Title
TNF inhibitor induced alopecia: an unusual form of psoriasiform alopecia that breaks the Renböck mold

Permalink
https://escholarship.org/uc/item/4gk06758

Journal
Dermatology Online Journal, 23(3)

Authors
Craddock, Lauren N
Cooley, David M
Endo, Justin O
et al.

Publication Date
2017

License
CC BY-NC-ND 4.0

Peer reviewed
TNF inhibitor induced alopecia: an unusual form of psoriasiform alopecia that breaks the Renbök mold

Lauren N. Craddock MD¹, D. David M Cooley MD², Justin O. Endo MD³, B. Jack Longley MD³, Freddy Caldera DO⁴

Affiliations: ¹ University of Wisconsin, Departments of Internal Medicine and Dermatology, Madison, Wisconsin, ² St. John Providence, Department of Gastroenterology, Southfield, Michigan, ³ University of Wisconsin, Department of Dermatology, Madison, Wisconsin, ⁴ University of Wisconsin, Department of Medicine, Division of Gastroenterology and Hepatology, Madison, Wisconsin

Corresponding Author: Lauren N. Craddock, MD, University of Wisconsin, Departments of Internal Medicine and Dermatology, 1 South Park Street, 7th Floor, Madison, WI, 53715, USA. Tel. 608-287-2620, Email: LCraddock@uwhealth.org

Abstract

TNF-α-inhibitors are known to induce skin adverse effects including psoriasis and alopecia areata. Here, we describe a unique pattern of hair loss that has psoriatic and alopecia areata-like features. Diagnosis requires clinical-pathologic correlation and is supported by increased catagen/telogen hairs, psoriasiform epidermal hyperplasia, perifollicular lymphocytic infiltrate, and the presence of eosinophils and plasma cells. Although there are no treatment consensus guidelines, management options include stopping therapy, switching to a different TNF-α inhibitor or ustekinumab (in severe cases), or continuing TNF-α inhibitor therapy with addition of topical, intralesional, or systemic immunosuppressants.

Keywords: alopecia, psoriasis, psoriasiform, IBD, Crohn’s, TNF inhibitor, CXCR3, JAK, Renbök

Presentation

A 21-year-old female with Crohn’s disease presented to Dermatology with subacute worsening of chronic, erythematous, scaly plaques on the scalp and ears, with new areas of hair loss developing over 2 months (Figure 1). She denied any oral or genital lesions, pustules, vesicles, arthralgias, joint swelling, or worsening Crohn’s symptoms. No changes in medications or personal care products had been made prior to onset of the eruption. She intermittently had been applying mupirolcin to the lesions without effect.

The patient’s inflammatory bowel disease was well controlled with the combined therapy of azathioprine 125 mg PO daily and adalimumab 40 mg IM every 2 weeks for approximately 2.5 years. Previous Crohn’s treatments included azathioprine, methotrexate, and infliximab, all discontinued secondary to lack or loss of efficacy. Three years previous, she had been evaluated by the department of dermatology for biopsy-proven, secondarily impetiginized, seborrheic dermatitis involving the scalp, postauricular neck, axillae, inframammary folds, and upper chest. For this, she was given topical mupirolcin and triamcinolone.

Figure 1. Clinical presentation. Original patch of alopecia on the right temporal scalp with biopsy site marked.
acetonide 0.1%, which she used as needed to the areas with good response until recent flaring. She also had a history of iron deficiency already being supplemented at the time of presentation. Past medical and family history were both negative for psoriasis or alopecia.

Skin examination was significant for ill-defined erythema with overlying scale covering the entire scalp and postauricular neck. A shiny plaque with decreased hair follicles concerning for scarring alopecia was found on the right temporal scalp. This alopecia progressed over the next month to also involve the occipital and left temporal scalp.

Assessment

A punch biopsy of the initial alopecic plaque on the right temporal scalp was performed. Hematoxylin and eosin stained sections showed psoriasiform epidermal hyperplasia with foci of scale crust containing neutrophils. There was a superficial perivascular and peri-infundibular lymphoid infiltrate containing plasma cells and a few eosinophils. The number of hair follicles was within normal range. Notably, there were an increased number of catagen hairs and a decreased number of sebaceous glands.

Figure 2. Histopathology. (A), H&E of patient's biopsy from right occipital scalp marked in Fig 1 showing. Low power (4x) revealing both 1) psoriasiform epidermal changes with a thickened epidermis (acanthosis), bulbous rete ridges, and confluent crust (parakeratosis) with neutrophils, and 2) alopecia areata like changes including increased catagen/telogen ratio, miniaturized hairs, decreased number of sebaceous glands, and peribulbar lymphocytic infiltrate. (B), Higher power (40x) showing peribulbar lymphocytic infiltrate consisting of many plasma cells and a single eosinophil. (C), Magnification at 10x showing psoriasiform hyperplasia with confluent parakeratosis, neutrophils, and decreased granular layer. (D), Magnification at 20x showing a catagen hair bulb with its characteristic corrugated basement membrane.
No infectious organisms were noted on periodic acid–Schiff–diastase (PASD) stain.

Lab work up was notable for normal vitamin D, amino alanine aminotransferase (ALT), thyroid-stimulating hormone (TSH), and rapid plasma reagin (RPR). Ferritin was low at 10 (20-300 ng/mL). Total white blood cell count was slightly elevated at 11.1 (3.8-10.5 K/μL) and platelets were moderately elevated at 407 (160-370 K/μL).

Diagnosis

Based upon the patient’s presentation of psoriasiform, crusted plaques with alopecia on the scalp, the clinical differential included tumor necrosis factor (TNF) inhibitor induced alopecia, psoriatic alopecia, alopecia areata, and alopecia secondary to metabolic, infectious, or nutritional etiologies. Laboratory studies excluded a metabolic abnormality or syphilis. Her low ferritin suggested iron deficiency as a possible contributing factor, but the clinical presentation was not consistent with iron-deficiency telogen effluvium. PASD staining ruled out fungal or other bacterial factors. The remaining differential diagnoses were excluded based upon histopathologic appearance (see discussion below). Of note, although the patient received infliximab prior to adalimumab, review of the previous biopsies from 3 years prior did not show the same characteristic changes of TNF inhibitor induced alopecia.

TNF inhibitor induced alopecia has several key clinicalopathological features that distinguish it from other causes of alopecia. Histologically, the epidermis may have psoriasiform changes. Typically, follicular density is preserved or slightly decreased with increased catagen to telogen ratio and follicular miniaturization [1, 2]. Sebaceous glands are dramatically decreased [1, 2]. There is a brisk superficial and deep perifollicular infiltrate consisting of peribulbar lymphocytes, prominent plasma cells, and variable eosinophils [1, 2]. In contrast, primary psoriatic alopecia occurs in the setting of antecedent psoriasis, does not follow TNF inhibitor therapy, and lacks eosinophils and plasma cells [1, 2]. Also in contradistinction, telogen effluvium and alopecia areata do not have striking clinical or histologic psoriasiform features, do not follow TNF inhibitor therapy, and typically lack plasma cells [1, 2].

Up to 5% of patients treated with TNF inhibitors develop psoriasiform skin lesions [3-7]. Clinical presentations include plaque or guttate psoriasis, palmoplantar pustulosis, or, rarely, alopecia [3-7]. It can occur weeks to years after initiating TNF inhibitor therapy for a variety of indications (e.g. inflammatory arthritis, inflammatory bowel disease) [1, 4, 5, 7-10]. Thus, in in the case of our patient, it is difficult to prove which of the two (versus both) TNF inhibitors triggered the psoriasiform alopecia.
TNF inhibitor induced alopecia is unusual in that it goes against what is generally accepted as the Renbök, or reverse Köbner, phenomenon—originally used to describe the clinical observation that hair regrowth may be seen in psoriatic plaques of patients with concurrent psoriasis and alopecia areata, this term may be used more broadly to describe how the underlying pathogenic inflammatory pathways of one condition can ‘exclude’ or suppress those of another [11]. TNF inhibitor induced alopecia reminds us that 2 different inflammatory processes may ‘include’ or be driven by the same pathways (and that these processes are much more complicated than what can be extrapolated from clinical observation alone)[12]. A presumed pathogenesis of TNF inhibitor induced alopecia is as follows. TNF inhibition leads to dysregulated plasmacytoid dendritic cell production of interferon-α [4, 6, 7, 13]. Interferon-α leads to increased expression of the chemokine receptor CXCR3 ligands CXCL9, CXCL10, and CXCL11, which in turn recruit CXCR3+ T cells [4, 7, 13, 14]. Both IFN-γ-secreting Th1 cells and IL-17A/IL-22-secreting Th17 cells are CXCR3+ and are seen in increased numbers within psoriatic lesions. Of note, IFN-γ-secreting Th1 cells are also considered the underlying drivers of alopecia areata [7, 15, 16]. Further, expression of CXCL9, CXCL10, and CXCL11 is significantly increased in patches of alopecia areata [16]. Thus, TNF inhibition increases plasmacytoid dendritic cell production of interferon-α; which increases expression of the ligands CXCL9, CXCL10, and CXCL11; which increase activation of CXCR3+ IL-17A/IL-22-secreting Th17 cells that drive psoriasiform skin changes and CXCR3+ IFN-γ-secreting Th1 cells that drive both the psoriasiform and alopecic processes. Research to elucidate and therapeutically manipulate the pathogenic pathways of alopecia areata and psoriasis is ongoing.

Management
In cases of TNF inhibitor induced alopecia, treatment of the underlying immunological disease (e.g., Crohn’s disease) usually supercedes the alopecia. However, alopecia can significantly impact quality of life and thus warrants attention. Most published cases describe continuing the TNF inhibitor while treating the alopecia with topical steroids, intralesional steroids, or systemics such as methotrexate or cyclosporine [1, 5, 10]. Switching to a different TNF inhibitor is rarely successful [1, 4, 5, 7, 9, 10]. Discontinuation of TNF inhibitor may reverse the alopecia, and is especially effective in combination with systemic therapy, but may result in flaring of the underlying inflammatory disease originally targeted with TNF inhibition [1, 5, 10, 17]. A few studies have reported successful use of ustekinumab to both 1) treat severe TNF inhibitor induced psoriasis and/or alopecia not previously responsive to discontinuation of TNF inhibitor therapy (with or without topical treatment), and 2) induce clinical remission of Crohn’s [7, 17]. Another potential treatment option is use of a Janus kinase (JAK) inhibitor. This class of medication is quickly gaining recognition as a possible solution for multiple autoimmune conditions including psoriasis, alopecia areata, and IBD [18-21]. Given the proposed pathogenesis of TNF inhibitor induced alopecia (outlined above), and the fact that JAKs lie downstream of IFN-γ, it follows that JAK inhibitors may be useful for this condition as well. Thankfully for our patient, she was able to continue adalimumab for treatment of Crohn’s, and the alopecic areas on her scalp quickly resolved with intralesional triamcinolone acetonide 5 mg/mL every month for 3 months.

References

