Characterization of a UL49-null mutant: VP22 of herpes simplex virus type 1 facilitates viral spread in cultured cells and the mouse cornea.

Permalink
https://escholarship.org/uc/item/4fq1v9cq

Journal
Journal of virology, 80(17)

ISSN
0022-538X

Authors
Duffy, Carol
Lavail, Jennifer H
Tauscher, Andrew N
et al.

Publication Date
2006-09-01

Peer reviewed
Characterization of a U1,49-Null Mutant: VP22 of Herpes Simplex Virus Type 1 Facilitates Viral Spread in Cultured Cells and the Mouse Cornea

Carol Duffy,¹ Jennifer H. LaVail,² Andrew N. Tauscher,² Elizabeth G. Wills,¹ John A. Blaho,³ and Joel D. Baines¹*

Department of Microbiology and Immunology, Cornell University, Ithaca, New York 14853; Departments of Anatomy and Ophthalmology, University of California San Francisco, San Francisco, California 94143-0452; and Department of Microbiology, Mount Sinai School of Medicine, New York, New York 10029

Received 9 March 2006/Accepted 12 June 2006

Herpes simplex virus type 1 (HSV-1) virions, like those of all herpesviruses, contain a proteinaceous layer termed the tegument that lies between the nucleocapsid and viral envelope. The HSV-1 tegument is composed of at least 20 different viral proteins of various stoichiometries. VP22, the product of the U1,49 gene, is one of the most abundant tegument proteins and is conserved among the alphaherpesviruses. Although a number of interesting biological properties have been attributed to VP22, its role in HSV-1 infection is not well understood. In the present study we have generated both a U1,49-null virus and its genetic repair and characterized their growth in both cultured cells and the mouse cornea. While single-step growth analyses indicated that VP22 is dispensable for virus replication at high multiplicities of infection (MOIs), analyses of plaque morphology and intra- and extracellular multistep growth identified a role for VP22 in viral spread during HSV-1 infection at low MOIs. Specifically, VP22 was not required for either virion infectivity or cell-cell spread but was required for accumulation of extracellular virus to wild-type levels. We found that the absence of VP22 also affected virion composition. Intracellular virions generated by the U1,49-null virus contained reduced amounts of ICP0 and glycoproteins E and D compared to those generated by the wild-type and U1,49-repaired viruses. In addition, viral spread in the mouse cornea was significantly reduced upon infection with the U1,49-null virus compared to infection with the wild-type and U1,49-repaired viruses, identifying a role for VP22 in viral spread in vivo as well as in vitro.

Herpes simplex virus type 1 (HSV-1) virions, like those of all herpesviruses, are composed of a nucleocapsid harboring the double-stranded linear DNA genome, a proteinaceous layer surrounding the nucleocapsid termed the tegument, and a host-derived lipid membrane envelope that contains viral glycoproteins. The tegument layer is a unique feature among herpesviruses and is composed of at least 20 different viral proteins of various stoichiometries. Tegument proteins have been shown to play a variety of roles in infection including the regulation of viral and host gene expression and the promotion of virus assembly and egress (6, 19, 34, 39). Because tegument proteins enter the cell upon fusion of the viral envelope with the host cell membrane, they can potentially exert their activities prior to viral gene expression to provide herpesviruses an advantage early in infection.

VP22, encoded by the U1,49 gene, is one of the most abundant HSV-1 tegument proteins, with an average of 2,000 copies present in each virion (18, 22). VP22 is conserved among the alphaherpesviruses and has been studied in HSV-1, herpes simplex virus type 2 (HSV-2), bovine herpesvirus, and pseudorabies virus (PRV). Localization studies suggest that this protein is dynamically trafficked, as VP22 is present within both the cytoplasm and nucleus at different times in infection (16, 36). Although VP22 is present in infected cells in both phosphorylated and nonphosphorylated isoforms, only hypophosphorylated VP22 is incorporated into virions (4, 17, 21, 24, 30, 35, 36). In addition, VP22 has been shown to induce the stabilization and hyperacetylation of microtubules (15) and to interact with a number of proteins including histones H1 and H4 (40), the viral glycoproteins gE, gM, and gD (7, 20), and the viral transactivator of immediate-early gene expression, VP16 (14).

Despite these interesting observations, the role of VP22 in HSV-1 infection remains unclear. An HSV-1 recombinant virus that expresses a truncated form of VP22 (HSV-1 RF177) expresses low levels of the amino-terminal 212 residues of the 301-residue VP22 (37). The truncated form of VP22 expressed by RF177 showed normal cellular localization and was incorporated into extracellular virions. In addition, single-step growth kinetics, capsid assembly, and viral egress of RF177 were nearly indistinguishable from those of wild-type HSV-1. However, RF177 viral plaques were reduced in size by nearly 40% at 48 h postinfection compared to plaques produced by the wild-type virus, suggesting a role for VP22 in HSV-1 cell-cell spread. Recently, an HSV-1 U1,49-null mutant was constructed and described (13). Although VP22 was found to alter the expression, localization, and virion incorporation of the viral transactivator ICP0, no difference in plaque size was reported. Thus, the role(s) of VP22 in HSV-1 infection, and specifically in viral spread, requires further study.

To determine the contribution of VP22 to HSV-1 infection,
we generated HSV-1 U4g9-null and U4g9-repaired viruses and characterized their growth relative to the wild-type parental virus in both cultured cells and the mouse cornea. Single-step growth analyses indicated that VP22 was not required for efficient virus assembly while multistep growth analyses, plaque measurements, and mouse corneal spread assays showed that VP22 was required for efficient viral spread. Interestingly, the absence of VP22 did not appear to affect either intracellular virus production or cell-cell spread but decreased extracellular virus at least 90%. Thus, the defect in viral spread associated with the U4g9-null virus is due to decreased secondary infection by an extracellular route.

MATERIALS AND METHODS

Viruses and cells. Viral stocks of wild-type HSV-1F, the U4g9 deletion virus, and the U4g9 repair virus were propagated exclusively on V49 cells, a Vero-derived cell line that constitutively expresses VP22 (37). Vero and V49 cells were maintained in Dulbecco's modified Eagle's medium supplemented with 4.0 mM l-glutamine, 4.5 g/liter glucose, 125 U/ml penicillin, 0.125 mg/ml streptomycin, and either 10% newborn calf serum or 10% fetal bovine serum, respectively.

Plasmid construction. The recombinant plasmid used to generate the U4g9R virus by shuttle mutagenesis was constructed as follows. First, the Apol-BamHI fragment (HSV-1 bp 104760 to 107022) of the BamHI F-fragment of HSV-1F was subcloned from pKB128 (a gift from Bernard Roizman) into pUC19. Next, the Apol site was replaced with a BamHI site using the Apol-BamHI linker 5'-AA TTGGATCC3' and standard cloning methods. This fragment was then released via BamHI digest and cloned into the BamHI site of pST76K SR. The shuttle mutagenesis plasmid pST76K SR contains a Kan' gene for positive selection upon transformation, a neo gene for recombination in *Escherichia coli*, a temperature-sensitive origin of replication for selection of cointegrates, and an sacB sucrose-sensitivity gene for selection of cointegrate border resolution (1, 5). The resulting pST76K SR-derived shuttle mutagenesis plasmid carrying the U4g9 gene with flanking arms for recombination was named pB386.

Construction of WT, U4g9 deletion, and U4g9 repair viruses. HSV-1(F) (wild type [WT]), the U4g9 deletion virus (U4g9'), the U4g9 repair virus (U4g9R), and the U4g9.5 deletion virus (U4g9.5') were constructed using the HSV-1F bacterial artificial chromosome (BAC) pYEbac102 (42) (Fig. 1; see also Fig. 3). The U4g9' BAC, in which the entire U4g9 open reading frame (ORF; HSV-1 bp 105480 to 106396) (29) was replaced with an FRT-BamHI site, was generated according to the method of Lee et al. (25) as follows. *E. coli* EL250 cells, which harbor (i) a defective λ prophage in which the λ exo, bet, and gam recombination and nuclease-inhibition genes are under the control of the λ cI857 temperature-sensitive repressor and (ii) an arabinose-inducible lac repressor gene, were transformed with pYEbac102. A chloramphenicol-resistant (Cm') clone that maintained the full-length HSV-1(F) genome as a BAC was identified and used for the mutagenesis. A linear recombination fragment containing a Kan' gene flanked by FRT recognition target (FRT) sites, one BamHI site, and short sequences homologous to regions up- and downstream of the U4g9 ORF was generated by PCR and gel purified. pKD13, a plasmid containing a FRT-Kan'-FRT-BamHI cassette (9) was used as a template for the PCR. The primers used for the PCR were 5'-ACCAGCAAGCCACCAACGACGGTTATCCTGACG3' and 5'-ACC CAGCGCTATTTGCGGATCCCATCCCTGACAGCTTACCGTCA3' (Integrated DNA Technologies, Coralville, IA); nucleotides in italics are homologous to the BAC target sequences up- and downstream, respectively, of U4g9; nucleotides in Roman type are homologous to the FRT-Kan'-FRT-BamHI template cassette of pKD13; and nucleotides in boldface indicate the BamHI site. To prepare *E. coli* EL250 cells carrying pYEbac102 for electroporation, liquid cultures were grown at 30°C in Luria-Bertani (LB) medium containing 30 µg/ml chloramphenicol (CHL) to an optical density of 0.6; cultures were temperature shifted to 42°C for 15 min to induce Exo, Beta, and Gam expression and then chilled on ice, washed three times with 10% ice-cold glycerol, and concentrated 500-fold. A total of 75 µl of competent cells was transformed via electroporation (2.3 kV, 200 μF, and 25 F) with ~500 ng of the gel-purified recombination fragment. Following growth at 30°C on LB agar plates containing 30 µg/ml CHL and 50 µg/ml kanamycin (KAN), Cm' Kan' recombinants were genotyped by single-genome-long fragment length polymorphism (RFLP) of alkaline lysis-extracted BAC DNA. Next, the Kan' gene was excised through Flp-mediated recombination between the

FLP recognition target (FRT) sites after induction of Flp recombinase by growth in 0.1% arabinose overnight at 30°C. Kanamycin-sensitive clones were identified through replica plating on LB agar plates containing either CHL (30 µg/ml) or KAN (50 µg/ml), and the BACs were again genotypically verified by RFLP of alkaline lysis-extracted BAC DNA. The resulting BAC was named pYEbac102.U4g9' (42). The U4g9R BAC was constructed by reintroducing the U4g9 ORF into pYEbac102.U4g9' in its native position using a RecA-based method of shuttle mutagenesis (5, 31). First, pYEbac102.U4g9' DNA was electroporated into the
sequencing. A homologous-codon clone was obtained by a method similar to that of Sambrook et al. (37). The U15,49 viral DNA was isolated from transfected DH10B cells, and the cDNA fragment was subcloned into the pUC18 vector. The resulting clone was sequenced using the dideoxynucleotide chain termination method (39). The DNA sequence of the U15,49 viral DNA was found to be identical to that of the wild-type virus, and the deletion mutation was confirmed by restriction enzyme analysis.}

Viral DNA analysis. Viral DNAs were prepared from infected cells by the method of Sambrook et al. (37). The DNA was isolated by phenol-chloroform extraction and purified by ethanol precipitation. The viral DNA was digested with restriction enzymes and analyzed by agarose gel electrophoresis. The results showed that the viral DNA was not altered by the deletion mutation. The genomic organization of the viral DNA was confirmed by Southern blot analysis using probes derived from the viral DNA. The results showed that the viral DNA was not altered by the deletion mutation. The genomic organization of the viral DNA was confirmed by Southern blot analysis using probes derived from the viral DNA. The results showed that the viral DNA was not altered by the deletion mutation. The genomic organization of the viral DNA was confirmed by Southern blot analysis using probes derived from the viral DNA. The results showed that the viral DNA was not altered by the deletion mutation. The genomic organization of the viral DNA was confirmed by Southern blot analysis using probes derived from the viral DNA. The results showed that the viral DNA was not altered by the deletion mutation. The genomic organization of the viral DNA was confirmed by Southern blot analysis using probes derived from the viral DNA. The results showed that the viral DNA was not altered by the deletion mutation. The genomic organization of the viral DNA was confirmed by Southern blot analysis using probes derived from the viral DNA. The results showed that the viral DNA was not altered by the deletion mutation. The genomic organization of the viral DNA was confirmed by Southern blot analysis using probes derived from the viral DNA. The results showed that the viral DNA was not altered by the deletion mutation. The genomic organization of the viral DNA was confirmed by Southern blot analysis using probes derived from the viral DNA. The results showed that the viral DNA was not altered by the deletion mutation. The genomic organization of the viral DNA was confirmed by Southern blot analysis using probes derived from the viral DNA. The results showed that the viral DNA was not altered by the deletion mutatio
citrate buffer (135 mM NaCl, 10 mM KCl, 40 mM citric acid [pH 3.0]) and once with an excess of medium 199V to neutralize and remove unbound virus. Fresh medium 199V was added to the cells, and the infections were held at 37°C. At the indicated times postinfection, the medium containing extracellular virus was removed, clarified, and titrated on Vero cells. Infected cells were frozen immediately at −80°C. At a later date, the cells were thawed, scraped into 0.5-mL thrice-autoclaved skin milk, and briefly sonicated; virus was titrated on Vero cells to determine intracellular growth kinetics.

To study the kinetics of intracellular multistep growth in the absence of secondary infections initiated by virus released to the medium, 199V medium containing 0.3% human immunoglobulin (Sigma-Aldrich, St. Louis, MO) was added to cells following infection and citrate buffer-199V medium washes. At the indicated times postinfection, cells were scraped, pelleted, and washed three times with PBS to remove the neutralizing human immunoglobulins. Cell pellets were resuspended in 0.5 mL of thrice-autoclaved skin milk, briefly sonicated, and frozen at −80°C. At a later date, virus in the resuspended pellets was titrated on Vero cells.

Particle-PFU analyses. Extracellular virions were prepared from clarified overlying medium of Vero cells infected with WT, U1-49−, or U1-49R viruses at an MOI of 0.1 at 37°C for 48 h. Virions were pelleted through a 30% sucrose cushion, resuspended in TBSa (10 mM Tris-HCl, pH 7.5, 200 mM NaCl, 2.6 mM KCl, 0.18 mM MgCl2, 1.8 mM CaCl2), and briefly sonicated. Part of each virion preparation was titrated on Vero cells to determine the PFU/mL. Part of each virion preparation was diluted in ultrapure H2O, mixed with a known quantity of 0.3-μm polystyrene latex beads (Ladd Research, Williston, VT), and spotted and dried on Formvar and carbon-coated nickel grids. After drying, the samples were stained with 2% aqueous uranyl-acetate and viewed with a Philips 201 transmission electron microscope. Viral particles and latex beads were counted, with the beads serving as an internal control, and the number of viral particles/mL of preparation was calculated. The number of viral particles/PFU was calculated from the number of viral particles/mL and number of PFU/mL of each virion preparation.

Corneal viral spread analyses. All procedures involving animals adhered to the Society for Neuroscience Guidelines for the Use of Animals in Research and the guidelines of the University of California San Francisco Committee on Animal Research. Male BALB/c mice 6 to 8 weeks old were anesthetized with an intraperitoneal injection of Avertin (28), followed by topical corneal administration of 0.05% proparacaine and 1% atropine in the eye. The eyes were blotted with sterile cotton, and immediately the corneas were scarified in a grid pattern of 10 horizontal and 10 vertical strokes with a 27-gauge needle. A 5-μL drop of virus in minimal essential medium containing 106 PFU of virus was applied to the cornea. Anesthesia was maintained for 20 to 30 min following inoculation to allow for viral adorption. The animals were monitored daily and showed no behavioral signs of infection.

The mice were allowed to survive 24 (n = 3), 48 (n = 3), or 72 (n = 3) h after infection. They were reanesthetized with Avertin and killed by intracardiac perfusion with normal saline. The corneas were dissected and prepared for immunohistochemistry according to standard procedure (33). In brief, the corneas were first incubated overnight in blocking solution composed of 5% normal goat serum, 0.1% Triton-100 in PBS (pH 7.2). They were incubated overnight in primary antiserum (horse/rabbit peroxidase-conjugated polyclonal antiserum raised in rabbits against human HSV-1; 1:100 dilution) (Accurate Chemical and Scientific Corp., Westbury, N.Y.), and the presence of HSV antigens was determined with nickel-enhanced diaminobenzine. The corneas were flat mounted on glass slides, and viral spread was estimated using digitized photographs of corneal whole mounts at ×25 magnification and ImageJ software. For each measurement the distance from the edge of the scratch to the farthest boundary of contiguous infected cells was traced. Measurements were collected from at least five fields for each eye.

RESULTS

Generation of U1-49 deletion and repair viruses. To identify the role(s) of VP22 during HSV-1 infection, we generated both a U1-49-null virus (U1-49−) that lacks the entire U1-49 ORF and a repair virus (U1-49R) in which the U1-49 ORF is restored using an HSV-1F BAC system (42) as described in Materials and Methods. The deletion in the U1-49-null virus spanned bp 105480 to 106396, a region from 5 bp before the start codon to 5 bp after the stop codon of the U1-49 ORF. This entire sequence was restored to its original location in the U1-49R virus.

When propagated on V49 cells and analyzed on Vero cells, the U1-49− plaque phenotype (see below) remained consistent. However, when the U1-49− virus was propagated on Vero or rabbit skin cells, some of the plaques became dramatically larger within the first two to three passages (http://www.vet.cornell.edu/labs/baines/). Therefore, all of the present studies were performed with virus stocks propagated on the complementing V49 cell line.

To verify the expected genotypes of the recombinant viruses, viral DNA was purified, digested with BamHI, and electrophoretically separated through a 1% agarose gel. The digested DNAs were transferred to a nitrocellulose membrane and probed with [α-32P]dCTP-labeled BamHI F-fragment derived from WT HSV-1(F). Figure 1A shows the expected size of the U1-49-containing BamHI F-fragment of the WT and U1-49R viruses compared to that of the U1-49− virus in which the U1-49 ORF was replaced by an FRT-BamHI site. Figures 1B and 1C show the ethidium bromide-stained agarose gel and Southern hybridization, respectively, of BamHI-digested viral DNA. As expected, the BamHI F-fragment (predicted size of 8,054 bp) was present in the digested WT and U1-49R viral DNAs and hybridized with the BamHI F-fragment probe (Fig. 1B and C, asterisks). In contrast, BamHI fragments of approximately 6,500 bp (filled circle) and 700 bp (filled square) present in the digested U1-49− viral DNA hybridized with the BamHI F-fragment probe. These results were consistent with the expected BamHI fragment sizes (6,512 bp and 724 bp) of the U1-49 deletion as designed. To ensure that the nucleotide sequences of the U1-49− and U1-49R viruses were correct, the genetically manipulated regions of the genomes were amplified from purified viral DNA by PCR and sequenced. All nucleotide sequences were found to be correct as designed.

To confirm the deletion and repair of the U1-49 ORF, the expression of VP22 in cells infected with the recombinant viruses was examined. Vero cells were infected at an MOI of 5 with WT, U1-49−, or U1-49R virus and then collected at 18 hpi and lysed. Proteins within the lysates were analyzed by immunoblotting with an anti-VP22 polyclonal antibody (4). As expected, VP22 was present in lysates of WT- and U1-49R-infected cells but absent from lysates of U1-49−-infected cells (Fig. 2, top).

To ensure that the deletion of U1-49 did not affect expression of the U1-48 gene product VP16, immunoblots of the above lysates were probed with an anti-VP16 polyclonal antibody (Fig. 2, middle). As a loading control, these immunoblots were also probed with a polyclonal antibody directed against another late protein encoded by the U1-28 gene (Fig. 2, bottom). VP16 was expressed in approximately equimolar amounts in cells infected with the WT, U1-49−, and U1-49R viruses, confirming that U1-48 expression was unaffected by the deletion of U1-49.

Due to the lack of a U1-49,5 antibody, we used Tricine-SDS-PAGE separation of 35S-labeled infected cell lysates to ensure that the deletion of U1-49 did not affect expression of the U1-49.5 gene product. To determine the position of the U1-49.5 gene product on the gel, we constructed a U1-49.5 deletion mutant and compared 35S-labeled proteins present in lysates derived from cells infected with this mutant to those infected with the WT, U1-49−, and U1-49R viruses. Construction of the
FIG. 2. Immunoblot analysis of VP16 expression upon infection with the WT, U₄⁹⁻, and U₄⁹R viruses. Lysates of Vero cells infected with the WT, U₄⁹⁻, or U₄⁹R viruses for 18 h were separated by SDS-PAGE and probed for the presence of VP22 (top) and VP16 (middle). As a loading control, the immunoblot was also probed with an antibody directed against pU₁.28 (bottom).

U₄⁹.5 deletion mutant is described in Materials and Methods and Fig. 3. Figure 3C shows that the U₄⁹.5 gene product was present in approximately equimolar amounts in cells infected with the WT, U₄⁹⁻, and U₄⁹R viruses, confirming that U₄⁹.5 expression was unaffected by the deletion of U₄⁹.

The U₄⁹⁻ virus produces reduced-sized plaques in cultured cells. As a first step to examine the growth phenotype of the U₄⁹-null virus, Vero cell monolayers were infected with the WT, U₄⁹⁻, and U₄⁹R viruses, and plaques were observed 44 h after infection (Fig. 4A). Quantitative analysis of these viral plaques showed that the U₄⁹⁻ virus produced plaques that were, on average, 5% the size of those formed by the WT virus (Fig. 4B). With the high inherent variability in plaque size among the plaques examined, this difference was statistically significant (P < 0.000001). By contrast, the U₄⁹R virus produced plaques that were approximately 78% the size of those formed by the WT virus, but this difference was not statistically significant. To determine whether the reduced plaque size observed with the U₄⁹⁻ virus was due to a defect in virus assembly, egress, and/or cell-cell spread, further experiments were performed.

Characterization of growth properties of the U₄⁹⁻ virus in cultured cells. To determine whether the small plaques produced by the U₄⁹⁻ virus are due to a defect in virus assembly, single-step growth analyses were performed. Vero cells infected at an MOI of 5 with the WT, U₄⁹⁻, and U₄⁹R viruses were collected at various times postinfection and lysed, and intracellular virus was quantified by plaque assay (Fig. 5A). Medium overlaying the infected cell monolayers was clarified and assayed separately (Fig. 5B). Single-step growth kinetics of both intra- and extracellular U₄⁹⁻ virus did not differ significantly from those of either the WT or U₄⁹R viruses. Together, the above data indicate that the reduced plaque size observed with the U₄⁹⁻ virus is not due to a defect in virus assembly.

Many viral growth defects are subtle enough to only be observed after multiple rounds of infection. Also, viral growth initiated by high MOIs, such as in the above experiment, is measured in the presence of some amount of VP22 delivered

FIG. 3. Analysis of U₄⁹.5 expression upon infection with the WT, U₄⁹⁻, and U₄⁹R viruses. (A and B) Genetic analysis of U₄⁹.5⁻ viral DNA. (A) Deletion of nucleotides encoding U₄⁹.5 residues 9 to 22 in the U₄⁹.5⁻ viral genome yielded a 5,371-bp EcoRV fragment (C) in place of the 5,553-bp EcoRV fragment (*) present in the WT viral genome. (B) One-percent agarose gel electrophoresis of EcoRV-digested WT and U₄⁹.5⁻ viral DNAs visualized with ethidium bromide staining (negative image, left) and Southern hybridization (right) using the Apol-BamHI segment of the HSV-1 BamHI F-fragment labeled with [α-³²P]dCTP as a probe. (C) Scanned autoradiographic image of a 16% Tricine-SDS-polyacrylamide gel containing electrophoretically separated [³²P]methionine-cysteine-labeled proteins from lysates of cells infected with WT, U₄⁹⁻, U₄⁹R, and U₄⁹.5⁻ viruses. The location of the U₄⁹.5 gene product in the WT, U₄⁹⁻, and U₄⁹R lanes is indicated.
from the infecting virions that were propagated on a complementing cell line. To minimize such effects and further study the role of VP22 in viral growth, we performed multistep growth analyses in cells infected with 0.001 PFU/cell. To study extracellular virus as a component of viral spread, we titrated the overlying medium and infected cell monolayers separately. Figure 6A shows that intracellular U1\textsubscript{49}R virus titers were decreased, up to~11-fold at 48 hpi, compared to both the WT and U1\textsubscript{49} viruses. Extracellular U1\textsubscript{49}R virus titers were also decreased, again up to~11-fold at 48 hpi, compared to the WT and U1\textsubscript{49} viruses as shown in Fig. 6B.

Virion release is decreased in the absence of VP22. The decrease in U1\textsubscript{49}R intra- and extracellular multistep growth could be due to one or more of the following mechanisms: (i) decreased release of U1\textsubscript{49}R virions into the medium, resulting in decreased secondary infection and spread through the cell monolayer; (ii) decreased infectivity of individual extracellular U1\textsubscript{49}R virions, resulting in decreased secondary infection; (iii) decreased or defective virus assembly within U1\textsubscript{49}R-infected cells, resulting in fewer intra- and extracellular infectious particles; and (iv) decreased spread from infected cells to adjacent cells (cell-cell infection), resulting in decreased spread through the monolayer. To differentiate between these possibilities, we performed multistep intracellular growth analyses in the presence of neutralizing antibody in the overlying medium. This treatment dramatically reduces extracellular virus and therefore focuses the analysis onto viral spread in the absence of secondary infections from extracellular particles. As shown in Fig. 6C, when extracellular virus was eliminated from multistep growth, the U1\textsubscript{49}R virus generated intracellular titers approximately equivalent to those of the WT and U1\textsubscript{49} viruses. Thus, the above data show the viral spread defect observed upon U1\textsubscript{49}R virus infection was primarily due to decreased viral release and/or decreased infectivity of extracellular...
particles rather than to decreased virus assembly or cell-cell spread. To determine whether the viral spread defect associated with the $U_{1.49^{-}}$ virus was due to decreased viral release, decreased infectivity of extracellular $U_{1.49^{-}}$ particles, or both, we compared the infectivity of purified WT, $U_{1.49^{-}}$, and $U_{1.49R}$ extracellular particles. As shown in Fig. 7A, fractions from gradients containing virions purified from the clarified overlying medium of infected cells contained substantially fewer $U_{1.49^{-}}$ PFU than either WT or $U_{1.49R}$ PFU. Immunoblot
analyses of these gradient fractions using an antibody against the major capsid protein, VP5, showed that the U149 viral gradient fractions also contained less VP5 (Fig. 7B), indicating that U149 viral infections produce fewer extracellular particles as well as fewer extracellular PFU compared to WT or U149R infections. To further compare the infectivity of extracellular U149 virions to extracellular wild-type and U149R virions, we performed particle-PFU analyses. The particle-to-PFU ratios of purified WT, U149, and U149R extracellular virions were 234:1, 550:1, and 418:1, respectively; these ratios were not readily distinguishable within the high inherent variability of this technique. These findings indicate that extracellular U149 particles are not measurably less infectious than WT or U149R extracellular virions and, together with the above data on multistep viral growth in the presence and absence of neutralizing antibody, show that the spread defect associated with the U149 virus is largely attributable to decreased viral release.

To correlate the decreased viral release of the U149-null virus with the effect of extracellular virus on WT HSV-1 spread, we examined the effect of neutralizing antibody on WT plaque size. We found that in the presence of 1% human immunoglobulin, WT HSV-1 produces plaques that are 15% the size of those produced in the absence of neutralizing antibody (data not shown), showing that extracellular virus contributes greatly to HSV-1 plaque size and viral spread.

Protein composition of U149 virions. The defective viral release observed upon infection with the U149 virus could be a direct or indirect consequence of the absence of VP22. Differences in intracellular virion composition could contribute to differences in viral release. Therefore, we investigated whether VP22 contributes indirectly to virion release, through a possible role in virion assembly, by examining the protein composition of WT, U149, and U149R intracellular virions. The left panel of Fig. 8 shows a Coomassie-stained SDS-polyacrylamide gel separation of purified intracellular virions, whereas the right panels show immunoblot analyses of the same samples. The locations of the probed proteins are aligned with their counterparts in the Coomassie-stained gel. The major capsid protein, VP5, was probed as a loading control. Recently, Elliott and others showed that VP22 is absolutely required for the incorporation of ICP0 into virions (13, 38). We found that although ICP0 was decreased in U149 virions, VP22 was not absolutely required for its incorporation. In HSV-1, VP22 has been shown to interact with both VP16 and gD (7, 14). As previously reported (13), we found that the absence of VP22 had no effect on incorporation of VP16, whereas levels of gD were decreased in U149 virions compared to WT and U149R virions. Although PRV VP22 was found to interact with PRV gE, virion incorporation of gE was not affected in a PRV U149 deletion virus (20). In contrast, we found that levels of gE were dramatically decreased in HSV-1 U149 virions compared to...
WT and U1,49R HSV-1 virions. Michael et al. (32) recently reported extensive variability in levels of gE present in different PRV virion preparations. However, we found both the levels of gE present in WT and U1,49R virions and the relative decrease in gE levels present in U1,49− virions to be fairly consistent from virion preparation to preparation (data not shown). Therefore, the relative decrease of gE incorporation into U1,49− virions shown in Fig. 8 is a consistent and reproducible aspect of the HSV-1 U1,49-null virus phenotype. Finally, virion incorporation of actin was increased in PRV U1,49− virions (10, 32) but was not affected in our HSV-1 U1,49− virus. The above data indicate that VP22 is involved in, but not required for, incorporation of ICP0, gD, and gE into HSV-1 virions. In addition, the protein composition of VP22− virions varies between HSV-1 and PRV, suggesting that the role(s) VP22 plays in virion assembly varies between the two systems.

VP22 is required for efficient viral spread in the mouse cornea. Many HSV-1 proteins exhibit functional redundancy and are therefore deemed nonessential when studied in cultured cells, but they exhibit more dramatic phenotypes in live animals. To determine whether VP22 is essential for viral growth in vivo, we analyzed viral spread in the mouse cornea. Corneas in live mice were scarified and infected with ~100 PFU of WT, U1,49−, or U1,49R virus. At 24 or 48 hpi, the mice were sacrificed, the corneas were dissected, and the presence of infectious virus was revealed by immunohistochemistry with an HSV-specific antibody. At both time points the U1,49− virus spread only ~60% of the distance spread by the WT and U1,49R viruses (Fig. 9 and Table 1). The far-right panels of Fig. 9 show whole flat-mounted corneas photographed at lower magnification and illustrate the decreased size of corneal lesions produced upon infection with the U1,49-null virus (Fig. 9C) compared to the lesions produced by the WT and U1,49R viruses (Fig. 9I and F, respectively). The U1,49− virus formed isolated rosettes of infected cells, whereas the WT and U1,49R viruses formed extensive borders of infected cells along the length of the scarification. These data identify a role for VP22 in HSV-1 viral spread in vivo as well as in cultured cells.

DISCUSSION

Although many studies have focused on identifying the biological properties of HSV-1 VP22 and its homologs in other herpesviruses, the role this protein plays in HSV-1 infection is unclear. To address this problem, we generated two recombinant viruses, one lacking the entire U1,49 gene and one containing a restored U1,49 gene, and characterized their growth. In this report we show that VP22 is required for efficient viral spread during infection of both cultured cells and the mouse cornea.

Role of VP22 in viral spread in cultured cells. While single-step intracellular and extracellular growth analyses did not indicate a defect in virus assembly for the U1,49-null virus, plaques produced by this virus in cultured cells were reduced in size by an average of 95% compared to the WT and U1,49-repaired viruses. A similar, though less dramatic, phenotype was previously observed with an HSV-1 U1,49 truncation mutant that expresses low levels of the amino-terminal 212 residues of VP22 (37). This virus, HSV-1 RF177, produced plaques in cultured cells that were reduced in size by nearly 40% compared to those produced by the parental WT virus. It is currently not known whether the reduced plaque size observed with this virus is due to the lack of the carboxy-terminal 89 residues of VP22 or to the low expression level of the truncated protein, and, therefore, we cannot attribute the function of VP22 in viral spread to a particular domain of the protein. In any case, the two studies are in agreement in defining a role for VP22 in viral spread of HSV-1.

Recently, an HSV-1 recombinant virus in which the U1,49 gene was replaced with the gene encoding green fluorescent protein was reported (13). Elliott et al. constructed their U1,49-null virus on a VP22-complementing cell line because the recombinant virus could not be generated on noncomplementing cells, and it was therefore suggested that the WT virus maintained a growth advantage over the U1,49-null virus. However, once the U1,49-null virus was generated, the authors observed that VP22 was not necessary for virus growth on noncomplementing Vero cells and, thus, performed all further experiments with virus stocks propagated on noncomplementing cells. A decrease in plaque size was not reported for this virus.

We have also observed that VP22 is dispensable for growth on Vero cells. However, we have noted with interest that while U1,49− stocks propagated on VP22-complementing cells consistently produced plaques ~5% the size of those produced by the WT and U1,49R viruses, some plaques produced by the U1,49-null virus were comparable in size to those produced by the wild-type virus (http://www.vet.cornell.edu/labs/baines/) after as few as two to three passages on noncomplementing cells. The reproducibility of these observations suggests that the U1,49-null virus somehow compensates for the lack of VP22 when propagated on noncomplementing cells. The mechanism of this phenotypic change is unknown but may reflect the acquisition of secondary mutations that compensate for the
lack of VP22. Because phenotypic change may further define the function of VP22 during virus infection, as well as identify the basic mechanisms of HSV-1 spread, we are intrigued by this phenotypic morphogenesis, and studies are under way to identify its cause.

In the present work, studies were undertaken to determine the mechanism by which VP22 promotes viral spread. During multistep growth, both intracellular and extracellular U₄⁹⁻ PFU were reduced 11-fold compared to the WT and U₄⁹R viruses. Multistep growth experiments performed in the presence and absence of neutralizing antibody together with VP5 immunoblot-PFU and particle-PFU analyses of U₄⁹⁻ extracellular particle infectivity showed that this reduction was largely attributable to decreased levels of extracellular U₄⁹⁻ virus rather than to a defect in either U₄⁹⁻ virus assembly, cell-cell spread, or particle infectivity. At this time it is unclear whether the decreased extracellular virus observed during U₄⁹⁻ infection is due to a defect in viral exit from infected cells or decreased release of extracellular U₄⁹⁻ virions from intercellular spaces. The answer to this question and the role of VP22 in the mechanism(s) of viral exit and/or intercellular release will be the topics of future studies. Our present work shows that at least in some culture systems and tissue types, extracellular virus contributes greatly to viral spread, and VP22 plays a role in the accumulation of extracellular virus.

VP22 may promote extracellular virus accumulation and spread through a direct or indirect mode of action, and several possibilities exist for either scenario. For example, VP22 may affect the cytoskeleton of infected cells and promote efficient transport of virion-containing vesicles to the cell surface through its ability to stabilize microtubules (15). Alternatively, VP22 may function indirectly through its interactions with and/or optimal incorporation of other viral proteins such as ICP0, gE, or gD into virions (7, 13, 20). Elliott et al. have reported that in the absence of VP22 there is both a delay in the synthesis of the transactivator ICP0 and a complete loss of ICP0 virion incorporation (13). If the decreased viral spread observed upon U₄⁹⁻ infection was due solely to these effects

![Image of viral spread](image)

FIG. 9. Analysis of U₄⁹⁻, U₄⁹R, and WT HSV-1 viral spread in the mouse cornea. The corneas of live mice were scarified and infected with ~1,000 PFU of either U₄⁹⁻ (A to C), U₄⁹R (D to F), or WT HSV-1 (G to I) virus. At 24 or 48 hpi, the mice were sacrificed, and the corneas were dissected and prepared for immunohistochemistry using an antibody directed against HSV-1 proteins. Photographs of corneas flat mounted on glass slides are shown with the left middle panels at the same magnification (bar = 100 µm) and at lower magnification in the right panels (bar = 1 mm).

| TABLE 1. Spread of the WT, U₄⁹-null, and U₄⁹R viruses in corneal epithelium |
|-------------------------------|-----------------|-----------------|-----------------|
| Time (hpi) | WT (HSV-1) | U₄⁹⁻ | U₄⁹R |
| 24 | 179 ± 81.7 (81) | 105.9 ± 75.6 (78) | 171.7 ± 112.2 (70) |
| 48 | 193.8 ± 79.3 (64) | 128.4 ± 81.9 (77) | 206.4 ± 78.0 (64) |

* The number of measurements is given in parentheses.
on ICP0, one would expect to observe decreased production of intracellular virions, especially over several rounds of infection as measured by multistep growth, and/or decreased infectivity of U49 virions. However, we did not observe either of these phenomena (Fig. 6, lower panel). Another possibility is that VP22 mediates viral spread through incorporation of gD into virions. However, because HSV-1 gD is required for virus entry and our particle-PFU analyses did not show a measurable decrease in U49 virion infectivity, it is unlikely that the decreased incorporation of gD into U49 virions can fully explain the U49-null phenotype. Likewise, we observed decreased incorporation of gE into U49 virions. However, gE is required for normal cell-cell spread (12) which was not decreased upon infection with the U49 virus. Thus, while both gE and VP22 contribute to HSV-1 viral spread, VP22 appears to contribute through extracellular virus, whereas gE facilitates cell-cell spread.

Contribution of VP22 to herpetic disease. The spread of HSV between corneal epithelial cells is critical for two phases of herpetic eye disease. In the initial, primary phase, aerosolized HSV that has been released from one infected individual may enter a break in the corneal epithelium of a second individual. The virus replicates and spreads between epithelial cells of the second host, and it ultimately reaches the basal cell layer, where it can invade the fine axon endings of trigeminal ganglion cells. Within these axons HSV is transported retrograde to the ganglion cell bodies, where it can establish a latent infection. In the second phase following reactivation, new virus is transported anterograde within the nerve endings to the corneal epithelium (33). The corneal epithelial cells again become infected, and the resulting humoral and cellular immunological responses may result in scarring and recurrent inflammation in the epithelium and deeper tissues (for review, see reference 41).

Understanding the pathogenesis of both phases of herpetic epithelial disease requires knowledge of the role(s) that viral genes play in viral spread. Because productive infection in animals may require specific viral proteins that are dispensable for replication in cultured cells, we considered it important to study the contribution of VP22 to HSV-1 infection in the context of the whole-animal model. Corneal lesions produced by the U49-null virus were dramatically reduced in size compared to those produced by the WT and UL49R viruses. Thus, we have identified a role for VP22 in HSV-1 corneal viral spread in vivo.

Studies on the contribution of VP22 to infection by other herpesviruses have shown variable importance for VP22 in viral growth and virulence. While a bovine herpesvirus U149 deletion virus exhibited a significant delay in single-step growth analyses and reduced virulence in cattle (26, 27), a PRV U149 deletion virus showed single-step growth profiles identical to WT PRV and did not promote virulence or neuroinvasiveness in the rat eye infection model (11). Together, these data indicate that the presence of VP22 is of variable importance to different herpesviruses and experimental systems.

In summary, we have characterized the growth of an HSV-1 U149-null virus and have identified a role for VP22 in viral spread during HSV-1 infection both in vitro and in vivo. Future studies will identify how this protein functions to promote viral spread and determine whether VP22 plays a role in virion exit and/or intercellular release. In addition, the use of a U149-null virus with its genetically repaired partner should greatly facilitate investigations of the involvement of VP22 in HSV-1 tegument formation, pathogenesis, and virion egress.

ACKNOWLEDGMENTS

These studies were supported by NIH R01 grants GM 50740 and AI 52341 to J.D.B. and AI 38873 to J.A.B., NIH NRSA F32 grant GM067519 to C.D., PHS grant EY 13607, and funds from That Man May See Inc., to J.H.B.

We thank Yasushi Kagawauchi for the gift of the HSV-1F BAC. We thank Klaus Osterrieder, B. Karsten Tischer, Jens von Einem, Daniel Schumacher, Laura Goodman, and Cristina Rosas for their generous sharing of reagents, techniques, and helpful advice. We thank David Johnson for the gift of the anti-gE antibody and Elisabeth Schlegel (Mount Sinai School of Medicine) for assistance with the V49 cells.

REFERENCES

20. Fuchs, W., B. G. Klupp, H. Granzow, C. Hengartner, A. Brack, A. Mundi, and

