{-1}\) we calculate the magnetic moment as \(|\mu| = 3.9 \pm 0.5\) n.m., while for a spin of 5/2 and the experimental \(P'' = +(2.2 \pm 0.3) \times 10^{-3} \text{ cm}^{-1}\) we get a magnetic moment of \(|\mu| = 3.75 \pm 0.5\) n.m. For an unpaired proton in a \(g_{7/2}\) state the Schmidt and Dirac limits on the magnetic moment are 1.7 n.m. and 3.1 n.m. respectively. The Dirac and Schmidt limits for a proton in a \(d_{5/2}\) state are 2.9 n.m. and 4.8 n.m. respectively. Since the value \(|\mu| = 3.9 \pm 0.5\) n.m. falls outside the usual limits for a \(g_{7/2}\) proton one could interpret this as weak evidence for the spin of Pm \(^{143}\) being 5/2 rather than 7/2.

B. (5.4 day) \(\text{Pm}^{148}\)

For (5.4 day) Pm \(^{148}\) we are able to combine the data shown in Figs. 9 and 10 to get the magnetic moment. Experimentally it is determined that \(U_2\) must be negative for this transition (See Sec. III). Since only the \(L=1\beta\) transition produces a negative \(U_2\), one limit on \(U_2\) must be for a pure \(L=1\beta\).
decay, which has $U_2 = -0.50$. From the CMN data we can set the other limit on U_2 and we find $-0.50 < U_2 < -0.37$. Then using this value of U_2 in conjunction with the NES data in Fig. 10 we can set the limits on A; $0.0316 \text{ cm}^{-1} < |A| < 0.0388 \text{ cm}^{-1}$. Now from the relation

$$ |\mu| = \frac{|A| I}{0.0193} \quad (16) $$

We obtain $|\mu| = 1.82 \pm 0.19 \text{ n.m.}$

C. \text{(41 day) Pm^{148}}

The magnetic moment for \text{(41 day) Pm^{148}} is very simply evaluated from the NES data. Using the decay scheme (Fig. 8) modified by our results of Sec. III (i.e. that $I_{1.90} = I_{2.09} = I_{2.19} = 6^+$ in Sm^{148} and that the spin of \text{(41 day) Pm^{148}} is 6^-) we can set limits on U_2 of the 550 keV γ-ray; $0.52 < U_2 < 0.58$. From the data of Fig. 11 we then find $|A| = (5.8 \pm 0.6) \times 10^{-3} \text{ cm}^{-1}$ and using Eq. (16) the magnetic moment is evaluated as $|\mu| = 1.80 \pm 0.18 \text{ n.m.}$

D. \text{Pm^{149}}

\text{Pm^{149}} was aligned in CMN by Chapman et al. \text{6} Since they did not have the value of C' in Eq. 7 they were unable to determine the magnetic moment of \text{Pm^{149}}. From their data we can obtain a value for P'' of $(8.8 \pm 2.1) \times 10^{-4} \text{ cm}^{-1}$ leading to a magnetic moment $|\mu| = 3.3 \pm 0.5 \text{ n.m.}$
VII. DISCUSSION

It is interesting to examine the magnetic moments for the spins 1 and 6 states of Pm148. The shell model predicts the 61st proton of this odd-odd nucleus to have either a $d_{5/2}$ or $g_{7/2}$ configuration while the 87th neutron should have either an $f_{5/2}$ or $f_{7/2}$ configuration. There are seven ways in which to combine these states to make spins 1 and 6 and these possibilities are shown in Table V. Using the "Schmidt values" of the magnetic moments for unpaired protons and neutrons, μ ($d_{5/2}$ proton) = $+4.79$ n.m., μ ($g_{7/2}$ proton) = $+1.72$ n.m., μ ($f_{5/2}$ neutron) = $+1.37$ n.m., and μ ($f_{7/2}$ neutron) = -1.91 n.m., and coupling the neutron and proton angular momenta, we obtain the values for the magnetic moments listed in column 4 of Table V. These values agree very poorly with the experimental values derived above. However since the Pm148 isomers are not near a closed shell for either protons or neutrons there is no a priori reason to expect these single-particle values to be applicable in this region.

Perhaps a more useful comparison with experiment can be provided by means of an empirical calculation based on the ground-state spin assignments and magnetic moments of odd nucleons in neighboring nuclei. Table VI shows the values of μ which were used for the nominal $d_{5/2}$ and $g_{7/2}$ proton and $f_{5/2}$ and $f_{7/2}$ neutron configurations. Only the $d_{5/2}$ proton configuration value is rather arbitrary and this is not too important since both Pm147 and Pm149 have spins of 7/2, making it most likely that the 61st proton in Pm148 is in a 7/2+ configuration. The sign of μ for Nd147 was inferred from the Schmidt value. By coupling the g values shown in Table VI we calculated the empirical values of the magnetic moments shown in column 5 of Table V. Comparison of these values with the experimental results shows that good agreement is obtained if the ground state (I = 1) of
148Pm is in a nominal $(g_{7/2} f_{5/2})$ configuration and the excited state $(I = 6)$ has a nominal $(g_{7/2} f_{7/2})$ configuration. The coupling of spins in these configurations is contrary to Nordheim's rules but since we are dealing with multiple-particle configurations rather than single-particle configurations this disagreement may not be important.
VIII. ABSOLUTE TEMPERATURE SCALE FOR CMN

A careful inspection of Figure 2 will show that the axial data points, with the exception of the lowest temperature point, could be fitted slightly better by a curve with a small negative curvature in I(θ) vs T⁻¹ indicating "saturation" of the nuclear alignment. Such a curve would be physically reasonable; it would correspond to a much larger value of P' than does the curve actually drawn in Fig. 2. If the lowest-temperature point were in reality at a much lower temperature still, it would lie on the "saturation" curve. If the T-T* relationship for CMN were considerably in error, the lowest temperature point could appear to be at too high a temperature. There is some evidence that the T-T* relationship for CMN might be in error in just this way, the lowest point lying at a temperature much lower than 0.003⁰ K.³⁸,³⁹

A more thorough analysis of the data in Fig. 2 tends to refute this interpretation for two reasons: (1) there is no detectable P₄ term in the angular distribution at the lowest temperature (Fig. 3), whereas the "saturation" curve would require the distribution I(θ) ≈ 1 + 0.17 P₂(cos θ) - 0.03 P₄(cos θ) at this temperature; and (2) the magnitude of the limiting value for the coefficient of the P₂ term is +0.40 for this decay sequence; the saturation curve would require a value of +0.18.

We conclude, then that the data for Pm¹⁴⁴ qualitatively substantiate the magnetic temperature scale for CMN given by Daniels and Robinson.¹² It should be noted that this experiment is not highly sensitive to small inaccuracies in the T-T* scale, nor was the ultimate possible accuracy obtained. Still, this measurement provides independent confirmation, by a unique method, that the T-T* relation for CMN is essentially correct.
REFERENCES

Table I

<table>
<thead>
<tr>
<th>E_γ (keV)</th>
<th>I(0)</th>
</tr>
</thead>
<tbody>
<tr>
<td>474</td>
<td>1.106 ± 0.008</td>
</tr>
<tr>
<td>615</td>
<td>1.141 ± 0.008</td>
</tr>
<tr>
<td>695</td>
<td>1.137 ± 0.008</td>
</tr>
</tbody>
</table>

I(0) for the 474, 615 and 695 keV γ-rays observed in the decay of 144Pm aligned in CMN at 0.0031 K.
Table II

<table>
<thead>
<tr>
<th>E_γ (keV)</th>
<th>$I(0)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>550</td>
<td>0.920 ± 0.006</td>
</tr>
<tr>
<td>627</td>
<td>0.910 ± 0.006</td>
</tr>
<tr>
<td>723</td>
<td>0.919 ± 0.008</td>
</tr>
<tr>
<td>913</td>
<td>0.908 ± 0.010</td>
</tr>
<tr>
<td>1011</td>
<td>0.902 ± 0.008</td>
</tr>
</tbody>
</table>

Intensities for γ-transitions observed in the decay of aligned (41 day) 148Pm along the crystalline C axis and at $T = 0.02^\circ$K in NES.
Table III

| Isotope | I-spin | |A| (10⁻³ cm⁻¹) | P" (10⁻³ cm⁻¹) |
|----------|--------|-----------------|----------------|
| Pm¹⁴³ | 5/2 | 29 (3) | 2.2 (.3) |
| | 7/2 | 22 (2) | 1.25 (.20) |
| Pm¹⁴⁴ | 5 | 6.5 (.5) | 0.11 (.01) |
| | 6 | 5.6 (.5) | 0.073 (.004) |
| (5.4 day) Pm¹⁴⁸ | 1 | 35 (4) | 3.3 (.7) |
| (41 day) Pm¹⁴⁸ | 6 | 5.8 (.3) | |
| Pm¹⁴⁹ | 7/2 | | 0.88 (.2) |

Hyperfine structure coupling constants, A, and total quadrupole coupling constants, P", for several Pm isotopes in NES and CMN, respectively. Errors are given parenthetically.
Energies (cm\(^{-1}\))	Degeneracy	Wave functions in \(J_z\rangle \) notation		
-181.66	1	\(+0.56	+3\rangle + 0.61	0\rangle - 0.56	-3\rangle\)
-162.82	2	\(+0.66	±4\rangle ± 0.73	± 1\rangle + 0.21	±2\rangle\)
-123.51	2	\(+0.475	±4\rangle ± 0.18	± 1\rangle ± 0.86	±2\rangle\)
172.53	1	\(+0.71	+3\rangle + 0.71	-3\rangle\)	
193.91	2	\(+0.59	±4\rangle ± 0.66	±1\rangle + 0.46	±2\rangle\)
194.00	1	\(-0.43	+3\rangle + 0.79	0\rangle + 0.43	-3\rangle\)

Energies and wave functions of the eigenstates of \(^5I_{\frac{5}{2}} \) Pm\(^{3+}\) in CMN, calculated from crystal field theory with parameters given in text.
Possible proton and neutron configurations which would give spins 1 and 6 for 148Pm. Agreement with the experimental values of $|\mu| = 1.8$ for both states is obtained for the configurations $(g_{7/2}f_{7/2})$ and $(g_{7/2}f_{5/2})$.
Table VI

<table>
<thead>
<tr>
<th>Odd-A nucleus</th>
<th>Ground-state spin (I)</th>
<th>Nominal configuration</th>
<th>μ(n.m.)</th>
<th>g(n.m.)</th>
<th>ref.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pm147</td>
<td>$7/2$</td>
<td>$g_{7/2}$</td>
<td>$+3.0$</td>
<td>$+0.86$</td>
<td>34</td>
</tr>
<tr>
<td>Na147</td>
<td>$5/2$</td>
<td>$f_{5/2}$</td>
<td>$+0.53$</td>
<td>$+0.21$</td>
<td>36</td>
</tr>
<tr>
<td>Sm149</td>
<td>$7/2$</td>
<td>$f_{7/2}$</td>
<td>-0.85</td>
<td>-0.24</td>
<td>36</td>
</tr>
<tr>
<td>Pr141</td>
<td>$5/2$</td>
<td>$d_{5/2}$</td>
<td>$+4.0$</td>
<td>$+5.1$</td>
<td>37</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>+4.8</td>
<td>+1.80</td>
<td>36</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>+4.5</td>
<td>Schmidt value</td>
<td>Used</td>
</tr>
</tbody>
</table>

Nuclear moments of odd-A nuclei in the neighborhood of Pm148.
Fig. 1. Decay scheme of Pm144 after Ofer.13
Fig. 2. Temperature dependence of $I(\theta)$ for the 695 keV γ-ray in the decay of aligned Pm144 taken at 0° and 90° from the crystalline C axis in CMN. Normalized theoretical curves were calculated from Eqs. (2) and (5).
Fig. 3. Intensity vs. angle from the C axis, θ, for the 615 keV γ-ray in the decay of Pm144. The data were taken at $T = 0.0031^\circ\text{K}$ in CMN. The solid curve is $I = 1 + 0.14 P_2(\cos \theta)$.
Fig. 4. Decay schemes of ^{143}Pm and ^{143}Pr.
Fig. 5. Temperature dependence of $I(0)$ for the 740 keV γ-ray in the decay of Pm143 in CMN. Data of August 12, 1961 and December 11, 1961 are shown with normalized theoretical curve calculated by using Eqs. (2) and (5).
Fig. 6. Scintillation spectrum observed in decay of Pr143 plotted on a semi-log scale so that background due to bremsstrahlung will be linear.
Fig. 7. The difference plot of Δ (defined in text) vs. energy. Dashed curve would be expected if 1.5×10^{-4}% of decays produced 740 keV γ-rays.
Fig. 8. Decay scheme of the 148Pm isomers relevant to our research as given in ref. 24 and modified by this work.
Fig. 9. Temperature dependence of $I(0)$ for the 1460 keV γ-ray in the decay of (5.4 day) Pm148 in CMN. Data are shown with normalized theoretical curve calculated from Eqs. (2) and (5). For explanation of dashed curve see Sec. III C.
Fig. 10. Temperature dependence of $I(0)$ for the 1460 keV γ-ray in the decay of aligned (5.4 day) Pm148 in NES. Data are shown with normalized theoretical curve calculated by using Eqs. (2) and (4).
Fig. 11. Temperature dependence of $I(0)$ for the 550 keV γ-ray in the decay of aligned (41 day) 148Pm in NES. Data are shown with normalized theoretical curve calculated by using Eqs. (2) and (4).
This report was prepared as an account of Government sponsored work. Neither the United States, nor the Commission, nor any person acting on behalf of the Commission:

A. Makes any warranty or representation, expressed or implied, with respect to the accuracy, completeness, or usefulness of the information contained in this report, or that the use of any information, apparatus, method, or process disclosed in this report may not infringe privately owned rights; or

B. Assumes any liabilities with respect to the use of, or for damages resulting from the use of any information, apparatus, method, or process disclosed in this report.

As used in the above, "person acting on behalf of the Commission" includes any employee or contractor of the Commission, or employee of such contractor, to the extent that such employee or contractor of the Commission, or employee of such contractor prepares, disseminates, or provides access to, any information pursuant to his employment or contract with the Commission, or his employment with such contractor.