Title
SOLUTE ELEMENT PARTITIONING AND AUSTENITE STABILIZATION IN STEELS

Permalink
https://escholarship.org/uc/item/4hz2r78w

Author
Sarikaya, M.

Publication Date
1982-08-01
SOLUTE ELEMENT PARTITIONING AND AUSTENITE STABILIZATION IN STEELS

August 1982
DISCLAIMER

This document was prepared as an account of work sponsored by the United States Government. While this document is believed to contain correct information, neither the United States Government nor any agency thereof, nor the Regents of the University of California, nor any of their employees, makes any warranty, express or implied, or assumes any legal responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by its trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof, or the Regents of the University of California. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof or the Regents of the University of California.
SOLUTE ELEMENT PARTITIONING
AND AUSTENITE STABILIZATION IN STEELS

M. Sarikaya, G. Thomas and J. W. Steeds*
Lawrence Berkeley Laboratory
University of California
Berkeley, California 94720

and

S. J. Barnard and G. D. W. Smith
University of Oxford
Oxford, U. K. OX1 3PH

*Permanent address: H. H. Wills Physics Laboratory, Bristol University, BS8
1TL, U. K.
Considerable amounts of thin film retained austenite have been found in low to medium carbon lath martensitic structural steels. The existence of this metastable phase at room temperature has been attributed to several mechanisms which involve diffusion and redistribution of carbon during the austenite to martensite transformation. In this investigation electron microscopy (TEM), convergent beam electron diffraction (CBED), and field ion-atom probe (FIAP) analysis methods have been utilized to measure the C and other solute element distributions in retained austenite, \(\gamma\), and martensite laths, \(\alpha'\). Considerable carbon partitioning to \(\gamma\) and to \(\alpha'/\gamma\) interfaces occurs during cooling, but there was no detectable change in substitutional alloying elements (Cr, Mn, Ni, Si) between \(\alpha'\) and \(\gamma\). Thus while C plays a vital role in stabilization, it cannot account completely for this phenomenon. It is concluded that mechanical stabilization and the size effect are also major factors.

Introduction

Thin film retained austenite has important effects in medium carbon lath martensitic steels, both from the viewpoint of transformation mechanism and also because retained austenite improves the mechanical properties, especially toughness (1,2). The presence of this parent phase austenite in a martensitic structure allows accurate measurements to be made of the crystallography (3) leading to a better understanding of the nature of the lath martensitic transformation (4,5). Figure 1 is typical of the microstructure of such steels.

The existence of this high temperature \(\gamma\) phase at low temperatures may be attributed to several stabilization mechanisms. Since the redistribution of solute elements, especially carbon, may be significant in these mechanisms as
was indicated by lattice imaging methods (4), the problem of microchemical analysis of the microconstituents (Fig. 1) is obviously very important. In this case the carbon measurement is the key issue. It is difficult, if not impossible, to quantitatively measure carbon content in small volumes by EDS analysis in TEM/STEM instruments, and it is not possible to measure carbon in steels by electron energy loss spectroscopy (as our own experience verifies). However, the methods of convergent beam electron diffraction (via lattice parameter measurements over a few 100Å cross sections (6)) and the very powerful atom-by-atom spectroscopic method of field ion-atom probe analysis (7) (spatial resolution laterally of ~ 20Å) now enable more accurate and reliable chemical analyses to be performed on such steels (8). These techniques have been used in the present research.

Experimental Procedure

Several alloys were used in this investigation with carbon contents of 0.1 to 0.3 wt.% and with a total alloying addition (mainly Cr, Mo, Si, Mn, and Ni) of nearly 5 wt.% (see, e.g., ref. 2). The steels have relatively high \(M_s \) (>300°C) and \(M_f \) (>200°C) temperatures. Samples for examination were initially high temperature austenitized (1100°C) to ensure chemically homogeneous structure and then quenched in oil. Steel foils for TEM were prepared using twin-jet electropolishing in chromic/acetic acid solution at room temperature, and Cu (99.999%) and Ni (99.99%) standards for CBED in 25% \(\text{HNO}_3 \) in \(\text{CH}_3\text{-COOH} \) at -30°C. Steel foils for CBED were etched by "dipping" method is 15% \(\text{HClO}_4 \) - 5% \(\text{C}_3\text{H}_5\text{(OH)}_3 \) - \(\text{CH}_3\text{-COOH} \) at -25°C. FIM tips were electropolished in 25% \(\text{HClO}_4 \) followed by 2% \(\text{HClO}_4 \) in 2-Butoxyethanol at room temperature. (TEM studies were accomplished by Philips EM400 at 100kV and the Atom Probe Analyzer was a conventional time-of-flight instrument (7)).
Results

The characteristic microstructure of the alloys (in the as-quenched and 200°C temperature condition) consists of dislocated "lath martensite" matrix and thin film retained austenite at the lath boundaries, as shown in the electron micrographs in Fig. 1.

The CBED method involves the determination of the shift in the position of the HOLZ lines in the CBED patterns in relation to the change in the lattice parameter of the retained austenite due to solute elements. Fig. 2 presents a result of such an experiment. Pure Ni and Cu samples were used for reference since the lattice parameters of these standards are close to those for austenite. The austenite was found to be enriched in carbon and the average carbon concentration was found to be 4.9 ± 0.6 at.%. (From $a_{\text{ref-}\gamma} = 3.578 + 0.044 \text{ wt}\%\text{C}$ (9), Δa is isomorph.)

A more detailed study of the distribution of solute elements is possible by FIM-AP studies. The example of Fig. 3a shows that while the C content in martensite is on the average 10% or more below the nominal carbon content of the alloy, there is considerable enhancement of C within retained γ and especially at the α'/γ interface. The distribution of C in the martensite matrix is very non-uniform due to autotempering. There is no apparent partitioning of the substitutional alloying elements (Cr,Mn) in either phase (Fig. 3a). Even at higher cooling rates ($\sim 10^3^\circ\text{C/sec}$), a similar C profile across α'/γ interfaces and enrichment in the γ was observed (Fig. 3b). This suggests that the partitioning of C occurs during the transformation of austenite to lath martensite since the redistribution is apparently independent of quench rate and tempering condition.

Of course, the main conclusion is that the transformation is not strictly martensitic because carbon diffusion is also occurring. This point is discussed in ref. 5.
Summary and Conclusions

The main results of this work are:

1. Carbon partitioning occurs during the transformation independent of quench rate up to $10^3\,^\circ\text{C}/\text{sec}$.
2. The maximum carbon level is found at α'/γ interfaces.
3. No detectable substitutional element partitioning is observed.
4. The carbon content of retained austenite may be as much as 2.5at.%, i.e., twice the nominal composition. This implies that the M_s temperature of the retained austenite is decreased about 150°C (extrapolation from Fig. 4).

The implications of results 1-3 are obvious with regard to transformation mechanism and precipitation on tempering, but these will not be discussed further here. Result 4 is important with regard to austenite stability. Clearly composition effects alone do not account for the presence of the retained austenite. Mechanical stabilization and the size effect (10-11), i.e., the retained austenite exists as thin films, $50-250\,\text{Å}$ thick, must be the dominant factors. A high magnification micrograph showing the high degree of plastic deformation of the austenite is shown in Fig. 5. This deformation is created as a result of the growth of the martensite laths bounding the austenite. Destabilization takes place only by tempering when austenite to carbide reaction occurs or under high strains when the reaction to twinned martensite occurs (the martensite is twinned because of its higher C content).

Acknowledgement

We acknowledge the financial support from the Director, Office of Energy Research, Office of Basic Energy Sciences, Division of Materials Sciences of the

References

5. G. Thomas and M. Sarikaya, paper in these proceedings.
Figure Legends

Fig. 1. Transmission electron micrographs: a) Bright field and b) dark field, reveal thin films of retained γ surrounding dislocated laths in the as-quenched Fe/3Cr/2Mn/0.5Mo/0.3C steels (Ms = 320°C).

Fig. 2. a) <111> Convergent beam electron diffraction pattern from a Cu crystal. b), c), and d) show the CBED patterns from the forward scattered beam from Ni, retained γ and Cu, respectively. All patterns at 100kV.

Fig. 3. a) Field ion-atom probe analysis of C, Cr, Mn of the steel shown in Fig. 1 after tempering at 200°C for 1 hour. b) Atom probe analysis of C in 0.35C alloy following quenching 0.5mm dia. sample in iced water.

Fig. 4. The effect of C on the Ms and Mf; extrapolation gives the data for retained γ due to C enrichment, in Fe/Cr/Mn/0.3C steels.

Fig. 5. High magnification a) bright field and b) dark field micrographs, show heavy deformation of retained austenite (Fe/3Cr/2Ni/0.5Mo/0.3C alloy), due to the impinging laths.
Fig. 1
Fig. 4

- M_s for Fe-C (Ref. 10)
- M_s Calculated for Fe/3Cr/2Mn/5Mo
- M_90 for Fe-C (Ref. 10)

Wt. % C vs. TEMP. °C

XBL 8112-13099
This report was done with support from the Department of Energy. Any conclusions or opinions expressed in this report represent solely those of the author(s) and not necessarily those of The Regents of the University of California, the Lawrence Berkeley Laboratory or the Department of Energy.

Reference to a company or product name does not imply approval or recommendation of the product by the University of California or the U.S. Department of Energy to the exclusion of others that may be suitable.