Title
POINTS OF MAXIMUM ANALYZING POWER IN THE 3He(d,p) He REACTION

Permalink
https://escholarship.org/uc/item/4hk2t644

Author
Seiler, F.

Publication Date
1975-06-01
Presented at the 4th International Symposium on Polarization Phenomena In Nuclear Reactions, Zürich, Switzerland, August 25 - 29, 1975

POINTS OF MAXIMUM ANALYZING POWER IN THE $^3\text{He}(d, p) ^4\text{He}$ REACTION

F. Seiler, R. Roy, H. E. Conzett, and F. N. Rad

June 1975

Prepared for the U. S. Energy Research and Development Administration under Contract W-7405-ENG-48

For Reference
Not to be taken from this room
Disclaimer

This document was prepared as an account of work sponsored by the United States Government. While this document is believed to contain correct information, neither the United States Government nor any agency thereof, nor the Regents of the University of California, nor any of their employees, makes any warranty, express or implied, or assumes any legal responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by its trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof, or the Regents of the University of California. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof or the Regents of the University of California.
POINTS OF MAXIMUM ANALYZING POWER IN THE $^3\text{He}(d,p)^4\text{He}$ REACTION

F. Seiler, R. Roy, H. E. Conzett and F. N. Rad
Lawrence Berkeley Laboratory, University of California
Berkeley, California 94720

The $^3\text{He}(d,p)^4\text{He}$ reaction has been the first process, other than elastic scattering, in which a point (E_0, Θ_0) of maximum possible tensor analyzing power $A_{yy} = 1$ has been proposed. An inspection of the complete deuteron polarization data of Gruebler et al. at 11.5 MeV and of the T_{11} measurements of Roy et al. at 15 MeV indicates the possibility of large positive values of both A_y and A_{yy} near $\Theta_{cm} = 120^\circ$ and thus of a point $A_y = A_{yy} = 1$ between these energies. The necessary but not sufficient conditions $A_{xx} = A_{zz} = -1/2$ and $A_{xz} = 0$ are nearly fulfilled at 11.5 MeV. Unfortunately these tensor observables are not available at higher energies. For the investigation and possible identification of such a point, the relevant conditions on the M-matrix have to be verified. Using the presentation they are $A = B = 0$ for an extreme value $A_{yy} = 1$; for $A = \pm 1$ they are $A = B = 0$, $C = \mp iE$ and $D = \mp iF$. Imposing these conditions on the formulae for the observables gives the following

\begin{align*}
A_y &= \pm 1, \\
A_{yy} &= -K_{0,y} = 1, \\
A_{xx} &= A_{zz} = -1/2, \\
A_{xz} &= K'_{xz} = C_{xz,y} = 0 \\
k_x' &= K_x' = k_{x,y} = k_{x,z} = 0 \\
k_z' &= K_z' = k_{z,y} = k_{z,z} = 0 \\
C_{x,x} &= C_{z,x} = C_{x,y,x} = C_{y,z,x} = 0, \\
C_{x,z} &= C_{z,z} = C_{x,y,z} = C_{y,z,z} = 0, \\
F_y' &= -K_{0,y} = K_{yy} = -C_{yy,y} = t, \\
K_y' &= -C_{y,y} = \pm t, \\
C_{xx,y} &= -K_{xx}' = C_{zz,y} = -K_{zz}' = 1/2 t, \\
k_x' &= -K_x' = 0, \\
k_{0,x} &= 0, \\
k_{0,z} &= k_{0,z} = v.
\end{align*}
Here O_0, A, P, K and C denote the unpolarized cross-section, analyzing power, particle polarizations, polarization transfer coefficients and efficiency correlation coefficients, respectively. The first subscripted index stands for the beam, the second for the target polarization. Thus 24 polarization observables involving two or less particle polarizations are numerically determined, while the other 14 are given by the 3 parameters t, u and v. With the cross-section for unpolarized particles there are thus 4 parameters that can be determined experimentally. By a careful selection of the experiments, through an inspection of the general formulae\(^5\),\(^6\), a verification of an extreme point of the components A_y and A_{yy} should be feasible. The establishment of such a point would be very important in an analysis of the process, due to the restrictions imposed on some elements of the M-matrix.

References

* Work performed under the auspices of the U. S. Energy Research and Development Administration.
+ On leave of absence from the University of Basel, Switzerland.
Ì Research Council of Canada, Post-doctoral fellow
1) F. Seiler, LBL-report, LBL-3474, and to be published
4) F. Seiler, F. N. Rad and H. E. Conzett, LBL-report, LBL-3496.