Title
New polymorphic markers in the vicinity of the pearl locus on mouse Chromosome 13

Permalink
https://escholarship.org/uc/item/4hm0543h

Journal
Mammalian Genome, 7(1)

ISSN
0938-8990

Authors
Xu, H-P
Yanak, BL
Wigler, MH
et al.

Publication Date
1996

DOI
10.1007/s003359900005

Peer reviewed
New polymorphic markers in the vicinity of the pearl locus on mouse Chromosome 13

H.-P. Xu, B.L. Yanak, M.H. Wigler, M.B. Gorin

1Cold Spring Harbor Laboratory, P.O. Box 100, Cold Spring Harbor, New York 11724, USA
2Department of Ophthalmology, The Eye and Ear Institute of Pittsburgh, University of Pittsburgh, 203 Lothrop Street, Pittsburgh, Pennsylvania 15213, USA
3Department of Human Genetics, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, USA

Received: 12 June 1995 / Accepted: 17 August 1995

Abstract. We have used a Mus domesticus-Mus spretus congenic animal that was selected for retention of Mus spretus DNA around the pearl locus to create a highly polymorphic region suitable for screening new markers. Representation difference analysis (RDA) was performed with either DNA from the congenic animal or C57BL/6J as the driver for subtraction. Four clones were identified, characterized, and converted to PCR-based polymorphic markers. Three of the four markers equally subdivide a 10-cM interval containing the pearl locus, with the fourth located centromeric to it. These markers have been placed on the mouse genetic map by use of an interspecific backcross panel between Mus domesticus (C57BL/6J) and Mus spretus generated by The Jackson Laboratory.

Introduction

The pearl (pe) mutation is a recessive, hypopigmentation mutation that causes extensive alterations in the brain and visual system. The original pearl mutant, identified in the C3H strain, was localized to Chromosome (Chr) 13 by linkage to As1 and Lth1 (Eliot et al. 1985). This mutant allele was subsequently transferred into a congenic C57BL/6J strain, C57BL/6J Pin pe/pe (Avner et al. 1988). Though considered an anchor locus for a sparsely mapped region of mouse Chr 13, the pearl locus has only recently been integrated into mouse genetic maps that employ microsatellite-based markers (Justice and Stephenson 1993). We have endeavored to refine the position of pearl by the localization of linked markers, using the interspecific backcross panels made available by The Jackson Laboratory. Lawrence Pinto has bred a Mus domesticus/Mus spretus congenic animal in order to selectively introduce a limited region of Mus spretus genomic DNA into the Mus domesticus background, thereby creating a highly polymorphic region suitable for screening new markers. This congenic line has been previously employed for isolating markers linked to the pearl locus with Mus spretus-specific LINE-1 elements (Rikke et al. 1993). In this report, we present four markers isolated from a limited region of mouse Chr 13 that includes the pearl locus, using the representational difference analysis method developed by Lisitsyn and associates (1993). In addition to confirming the linkage of these markers with pearl, we have used them to integrate this region of Chr 13 into the current genetic map by mapping them with one of the interspecific backcross panels recently developed by The Jackson Laboratory (Rowe et al. 1994).

Materials and methods

Fertile females from the cross of C57BL/6J Pin pe/pe and Mus spretus were backcrossed to C57BL/6J Pin pe/pe; progeny with normal phenotypes were selected. These animals were then backcrossed for a total of 12 generations in order to achieve a congenic line, B6/spretus pe/+12F6. From the calculations of Haldane, the estimated size of the retained Mus spretus DNA is 17 cM, with a <5% probability of an unlinked segment of Mus spretus DNA being present (Rikke et al. 1993).

Two sets of genomic subtractions using the representation difference analysis (RDA) method were performed (Lisitsyn et al. 1993). In one set, the genomic DNA from the inbred line, C57BL/6J, was used as a tester, and DNA from a homozygous B6/spretus pe/+12F6 was used as a driver. In the other subtraction, the roles of the two DNA samples were reversed. Two micrograms of each DNA were digested with BglII restriction endonuclease; RDA was then performed as described in the original procedure. The tester and driver DNAs were ligated to short double-stranded adaptor oligonucleotides to create ampiclon DNAs as described in the original RDA method. The resulting DNA fragments from the two RDA experiments were each subcloned into a pUC118 plasmid. Probes for Southern blotting were prepared by random primer labeling of unique inserts excised from the plasmids. Equivalent amounts of tester and driver ampiclon DNA were electrophoresed and blotted to nitrocellulose filters (Sambrook et al. 1989). Probes were hybridized to the filters at 68°C for 1 h in solutions containing 6x SSC, 5x Denhardt’s solution, and 50 μg/ml of salmon sperm DNA. The filters were washed three times at 68°C in 1x Blot Wash (12 mM Na2HPO4/8 mM NaH2PO4/1.4 mM Na2PO4/0.15% SDS). The filters were then exposed to Kodak X-OMAT film. Only those probes that hybridized to the tester ampiclon DNA but not to the driver ampiclon DNA were further mapped and sequenced.

Fig. 1. Genomic DNA fragments isolated from RDA. (A) C57BL/6J Pin pe/pe DNA as the tester. Lane F6 shows the complexity and sizes of the isolated DNA fragments by RDA. (B) B6/spretus pe/+12F6 DNA as the tester. Lane F6T shows the isolated DNA fragments by RDA. In addition to the two major bands, at least four faint bands are also present. M identifies the lanes containing ΦX174 HaeIII DNA fragments used as size markers.
In order to confirm the localization of the positive probes within the *Mus spretus* region flanking the pearl locus in the B6/spretus *pe*^{ps}N12F6 mouse, the probes were hybridized to Southern blots consisting of either EcoRI, PstI, and BamHI restriction endonuclease digests or BamHI, BgII, HindIII restriction endonuclease digests of genomic DNAs from C57BL/6J, B6/spretus *pe*^{ps}N12F6, *Mus spretus*, and C3H mice. The DNA fragments were electrophoresed on 1% agarose gels and were transferred to either Zetabind (Cuno, Meridan, Conn.) or Hybond N+ (Amersham, Arlington Heights, Ill.) membranes. The nylon filters were baked for 2 h at 80°C to immobilize the DNA.

The filters were initially prehybridized overnight at 42°C in 20 ml Hyb-N solution (10% dextran sulfate/40% formamide/4x SSC/20 mM Tris, pH 7.4/1x Denhardt’s solution) containing 100 µl salmon sperm DNA (10 mg/ml) and 10 µl mouse Cot-1 DNA (10 mg/ml; Davis et al. 1986). In subsequent hybridizations, the filters were prehybridized a minimum of 1 h as above, without the mouse Cot-1. Probes were generated by random-prime labeling with ³²P-dCTP and Pharmacia’s Oligolabelling Kit (Piscataway, NJ). The hybridization of the filters with the radioactively labeled probes was done overnight at 42°C. The filters were subsequently washed twice for 15 min in 2x SSC/0.1% SDS at room temperature and washed again for 30 min in 0.1x SSC/0.1% SDS at 60°C. The washed filters were exposed to Kodak X-OMAT film 1–4 days in the presence of an intensifying screen. The genomic DNA clones were sequenced by the dideoxynucleotide chain termination method (the Double-Stranded Cycling Kit from Epicenter Technologies, Madison, Wis.) with oligonucleotide primers complementary to the plasmid DNA flanking the insertion site (Sanger et al. 1977; Biggin et al. 1983).

The small genomic clones were initially tested by being used as hybridization probes to detect restriction fragment length variations on Southern blots. Those genomic clones that were within the *Mus spretus* or C3H regions were sequenced, and oligonucleotide primers were made for PCR-based detection. Nucleotide variations within the PCR markers were detected either by secondary restriction endonuclease digests, size differences of the products on a sequencing gel, or by a positive-null allele detection assay. Polymerase chain amplification was performed by an initial denaturation step of 94°C for 2 min followed by 30–40 cycles of 94°C 20 s; 65°C 20 s; and 72°C 30 s. The cycles were terminated with a final incubation at 72°C for 7 min (Dietrich et al. 1992). C57BL/6J, B6/spretus *pe*^{ps}N12F6, *Mus spretus*, C3H, or pearl DNA was used as templates in individual reactions. The PCR-derived DNA products were run on 6% sequencing gels to detect nucleotide variations. Once a variation was detected, the primers were used in reactions with the 96-member (C57BL/6 × *Mus spretus*) F₂ backcross panel from the Jackson Laboratory (Bar Harbor, Maine). The genotyping data were provided to Lucy Rowe and Mary Barter at The Jackson Laboratory, who calculated the map positions and distances with respect to the other markers placed on this
backcross panel. In instances in which a locus was not genotyped for a particular animal, analysis was made by inference; that is, if both of the typings adjacent to a missing locus were the same, then the missing locus was assumed to match, rather than hypothesizing a double recombination within that interval.

Results

The representational difference analysis technique was successful for both the forward (C57BL/6J DNA as tester) and reverse (congenic DNA as tester) attempts (Fig. 1). Seven (F6-3, 4, F6T-15, 16, 18, 34, and 40) of the original 11 probes hybridized appropriately with the tester ampiclon DNA and did not hybridize with the driver ampiclon DNA (Fig. 2). These inserts were then partially sequenced with plasmid-derived primers. On the basis of sequencing data, F6T-15 was identical to F6T-18, and F6T-16 was identical to F6T-34.

The genomic clone F6T-16 produced hybridization patterns with the genomic DNA of the congenic line, B6/spretus pe^{HpaII}N12F6, that were identical to those from the C57BL/6J parental DNA for three restriction enzymes (PstI, HindIII, and EcoRI). The clone F6T-40 identified bands that did not correspond to either the pattern of C57BL/6J or of Mus spretus. Additional Southern blots employing BglII restriction endonuclease digests indicated that F6T-16 and F6T-40 recognized C3H alleles in the B6/spretus pe>HpaII N12F6 animal. The region of B6/spretus pe^{HpaII}N12F6 that was replaced with Mus spretus DNA represents a subset of the C3H region flanking the pearl locus that was transferred into the C57BL/6J pe/pe congenic line (data not shown). The majority of the C3H-derived genome in B6/spretus pe^{HpaII}N12F6 lies centromeric to the Mus spretus region, while only a very small C3H-derived segment is present at the telomeric boundary.

The clones designated F6-3, F6-4, F6T-15 were found to be within the Mus spretus region of B6/spretus pe^{HpaII}N12F6 by restriction fragment length variations. Markers, F6-3, F6-4, F6T-15, and F6T-40 were sequenced, converted to PCR-based assays, and mapped on The Jackson Laboratory backcross panel. These genomic sequences have been registered in Genbank (F6-3: Accession #U25821; F6-4: Accession #U25824; F6T-15: Accession #U25825; F6T-40: Accession #U25827). Samples of the PCR variations are shown in Fig. 3.

Nucleotide variations with these PCR-based markers were detected either directly or by restriction fragment length differences (see Table 1). One variation for F6-4 was detected directly, while F6-3 and F6T-15 PCR products were cleaved with HaeIII or AvaII enzyme to detect variations, respectively. In the case of F6T-40, the primers produced a null allele for the Mus spretus DNA template. The (C57BL/6J × Mus spretus) F_1 × Mus spretus Jackson interspecific backcross panel was used for mapping F6T-40 and the other markers, in part because Mus spretus null alleles could be readily accommodated. The results of the backcross panel are summarized in Fig. 4. The incorporation of these RDA-derived markers onto the genetic map is shown in Fig. 5. The standardized, approved names for each of these markers is reflected on this map: D13Gor1 = F6T-40; D13Gor2 = F6-3; D13Gor3 = F6-4; and D13Gor4 = F6T-15. In a separate paper we have integrated this genetic map for the region of mouse Chr 13 with additional microsatellite markers and genes, thus providing for a realigned framework of this portion of the mouse genome.

Discussion

Representational difference analysis (RDA) is a powerful means of generating polymorphic markers to a select region of the genome.
Fig. 5. Distal map of mouse Chr 13 as configured by Lucy Rowe and Mary Barter of The Jackson Laboratory, detailing the location of the RDA-derived markers with respect to other markers mapped on the The Jackson Laboratory interspecific backcross panel. Note that D13Gor1 = F6T-40; D13Gor2 = F6-3; D13Gor3 = F6-4; and D13Gor4 = F6T-15.

Markers can be identified between Mus spretus and Mus domesticus DNA as well as between Mus domesticus strains (C3H and C57BL/6J). The RDA method converts the genomic DNAs of the target and driver into restricted sets of PCR-amplified genomic fragments. For a limited group of restriction fragment length variations, one genomic source will contain an amplified genomic fragment, while the other PCR-generated DNA pool will lack representation of the corresponding genomic fragments that exceed the size constraints of routine PCR. The variations exploited by the RDA approach can be easily identified by Southern blots of genomic DNA. Though only a limited number of markers are generated with a single restriction enzyme digestion, the number of markers can be increased by using each DNA source as a separate driver and by using additional restriction endonucleases. The conversion of the RDA markers to PCR-based assays can be performed effectively by using additional restriction endonucleases to detect internal nucleotide variations, single-stranded conformational analysis, or a combination of these methods.

Acknowledgments. We thank Ms. Lucy Rowe and Mary Barter at The Jackson Laboratory for assistance in the map on the Jackson backcross panel, and we are grateful to Dr. Larry Pinto at Northwestern University for providing the B6spretus pr/B6N12F6 congenic mice. This work was supported by National Institutes of Health grants to M.B. Gorin (EB9192) and H.-P. Xu (CA39829-11-OIG). H.-P. Xu is an ACA research professor.

References

