Title
Search for the decay modes $B^\pm \rightarrow h^\pm \tau \ell$

Permalink
https://escholarship.org/uc/item/4jd2r5ct

Journal
Physical Review D - Particles, Fields, Gravitation and Cosmology, 86(1)

ISSN
1550-7998

Authors
Lees, JP
Poireau, V
Tisserand, V
et al.

Publication Date
2012-07-16

DOI
10.1103/PhysRevD.86.012004

License
CC BY 4.0

Peer reviewed
Search for the decay modes $B^\pm \to h^\pm \tau \ell$
We present a search for the lepton flavor violating decay modes $B \to h \tau \ell$ ($h=K, \pi$, $\ell=e, \mu$) using the BABAR data sample, which corresponds to $472 \times 10^6 BB$ pairs. The search uses events where one B meson is fully reconstructed in one of several hadronic final states. Using the momenta of the reconstructed B, h, and ℓ candidates, we are able to fully determine the τ four-momentum. The resulting τ candidate mass is our main discriminant against combinatorial background. We see no evidence for $B \to h \tau \ell$ decays and set a 90% confidence level upper limit on each branching fraction at the level of a few times 10^{-5}.

DOI: 10.1103/PhysRevD.86.012004

PACS numbers: 13.25.Hw, 14.40.Nd

I. INTRODUCTION

The standard model (SM) of electroweak interactions does not allow charged lepton flavor violation or flavor-changing neutral currents in tree-level interactions [1]. Lepton flavor violating decays of B mesons can occur at the one-loop level through processes that involve neutrino mixing, but these are highly suppressed by powers of m_τ^2/m_W^2 [2] and have predicted branching fractions many times smaller than those of tree-level modes.

*Present address: University of Tabuk, Tabuk 71491, Saudi Arabia.
†Also at Università di Perugia, Dipartimento di Fisica, Perugia, Italy.
‡Present address: University of Huddersfield, Huddersfield HD1 3DH, United Kingdom.
§Present address: University of South Alabama, Mobile, Alabama 36688, USA.
k Also at Università di Sassari, Sassari, Italy.

012004-3
orders of magnitude below the current experimental sensitivity. However, in many extensions of the SM, B decays involving lepton flavor violation and/or flavor-changing neutral currents interactions are greatly enhanced [2–5]. In some cases, decays involving the second and third generations of quarks and leptons are particularly sensitive to physics beyond the SM [3].

Until recent years, experimental information on B decays to final states containing τ leptons has been weak or absent. The presence of at least one neutrino from the τ decay prevents direct reconstruction of the τ, making it difficult to distinguish $B \to X\tau$ decays from the abundant semileptonic $B \to X\ell\nu$; $\ell = e, \mu$ decays. The high-luminosity B factory experiments have developed the technique of using a fully reconstructed hadronic B decay (the “tag” B) to determine the three-momentum of the other B (the “signal” B) in $Y(4S) \to BB$ events, which enables the τ to be indirectly reconstructed. This technique assigns all detected tracks and neutral objects to either the tag B or the signal B. Recent applications of this technique by BABAR are the searches for $B^+ \to K^+ \tau\mu$ [6], $B^0 \to \ell^+\pi^-\ell^-\nu$ [7] and $B^+ \to \tau^+\nu$ [8]. We present an update of our search for $B^+ \to K^+ \tau\ell$ [6] and the first search for the decays $B^+ \to K^+\tau e$, $B^+ \to \pi^+\tau \mu$, and $B^+ \to \pi^+\tau e$ [9].

The signal branching fraction is determined by using the ratio of the number of $B \to h\tau\ell$ ($h = K^\pm, \pi^\pm$) signal candidates to the yield of control samples of $B^+ \to D_{CP}(h)\ell^+\nu$; $B^0 \to K^\pm\pi^-\ell^+\nu$ events from a fully reconstructed hadronic B^\pm decay sample. Continuum background is suppressed for each decay channel using a likelihood ratio based on event shape information, unassociated calorimeter clusters, and the quality of muon identification for channels that have a muon in the final state. Final signal candidates are selected requiring the indirectly reconstructed τ mass to fall in a narrow window around the known τ mass. The yield and estimated background in the τ mass signal window are used to estimate and set upper limits on the signal branching fractions. We followed the principle of a blind analysis, to avoid experimenter’s bias, by not revealing the number of events in the signal window until after all analysis procedures were decided.

II. DATA SAMPLE AND DETECTOR DESCRIPTION

We use a data sample of $472 \times 10^6 BB$ pairs in 429 fb$^{-1}$ of integrated luminosity, delivered by the PEP-II asymmetric-energy e^+e^- collider and recorded by the BABAR experiment at the SLAC National Accelerator Laboratory. This corresponds to the entire $Y(4S)$ data sample.

The BABAR experiment is described in detail elsewhere [10]. Trajectories of charged particles are reconstructed by a double-sided, five-layer silicon vertex tracker (SVT) and a 40-layer drift chamber (DCH). The SVT provides precision measurements for vertex reconstruction and stand-alone tracking for very low momentum tracks, with transverse momentum less than 120 MeV/c. The tracking system is inside a 1.5 T superconducting solenoid. Both the SVT and the DCH provide specific ionization (dE/dx) measurements that are used in particle identification (PID). Just beyond the radius of the DCH lies an array of fused silica bars which are part of the detector of internally reflected Cherenkov radiation (DIRC). The DIRC provides excellent charged-hadron PID. A CsI(Tl) crystal electromagnetic calorimeter (EMC) is used to reconstruct photons and identify electrons. The minimum EMC cluster energy used in this analysis is 30 MeV. The iron of the flux return system is inside a 1.5 T superconducting solenoid. Both the SVT and the DCH provide specific ionization (dE/dx) measurements that are used in particle identification (PID).

Monte Carlo (MC) simulated samples for our $B \to h\tau\ell$ signals and for all relevant SM processes are generated with EvtGen [11]. We model the BABAR detector response using GEANT4 [12]. The $B \to h\tau\ell$ decays are generated using a uniform three-body phase space model and the background MC sample combines SM processes: $e^+e^- \to Y(4S) \to BB$, $e^+e^- \to q\bar{q} (q = u, d, s, c)$, and $e^+e^- \to \tau^+\tau^-$. The number of simulated Monte Carlo events corresponds to integrated luminosities equivalent to 3 times the data for BB events and 2 times the data for the continuum processes. Each Monte Carlo sample is reweighted to correspond to an integrated luminosity equivalent to the data.

The data and MC samples in this analysis are processed and generated with consistent database conditions determined from the detector response and analyzed using BABAR analysis software release tools.

III. EVENT RECONSTRUCTION

In each event, we require a fully reconstructed hadronic B^\pm decay, which we refer to as the tag B meson candidate or B_{tag}. We then search for the signal $B \to h\tau\ell$ decay in the rest of the event, which we refer to as the signal B meson candidate or B_{sig}. The notation $B \to h\tau\ell$ refers to one of the following eight final states that we consider, where the primary hadron h is a K or π and the primary lepton ℓ is a μ or e: $B^+ \to K^+\tau^-\mu^+$, $B^+ \to K^+\tau^+\mu^-$, $B^+ \to K^+\tau^-\mu^+$, $B^+ \to K^+\tau^+\mu^-$, $B^+ \to \pi^+\tau^-\mu^+$, $B^+ \to \pi^+\tau^+\mu^-$, $B^+ \to \pi^+\tau^-\mu^+$, and $B^+ \to \pi^+\tau^+\mu^-$. In all cases, we require that the τ decays to a “one-prong” final state $[\tau \to e\nu\bar{\nu}, \tau \to \mu\nu\bar{\nu}]$, and $\tau \to (n\pi^0)\pi\nu$ with $n \geq 0$. The branching fraction for τ decays to a one-prong final state is 85%.

The $Y(4S) \to B^+B^-$ decay requires the B_{sig} three-momentum to be opposite from that of the B_{tag} or B_{sig} and the B_{sig} energy to be equal to the beam energy (E_{beam}) in the e^+e^- center-of-mass reference frame [13]. These constraints allow us to reconstruct the τ indirectly using

$$\vec{p}_\tau = -\vec{p}_{tag} - \vec{p}_h - \vec{p}_\ell, \quad E_\ell = E_{beam} - E_h - E_\ell,$$

$$m_\tau = \sqrt{E_\tau^2 - |\vec{p}_\tau|^2}.$$
where \((E_\tau, \vec{p}_\tau), (E_b, \vec{p}_b),\) and \((E_e, \vec{p}_e)\) are the corresponding four-momenta of the reconstructed signal objects. The indirectly reconstructed \(\tau\) mass \((m_\tau)\) peaks sharply at the true \(\tau\) mass in \(B \to h\tau\ell\) signal events and has a very broad distribution for combinatorial background events. To avoid experimental bias, we did not look at events in the data with \(m_\tau\) within \(\pm 175\) MeV/c\(^2\) of the nominal \(\tau\) mass until all analysis procedures were established.

A. Tag \(B\) reconstruction

The \(B\) tag is fully reconstructed in one of many final states \([14]\) of the form \(B^- \to D^{(*)0} X^-\). The notation \(D^{(*)0}\) refers to either a \(D^0\) or \(D^{*0}\) which decays to either \(D^0\gamma\) or \(D^0\pi^0\). The \(D^0\) is reconstructed in the \(K^-\pi^+, K^-\pi^+\pi^-\pi^+, K^-\pi^+\pi^0,\) and \(K_{S}^{0}\pi^+\pi^-\) channels, with \(K_{S}^{0} \to \pi^+\pi^-\) and \(\pi^0 \to \gamma\gamma\). The \(X^-\) represents a system of charged and neutral hadrons composed of \(n_1\pi^\pm, n_2K^\pm, n_3K_S^0,\) and \(n_4\pi^0;\) subject to the constraints \(n_1 + n_2 \leq 5, n_3 \leq 2, n_4 \leq 2,\) and total charge \(-1\).

Each distinct \(B\) tag decay mode has an associated \textit{a priori} purity, defined as the number of peaking events divided by the number of peaking plus combinatorial events, where peaking and combinatorial yields are obtained from fits to the energy-substituted invariant mass \(m_{ES} \equiv \sqrt{E_{beam}^2 - |\vec{p}_{tag}|^2}\) distributions for each distinct \(B\) tag decay mode. We only consider \(B\) tag decay modes with a purity greater than 10% and choose the \(B\) tag candidate with the highest purity in the event. If there is more than one \(B\) tag candidate with the same purity, we choose the one with reconstructed energy closest to the beam energy. The \(B\) tag candidate must have \(m_{ES} > 5.27\) GeV/c\(^2\) and \(E_{tag}\) within 3 standard deviations of \(E_{beam}\). A charged \(B\) tag candidate is properly reconstructed in approximately 0.25% of all \(BB\) events.

B. Particle identification

PID algorithms are used to identify kaons, pions, protons, muons, and electrons. We use an error-correcting output code algorithm \([15]\) with 36 input variables to identify electrons, pions, and protons. The error-correcting output code combines multiple bootstrap aggregated decision tree binary classifiers trained to separate \(e, \pi, K,\) and \(p\). The most important inputs for electron identification are the EMC energy divided by the track momentum, several EMC shower shape variables, and the deviation from the expected values divided by the measurement uncertainties of the Cherenkov angle and of the \(dE/dx\) for the \(e, \pi, K\) and \(p\) hypotheses. Neutral clusters in the EMC that are consistent with bremsstrahlung radiation are used to correct the momentum and energy of electron candidates. A \(\gamma\) candidate from an \(e^\pm\) track is consistent with bremsstrahlung radiation if the corresponding three-momenta are within \(|\Delta \theta| < 35\) mrad and \(|\Delta \phi| < 50\) mrad, with respect to the polar and azimuthal angles of the beam axis.

Muons and kaons are identified using a bagging decision trees \([16]\) algorithm with 30 (36) input variables for the muon (kaon) selection. For muons, the most important input variables are the number and position of the hits in the instrumented flux return, the difference between the expected and measured DCH \(dE/dx\) for the muon hypothesis, and the energy deposited in the EMC. For kaons, the most important variables are the kaon and pion likelihoods based on the measured Cherenkov angle in the DIRC and the difference between the expected and measured \(dE/dx\) for the kaon hypothesis.

We define several quality levels of particle identification for use in the analysis. The “loose” levels have higher efficiency but also higher misidentification probabilities. The “tight” levels have lower misidentification probabilities and efficiencies. Table I summarizes the selection efficiency and misidentification probabilities of the PID selection algorithms used. A “very loose” (VL) K-PID algorithm is used for identifying the primary \(K\) in \(B \to K\tau\ell\), while a “very tight” (VT) K-PID algorithm, with lower efficiency but much smaller misidentification probability, is used to reject \(B_{sig}\) candidates where a nonkaon track passes the VT K-PID criteria. Four quality levels of \(\mu\)-PID are used. In order of decreasing efficiency and

<table>
<thead>
<tr>
<th>Type</th>
<th>Efficiency</th>
<th>Misidentification probability</th>
</tr>
</thead>
<tbody>
<tr>
<td>K-VL</td>
<td>>95%</td>
<td><6% for (\pi) and (\mu) with (p_{lab} < 3.5) GeV/c</td>
</tr>
<tr>
<td>K-VT</td>
<td>>85%</td>
<td>(\approx 1%) for (\pi) and (\mu) with (p_{lab} < 3.5) GeV/c</td>
</tr>
<tr>
<td>(\pi)</td>
<td>>98%</td>
<td><20% for (K)</td>
</tr>
<tr>
<td>(p)</td>
<td>(\approx 80%)</td>
<td><0.5% for (K, \pi, \mu, e)</td>
</tr>
<tr>
<td>(\mu)-VL</td>
<td>(\approx 90%)</td>
<td><15% for (\pi) with (p_{lab} < 1.25) GeV/c, <4% for (\pi) with (p_{lab} > 1.25) GeV/c</td>
</tr>
<tr>
<td>(\mu)-L</td>
<td>(\approx 80%)</td>
<td><5% for (\pi) with (p_{lab} < 1.25) GeV/c, <2% for (\pi) with (p_{lab} > 1.25) GeV/c</td>
</tr>
<tr>
<td>(\mu)-T</td>
<td>(\approx 75%)</td>
<td><3% for (\pi) with (p_{lab} < 1.25) GeV/c, (\approx 1%) for (\pi) with (p_{lab} > 1.25) GeV/c</td>
</tr>
<tr>
<td>(\mu)-VT</td>
<td>(\approx 70%)</td>
<td><2% for (\pi) with (p_{lab} < 1.25) GeV/c, <1% for (\pi) with (p_{lab} > 1.25) GeV/c</td>
</tr>
<tr>
<td>(e)</td>
<td>95%</td>
<td><0.2% for (K, p)</td>
</tr>
</tbody>
</table>
misidentification probability, they are VL, loose (L), tight (T), and VT.

C. Signal B reconstruction

The eight $B \to h\tau\ell$ decay modes are independently analyzed. Tracks for the signal B reconstruction must satisfy the following criteria: the distance of closest approach to the beam axis in the transverse plane must be less than 1.5 cm; the z position of the distance-of-closest-approach point must be less than 2.5 cm from the primary vertex of the event; the transverse momentum must be >50 MeV/c; and the momentum must be <10 GeV/c. After selecting the best B_{sig} candidate, we require exactly three tracks satisfying the above criteria remain in the event (excluding the B_{sig} daughters) and that the sum of the charges of these tracks be the opposite of the B_{sig} candidate charge. We refer to these three tracks as the B_{sig} daughters.

We require the primary hadron, which is the h in $B \to h\tau\ell$, to be one of the two B_{sig} daughters with the same charge as the B_{sig} candidate. The primary hadron must pass the K-VL-PID criteria for the $B \to K\tau\ell$ modes and the π-PID criteria for the $B \to \pi\tau\ell$ modes. For the $B \to K\tau\ell$ modes, if both of the B_{sig} daughters with the same charge meet the minimal K-PID criteria, the one with the highest K-PID quality level is selected as the primary K^{\mp}. If they have the same K-PID quality level, we choose the one with the lower momentum as the primary K^{\mp}. For the $B \to \pi\tau\ell$ modes, if both B_{sig} daughters with the same charge meet the π-PID criteria, we choose the one that gives m_{τ} closest to the true τ mass. This algorithm does not produce an artificial peak in the signal window of the background m_{τ} distribution. Once the primary hadron candidate has been assigned, the τ daughter and primary lepton are uniquely defined for a given $B \to h\tau\ell$ mode from the remaining two B_{sig} daughters based on their electric charge.

The primary lepton, which is the ℓ in $B \to h\tau\ell$, must pass either the e-PID or the loose μ-PID criteria (μ-VL). We remove events where any of the three B_{sig} daughters passes the p-PID criteria, or where any of the three B_{sig} daughters passes the K-VT-PID criteria, with the exception of the K^{\pm} in $B \to K\tau\ell$.

By requiring exactly three B_{sig} daughters, we are restricting the selection to one-prong τ decays. For each of the eight $B \to h\tau\ell$ modes, we divide the selection into three τ decay channels: electron, muon, and pion. From now on, we use “modes” to refer to types of $B \to h\tau\ell$ decays and “channels” to refer to types of τ decays. The three τ decay channels are analyzed in parallel, with different background rejection criteria applied. If the τ daughter satisfies the e-PID criteria, the event is assigned to the electron channel. If the τ daughter does not satisfy the e-PID, but does satisfy the μ-VL-PID criteria, the event is assigned to the muon channel. If the τ daughter passes neither the e-PID or the μ-VL-PID, the event is assigned to the pion channel. This ensures that an event does not get double counted and categorized into another τ decay channel for a given $B \to h\tau\ell$ mode.

Background events with a $B \to h(c\bar{c})$; $(c\bar{c}) \to \ell^+\ell^-$ decay can pass our signal selection criteria. We remove events in the electron (muon) and pion τ decay channels of the $B \to h\tau\ell$ ($B \to h\tau\mu$) modes if the invariant mass of the primary lepton and τ daughter, $m_{\ell\tau}$, is consistent with a dilepton charmonium decay: $3.03 < m_{\ell\tau} < 3.14$ GeV/c^2 for the J/ψ or $3.60 < m_{\ell\tau} < 3.75$ GeV/c^2 for the $\psi(2S)$. The core dilepton invariant mass resolution for these charmonium decays is on the order of 12 MeV/c^2. These charmonium vetoes effectively remove the charmonium background at a minimal cost in signal efficiency. We also require $m_{\ell\tau} > 0.1$ GeV/c^2 for $B \to h\tau\ell$ candidates in the electron and pion channels to remove candidates where the primary electron and the τ daughter are consistent with originating from a photon conversion.

D. $B\bar{B}$ background and the $m(K\pi)$ invariant mass requirement

After the selection described above, the dominant background is due to $B\bar{B}$ events, where the B_{sig} is properly reconstructed. However, the largest background source differs depending on the charge of the primary lepton relative to the charge of the B_{sig} candidate.

When the primary lepton charge is the same as the B_{sig} charge, such as a $B^+ \to K^+\tau^-\ell^+$ candidate, the dominant background comes from semileptonic B decays, such as $B^+ \to \bar{D}^{(*)0}\ell^+\nu$; $\bar{D}^0 \to K^+X^-$, where X^- contains a π^-, e^-, or μ^- and perhaps other charged and/or neutral daughters that are not reconstructed. For example, the final state tracks $K^+\pi^-\ell^+$ are identical for this background with $\bar{D}^0 \to K^+\pi^-$ and the $B^+ \to K^+\tau^-\ell^+$ signal decay with $\tau^- \to \pi^-\nu_\tau$. On the other hand, when the primary lepton charge is opposite to the B_{sig} charge, such as for a $B^+ \to K^+\tau^-\ell^-$ candidate, the dominant background comes from semileptonic D decays, such as $B^+ \to \bar{D}^{(*)+}X^+$; $\bar{D}^0 \to K^+\ell^-\nu_\ell$.

To reduce these backgrounds, we reject B_{sig} candidates where two of the B_{sig} daughters are kinematically compatible with originating from a charm decay, as described below. For the four $B \to K\tau\ell$ modes, we define the variable $m(K\pi)$ as the invariant mass of the primary K and the B_{sig} daughter that has opposite charge to this K. In computing $m(K\pi)$, the non-K track is assumed to be a pion. Distributions of $m(K\pi)$ for the background and signal MC are shown in Fig. 1 for $B \to K\tau\mu$. For the four $B \to \pi\tau\ell$ modes, we define $m(K\pi)$ by combining two B_{sig} daughters that have opposite charge. Of the two B_{sig} daughters with the same charge as the B_{sig} candidate, we choose the one with the highest K-PID quality level. We assume that the kaon is one of the B_{sig} daughters with the
same charge as the B_{sig} candidate and the pion is the B_{sig} daughter with the opposite charge as the B_{sig} candidate. If the two B_{sig} daughters with the same charge as the B_{sig} candidate have the same K-PID quality level, we use the daughter with higher momentum as the kaon in the $m(K\pi)$ calculation.

We require $m(K\pi) > 1.95 \text{ GeV}/c^2$. This rejects between 97% and 99% of the background while retaining between 32% and 37% of the signal for the $B^+ \rightarrow h^+ \tau^- \ell^+$ modes. For the $B^+ \rightarrow \pi^+ \tau^- \ell^-$ modes, the $m(K\pi)$ requirement rejects 85% and 89% of the $\pi^+ \tau^- \mu^-$ and $\pi^+ \tau^- e^-$ backgrounds while retaining 72% and 65% of the signal, respectively. For the $B^+ \rightarrow K^+ \tau^- \ell^-$ modes, the $m(K\pi)$ requirement rejects 92% and 96% of the $K^+ \tau^- \mu^-$ and $K^+ \tau^- e^-$ background while retaining 63% and 62% of the signal, respectively.

IV. $B \rightarrow D^{(*)0}\ell\nu$ CONTROL SAMPLE

We select a control sample of semileptonic B decays of the form $B^+ \rightarrow \bar{D}^{(*)0}\ell^+\nu$; $\bar{D}^0 \rightarrow K^+\pi^-$ by requiring $m(K\pi)$ to be near the D^0 mass, $1.845 < m(K\pi) < 1.885 \text{ GeV}/c^2$. The $D^{(*)0}\ell\nu$ control sample has a negligible amount of combinatorial background. In our search for $B \rightarrow h\tau\ell$, we normalize the $B \rightarrow h\tau\ell$ branching fraction by using the measured $D^{(*)0}\ell\nu$ yield taken from the control sample. We determine the relative amounts of B mesons that decay to \bar{D}^0, D^{*0}, and higher resonances (D^{**0}) using the reconstructed center-of-mass energy difference

$$E_\nu = p_\nu = | - \vec{p}_{\text{tag}} - \vec{p}_K - \vec{p}_\pi - \vec{p}_\ell|,$$

$$\Delta E_{D\ell\nu} = E_K + E_\pi + E_\ell + E_\nu - E_{\text{beam}}.$$

For $B^+ \rightarrow \bar{D}^0\ell^+\nu$ decays, $\Delta E_{D\ell\nu}$ is centered at zero. The missing neutral particles from D^{*0} and D^{**0} decays shift $\Delta E_{D\ell\nu}$ in the negative direction.

The expected observed yields of $D\ell\nu$ and $h\tau\ell$ as functions of their branching fractions are given by

$$N_{D\ell\nu} = N_0 B_{D\ell\nu} \epsilon_{D\ell\nu} \epsilon_{D\ell\nu},$$

$$N_{h\tau\ell} = N_0 B_{h\tau\ell} \epsilon_{h\tau\ell} \epsilon_{h\tau\ell},$$

where N_0 is the number of $B\bar{B}$ events, $B_{D\ell\nu}$ ($B_{h\tau\ell}$) is the branching fraction for $B \rightarrow D\ell\nu$ ($B \rightarrow h\tau\ell$), $\epsilon_{D\ell\nu}$ ($\epsilon_{h\tau\ell}$) is the B_{tag} reconstruction efficiency in $B\bar{B}$ events that contain a $D\ell\nu$ ($h\tau\ell$) decay on the signal side, $\epsilon_{D\ell\nu}$ ($\epsilon_{h\tau\ell}$) is the signal-side reconstruction efficiency for $D\ell\nu$ ($h\tau\ell$), and the symbol $D\ell\nu$ represents either $B^+ \rightarrow \bar{D}^0\ell^+\nu$ or $B^+ \rightarrow \bar{D}^0\ell^+\nu$. Solving for the expected $h\tau\ell$ event yield gives

$$N_{h\tau\ell} = B_{h\tau\ell} \epsilon_{h\tau\ell} S_0,$$

where we have defined a common factor.
Table II gives the tag-side efficiency ratios determined from MC samples. The uncertainty includes both statistical and systematic sources.

<table>
<thead>
<tr>
<th>Efficiency ratio</th>
<th>μ modes</th>
<th>e modes</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\epsilon^{K\tau\ell}/\epsilon^{D_\tau\ell}_{\text{tag}}$</td>
<td>0.96 ± 0.05</td>
<td>0.98 ± 0.07</td>
</tr>
<tr>
<td>$\epsilon^{\pi\tau\ell}/\epsilon^{D_\tau\ell}_{\text{tag}}$</td>
<td>0.95 ± 0.04</td>
<td>0.97 ± 0.06</td>
</tr>
</tbody>
</table>

$$S_0 = \frac{N_{D_{\tau\ell}}}{B_{D_{\tau\ell}}\epsilon^{D_{\tau\ell}}_{\text{tag}}} \left(\frac{\epsilon^{D_{\tau\ell}}_{\text{tag}}}{\epsilon^{D_{\tau\ell}}_{\text{tag}}} \right).$$

Table II gives the tag-side efficiency ratios determined from MC samples. We find the ratios to be close to 1, indicating that the signal-side decay does not strongly influence the tag-side reconstruction efficiency, and does not depend on the primary lepton or hadron flavor.

Figure 2 shows the results of unbinned maximum likelihood fits of the $\Delta E_{D_{\tau\ell}}$ distributions for the $B^+ \to \bar{D}^{(*)0}\mu^+\nu$ and $B^+ \to \bar{D}^{(*)0}e^+\nu$ control samples. The fits have independent \bar{D}^0, $\bar{D}^{(*)0}$, and $\bar{D}^{(*)}\pi^0$ components. Any residual combinatorial background is included in the $\bar{D}^{(*)0}$ component. The \bar{D}^0 and $\bar{D}^{(*)0}$ component probability density functions (PDFs) are each modeled with the sum of a Gaussian and a Crystal Ball function [17]. The $\bar{D}^{(*)0}$ component PDF is the sum of a Gaussian and a bifurcated Gaussian, which has different width parameters above and below the mean. The overall normalization of each component, the core Gaussian mean and width of the \bar{D}^0 component, and the relative fraction of the Crystal Ball function within the $\bar{D}^{(*)0}$ component are all parameters of the likelihood that are varied in its maximization.

The results of the $\Delta E_{D_{\tau\ell}}$ maximum likelihood fits and S_0 calculations are given in Table III. We use the following branching fractions [18] in the calculation of S_0: $\mathcal{B}(B^- \to D^0\ell^-\bar{\nu}) = (2.23 \pm 0.11)\%$, $\mathcal{B}(B^- \to D^{(*)0}\ell^-\bar{\nu}) = (5.68 \pm 0.19)\%$, and $\mathcal{B}(D^0 \to K^-\pi^+) = (3.87 \pm 0.05)\%$. The four determinations of S_0 are all consistent with each other, as expected.

V. CONTINUUM BACKGROUND REJECTION

After the $m(K\pi) > 1.95\text{ GeV}/c^2$ requirement, the $B\bar{B}$ background is highly suppressed. The remaining background is dominated by continuum quark-pair production ($e^+e^- \to q\bar{q}$; $q = u, d, s, c$). We combine the variables described in this section in a likelihood ratio

$$L_R = \frac{\prod_i P_i(x_i)}{\prod_i P_{j}(x_i) + \prod_i P_{h}(x_i)}$$

where x_i is one of a set of variables that discriminate tails from background, and $P_i(x_i)$ ($P_{j}(x_i)$) is the PDF for variable x_i in signal (background) events.

The variables used in the L_R calculation are

(i) $|\cos\theta_{\text{th}}|$ the absolute value of the cosine of the angle θ_{th} between the B_{tag} thrust axis and the thrust axis of the remainder of the event ($\equiv B_{\text{tag}}$); the thrust axis is defined as the direction \hat{a} which maximizes $\sum_j \hat{a} \cdot \vec{p}_j$, where j represents all particles assigned to a particular B candidate.

(ii) $\sum E_{\text{cal}}$ the scalar sum of all EMC neutral cluster energy that is not associated with the B_{tag} candidate or bremsstrahlung radiation from any e candidates, where the threshold cluster energy is 100 MeV (50 MeV) in the forward (barrel) region of the detector.

TABLE III. Results of the $\Delta E_{D_{\tau\ell}}$ maximum likelihood fits and S_0 calculations. The uncertainties on $N_{D_{\tau\ell}}$ and $\epsilon^{D_{\tau\ell}}$ are statistical. The efficiency $\epsilon^{D_{\tau\ell}}$ is determined from a Monte Carlo sample. The uncertainty on S_0 includes the uncertainties on the B and D branching fractions.

<table>
<thead>
<tr>
<th>$D_{\ell\nu}$ mode</th>
<th>$N_{D_{\tau\ell}}$</th>
<th>$\epsilon^{D_{\tau\ell}}$</th>
<th>S_0</th>
</tr>
</thead>
<tbody>
<tr>
<td>$D^0\mu\nu$</td>
<td>513 ± 38</td>
<td>(47.8 ± 0.9)%</td>
<td>(12.0 ± 1.2) × 10^5</td>
</tr>
<tr>
<td>$D^{(*)0}\mu\nu$</td>
<td>1234 ± 49</td>
<td>(50.8 ± 0.5)%</td>
<td>(10.7 ± 0.8) × 10^5</td>
</tr>
<tr>
<td>$D^{(*)0}\mu\nu$</td>
<td>484 ± 46</td>
<td>(48.2 ± 0.9)%</td>
<td>(11.4 ± 1.5) × 10^5</td>
</tr>
<tr>
<td>$D^{(*)0}\nu\nu$</td>
<td>1368 ± 58</td>
<td>(52.2 ± 0.5)%</td>
<td>(11.7 ± 1.1) × 10^5</td>
</tr>
</tbody>
</table>
(iii) primary μ-PID quality level, where, for the $B \to h \pi \mu$ modes, we include the highest quality level (VL, L, T, VT) of the primary μ candidate, and

(iv) secondary μ-PID quality level, where we include the highest quality level (VL, L, T, VT) of the τ-daughter μ candidate, if applicable.

We fit histograms of the $|\cos \theta_{ew}|$ and $\sum E_{\text{cal}}$ signal and background MC distributions using polynomials of up to

![Graphs showing distributions of $|\cos \theta_{ew}|$, $\sum E_{\text{cal}}$, and likelihood ratio](http://example.com/graphics)

FIG. 3 (color online). Distributions of $|\cos \theta_{ew}|$ for background (top) and signal MC (bottom), for the $B^+ \to K^+ \tau^+ \mu^+$; $\tau \to (n\pi^0) \pi \nu_\tau$ channel. The points (solid line) in the top figure are the data (background MC). The background MC has been normalized to match the area of the data distribution. The normalization of the signal MC is arbitrary. The solid red curve is the result of the polynomial fit of the MC distribution.

FIG. 4 (color online). Distributions of $\sum E_{\text{cal}}$ for background (top) and signal MC (bottom), for the $B^+ \to K^+ \tau^+ \mu^+$; $\tau \to e^- \bar{\nu}_e \nu_\tau$ (left), $\tau \to \mu^- \bar{\nu}_\mu \nu_\tau$ (middle), and $\tau \to (n\pi^0) \pi \nu_\tau$ (right). The events where $\sum E_{\text{cal}} = 0$ have been separated from the main distribution and plotted in a bin below zero for clarity. The points (solid line) in the top figure are the data (background MC). The background MC has been normalized to match the area of the data distribution. The normalization of the signal MC is arbitrary. The solid red curve is the result of the polynomial fit of the MC distribution.

FIG. 5. Likelihood ratio (L_R) output distributions of background (top) and signal MC (bottom), for the $B^+ \to K^+ \tau^+ \mu^+$; $\tau \to (n\pi^0) \pi \nu_\tau$ channel. The points (solid line) in the top figure are the data (background MC). The background MC has been normalized to match the area of the data distribution. The normalization of the signal MC is arbitrary.
order eight to define the PDFs for those variables. The PDFs for the muon-PID quality level are normalized histograms, with one bin for each muon-PID quality level.

For each of the eight signal B decay modes, we construct a distinct L_R for each of the three τ channels (e, μ, and π). This corresponds to 24 different likelihood ratios. In the final selection, described in Sec. VIII, we impose a minimum L_R requirement for each τ channel in each of the eight $B \to h\tau\ell$ modes.

Figure 3 shows the background and signal $|\cos\theta_{\text{thr}}|$ distributions for the π channel of the $B^+ \to K^+ \tau^+ \mu^-$ mode. The continuum background peaks sharply near $|\cos\theta_{\text{thr}}| = 1$ because the events have a back-to-back jet-like topology. The signal $|\cos\theta_{\text{thr}}|$ distribution is roughly uniform because the detected decay products in $B\bar{B}$ events are more isotropically distributed.

Figure 4 shows $\sum E_{\text{cal}}$ distributions for the three τ channels of the $B^+ \to K^+ \tau^- \mu^+$ mode. The events where $\sum E_{\text{cal}} = 0$, due to the absence of unassociated neutral clusters above the minimum energy threshold, are not included in the polynomial fit and treated separately. The signal MC $\sum E_{\text{cal}}$ distributions peak at zero, as expected, while the background rarely has $\sum E_{\text{cal}} = 0$ but rather has a distribution that peaks between 1 and 2 GeV. The signal MC $\sum E_{\text{cal}}$ distributions for the π channel extend to higher values, compared to the e and μ channels, due to hadronic τ decays that produce a single π^\pm with one or more neutral pions.

Figure 5 shows background and signal MC L_R distributions for the $B^+ \to K^+ \tau^- \mu^+$; $\tau^- \to (n\pi^0)\pi^- \nu_\tau$ channel. The background peaks sharply near zero and the signal peaks sharply near one. The value of the L_R selection for each τ channel in each of the eight signal modes is chosen by determining the lowest upper limit on the branching fractions under the null hypothesis with MC pseudoeperiments. We vary the minimum L_R requirement in intervals of 0.05.

VI. SIGNAL AND BACKGROUND ESTIMATION

In our signal selection, we require the indirectly reconstructed τ mass m_τ to be within ± 60 MeV/c2 of the

\[\sum E_{\text{cal}} = 0 \text{ events are plotted below zero in Fig. 4 for clarity. The signal MC } \sum E_{\text{cal}} \text{ distributions peak at zero, as expected, while the background rarely has } \sum E_{\text{cal}} = 0 \text{ but rather has a distribution that peaks between 1 and 2 GeV. The signal MC } \sum E_{\text{cal}} \text{ distributions for the } \pi \text{ channel extend to higher values, compared to the } e \text{ and } \mu \text{ channels, due to hadronic } \tau \text{ decays that produce a single } \pi^\pm \text{ with one or more neutral pions.} \]

Figure 5 shows background and signal MC L_R distributions for the $B^+ \to K^+ \tau^- \mu^+$; $\tau^- \to (n\pi^0)\pi^- \nu_\tau$ channel. The background peaks sharply near zero and the signal peaks sharply near one. The value of the L_R selection for each τ channel in each of the eight signal modes is chosen by determining the lowest upper limit on the branching fractions under the null hypothesis with MC pseudoeperiments. We vary the minimum L_R requirement in intervals of 0.05.
The relative signal efficiency after the m_τ signal window requirement is around 84% (78%) for the $B \to h\tau\mu$ ($B \to h\tau\tau$) modes. We optimized the m_τ signal windows, considering windows in the range of $\pm 50\text{ MeV}/c^2$ to $\pm 175\text{ MeV}/c^2$. Our optimization metric was the average expected signal branching fraction 90% confidence level upper limit from a set of toy experiments simulating background-only data sets. In each toy experiment, we generate a value for the observed number of events in the signal window using a random number that we take from a Poisson distribution with the mean value set to the expected number of background events. We find that a m_τ signal window of $\pm 60\text{ MeV}/c^2$ gives the lowest expected branching fraction upper limits for all τ decay channels.

The background distribution in m_τ is very wide and slowly varying. We use a broad m_τ sideband from 0 to 3.5 GeV/c^2, excluding the signal window, to estimate the background in the m_τ signal window with

$$b = R_b N_{sb},$$

where b is the number of background events in the signal window, N_{sb} is the number of background events in the m_τ sideband, and R_b is the expected signal-to-sideband ratio (b/N_{sb}). The ratio R_b is determined from the ratio of selected background events in the m_τ signal window (b) and the m_τ sideband (N_{sb}) in the background Monte Carlo.

Figs. 6 and 7 show the observed, signal MC, and background MC m_τ distributions for the $B \to K\tau\ell$ and $B \to \pi\pi\ell$ modes, respectively. Table IV gives the results for the observed numbers of sideband events $N_{sb,i}$, signal-to-sideband ratios $R_{b,i}$, expected numbers of background events b_i, numbers of observed events n_i, and signal efficiencies $\epsilon_{h\tau\ell,i}$ for each τ channel i. All of the observed numbers of events n_i in the m_τ signal window are statistically consistent with the expected backgrounds b_i, thus there is no evidence for any $B \to h\tau\ell$ decay.
TABLE IV. Results for the observed sideband events N_{obs}, signal-to-sideband ratio $R_{b,s}$, expected background events b_s, number of observed events n_i, signal efficiency $\epsilon_{sle,i}$ (assuming uniform three-body phase space decays) for each τ channel i, and $B \rightarrow h\tau\ell$ [9] branching fraction central value and 90% C.L. upper limits (UL) from the combination of the three τ channels. All uncertainties include statistical and systematic sources.

<table>
<thead>
<tr>
<th>Mode</th>
<th>τ channel</th>
<th>N_{obs}</th>
<th>$R_{b,s}$</th>
<th>b_s</th>
<th>n_i</th>
<th>$\epsilon_{sle,i}$</th>
<th>$\mathcal{B}(B \rightarrow h\tau\ell)$ ($\times 10^{-5}$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>$B^+ \rightarrow K^+ \tau^{-} \mu^+$</td>
<td>e</td>
<td>22</td>
<td>0.02 ± 0.01</td>
<td>0.4 ± 0.2</td>
<td>2</td>
<td>(2.6 ± 0.2)%</td>
<td>$0.8^{+1.9}_{-1.4}$</td>
</tr>
<tr>
<td></td>
<td>μ</td>
<td>4</td>
<td>0.08 ± 0.05</td>
<td>0.3 ± 0.2</td>
<td>0</td>
<td>(3.2 ± 0.4)%</td>
<td></td>
</tr>
<tr>
<td></td>
<td>π</td>
<td>39</td>
<td>0.045 ± 0.020</td>
<td>1.8 ± 0.8</td>
<td>1</td>
<td>(4.1 ± 0.4)%</td>
<td></td>
</tr>
<tr>
<td>$B^+ \rightarrow K^+ \tau^{+} \mu^-$</td>
<td>e</td>
<td>5</td>
<td>0.03 ± 0.01</td>
<td>0.2 ± 0.1</td>
<td>0</td>
<td>(3.7 ± 0.3)%</td>
<td>$-0.4^{+1.4}_{-0.9}$</td>
</tr>
<tr>
<td></td>
<td>μ</td>
<td>3</td>
<td>0.06 ± 0.03</td>
<td>0.2 ± 0.1</td>
<td>0</td>
<td>(3.6 ± 0.7)%</td>
<td></td>
</tr>
<tr>
<td></td>
<td>π</td>
<td>153</td>
<td>0.045 ± 0.010</td>
<td>6.9 ± 1.5</td>
<td>11</td>
<td>(9.1 ± 0.5)%</td>
<td></td>
</tr>
<tr>
<td>$B^+ \rightarrow K^+ \tau^{-} \mu^-$</td>
<td>e</td>
<td>6</td>
<td>0.095 ± 0.020</td>
<td>0.6 ± 0.1</td>
<td>2</td>
<td>(2.2 ± 0.2)%</td>
<td>$0.2^{+1.1}_{-0.9}$</td>
</tr>
<tr>
<td></td>
<td>μ</td>
<td>4</td>
<td>0.025 ± 0.010</td>
<td>0.1 ± 0.1</td>
<td>0</td>
<td>(2.7 ± 0.6)%</td>
<td></td>
</tr>
<tr>
<td></td>
<td>π</td>
<td>33</td>
<td>0.045 ± 0.015</td>
<td>1.5 ± 0.5</td>
<td>1</td>
<td>(4.8 ± 0.6)%</td>
<td></td>
</tr>
<tr>
<td>$B^+ \rightarrow K^+ \tau^{+} \mu^-$</td>
<td>e</td>
<td>8</td>
<td>0.10 ± 0.06</td>
<td>0.8 ± 0.5</td>
<td>0</td>
<td>(2.8 ± 1.1)%</td>
<td>$-1.3^{+1.5}_{-1.8}$</td>
</tr>
<tr>
<td></td>
<td>μ</td>
<td>3</td>
<td>0.045 ± 0.020</td>
<td>0.1 ± 0.1</td>
<td>0</td>
<td>(3.2 ± 0.7)%</td>
<td></td>
</tr>
<tr>
<td></td>
<td>π</td>
<td>132</td>
<td>0.035 ± 0.010</td>
<td>4.6 ± 1.3</td>
<td>4</td>
<td>(8.7 ± 1.2)%</td>
<td></td>
</tr>
<tr>
<td>$B^+ \rightarrow \pi^+ \tau^{-} \mu^+$</td>
<td>e</td>
<td>55</td>
<td>0.017 ± 0.010</td>
<td>0.9 ± 0.6</td>
<td>0</td>
<td>(2.3 ± 0.2)%</td>
<td>$0.4^{+0.3}_{-0.2}$</td>
</tr>
<tr>
<td></td>
<td>μ</td>
<td>10</td>
<td>0.11 ± 0.04</td>
<td>1.1 ± 0.4</td>
<td>2</td>
<td>(2.9 ± 0.4)%</td>
<td></td>
</tr>
<tr>
<td></td>
<td>π</td>
<td>93</td>
<td>0.035 ± 0.010</td>
<td>3.3 ± 0.9</td>
<td>4</td>
<td>(2.8 ± 0.2)%</td>
<td></td>
</tr>
<tr>
<td>$B^+ \rightarrow \pi^+ \tau^{+} \mu^-$</td>
<td>e</td>
<td>171</td>
<td>0.012 ± 0.003</td>
<td>2.1 ± 0.5</td>
<td>2</td>
<td>(3.8 ± 0.3)%</td>
<td>$0.0^{+0.3}_{-0.2}$</td>
</tr>
<tr>
<td></td>
<td>μ</td>
<td>89</td>
<td>0.04 ± 0.01</td>
<td>3.6 ± 0.9</td>
<td>4</td>
<td>(4.8 ± 0.3)%</td>
<td></td>
</tr>
<tr>
<td></td>
<td>π</td>
<td>512</td>
<td>0.050 ± 0.005</td>
<td>25 ± 3</td>
<td>23</td>
<td>(9.1 ± 0.6)%</td>
<td></td>
</tr>
<tr>
<td>$B^+ \rightarrow \pi^+ \tau^{-} \mu^-$</td>
<td>e</td>
<td>1</td>
<td>0.050 ± 0.025</td>
<td>0.1 ± 0.1</td>
<td>1</td>
<td>(2.0 ± 0.8)%</td>
<td>$2.8^{+0.4}_{-0.5}$</td>
</tr>
<tr>
<td></td>
<td>μ</td>
<td>16</td>
<td>0.025 ± 0.010</td>
<td>0.4 ± 0.2</td>
<td>1</td>
<td>(2.8 ± 0.3)%</td>
<td></td>
</tr>
<tr>
<td></td>
<td>π</td>
<td>172</td>
<td>0.035 ± 0.008</td>
<td>6.0 ± 1.4</td>
<td>7</td>
<td>(5.8 ± 0.3)%</td>
<td></td>
</tr>
<tr>
<td>$B^+ \rightarrow \pi^+ \tau^{+} \mu^-$</td>
<td>e</td>
<td>31</td>
<td>0.033 ± 0.013</td>
<td>1.0 ± 0.4</td>
<td>0</td>
<td>(2.9 ± 0.3)%</td>
<td>$-3.1^{+0.4}_{-0.2}$</td>
</tr>
<tr>
<td></td>
<td>μ</td>
<td>247</td>
<td>0.012 ± 0.005</td>
<td>3.0 ± 1.2</td>
<td>2</td>
<td>(4.6 ± 0.4)%</td>
<td></td>
</tr>
<tr>
<td></td>
<td>π</td>
<td>82</td>
<td>0.07 ± 0.03</td>
<td>5.7 ± 2.5</td>
<td>3</td>
<td>(3.7 ± 1.0)%</td>
<td></td>
</tr>
</tbody>
</table>

VII. SYSTEMATIC UNCERTAINTIES

Since we normalize our $B \rightarrow h\tau\ell$ signals using the $B \rightarrow D^{(*)0}\ell\nu$ control sample, many systematic uncertainties cancel, such as the ones coming from the absolute B_{ug} efficiency uncertainty and the tracking efficiency uncertainty. We evaluate systematic uncertainties on the efficiency of the minimum L_R requirement by varying the signal and background PDFs for each L_R. We use the $B \rightarrow D^{(*)0}\ell\nu$ control sample in place of the signal Monte Carlo as a variation of the signal $\sum E_{\text{cal}}$. A uniform distribution is used in place of the nominal polynomial fit as the variation of the signal $|\cos\theta_{\text{max}}|$ PDF. The efficiency for each lepton PID level is varied by ±2.5% for the VL, L, and T levels and ±3.2% for the VT level. The data m_{τ} sideband is used in place of the Monte Carlo as a variation of the background PDFs.

Our largest sources of systematic uncertainty come from variations in modeling the data distributions of the $\sum E_{\text{cal}}$ and $|\cos\theta_{\text{max}}|$ L_R inputs when compared to the nominal background MC PDFs. The changes in $\epsilon_{sle,i}/\epsilon_{sle}$ from the variations are added in quadrature. We determine systematic uncertainties as high as 1.1%, with the largest ones coming from the $B^+ \rightarrow K^+ \tau^{+} e^-$, $\tau^+ \rightarrow e^+ \nu_e \bar{\nu}_e$, and $\tau^+ \rightarrow (n\pi^0)\pi^+ \bar{\nu}_\tau$ channels.

The $B \rightarrow \pi\tau\ell$ modes require π-PID, while the $B \rightarrow D^{(*)0}\ell\nu$ control sample requires K-PID. We evaluate a systematic uncertainty on $\epsilon_{sle}/\epsilon_{D\ell\nu}$ by measuring the π-PID and K-PID efficiencies using the $B \rightarrow D^{(*)0}\ell\nu$ control sample with and without the K-PID or π-PID requirements. The measured efficiencies in data are consistent with the MC simulation. Based on the results from the $B \rightarrow D^{(*)0} \mu\nu$ and $B \rightarrow D^{(*)0} e\nu$ samples, we assign systematic uncertainties of 1.8% and 1.0% to $\epsilon_{D\mu\nu}/\epsilon_{D\ell\nu}$ and $\epsilon_{D\pi\ell}/\epsilon_{D\ell\nu}$, respectively.

The uncertainty on the signal-to-sideband ratio R_{b_s} is the statistical uncertainty from the Monte Carlo sample used to determine its value. Figs. 6 and 7 show good agreement between the Monte Carlo and observed data distributions in the sidebands. No additional systematic uncertainty is included in R_{b_s}. 012004-12
The tag efficiency ratio \(e^{\text{tag}} / e^{\text{ DET}} \) is evaluated using two independent Monte Carlo samples: one where the tag-side \(B \) meson decays to all possible final states and another where the tag-side \(B \) meson is forced to decay to most of the modes that comprise the tag-side reconstruction. The value of the ratio is taken from the first sample. The systematic error on the ratio is the difference in the ratio between the two samples. The overall uncertainty on the ratio, given in Table II, is the sum in quadrature of the statistical and systematic uncertainties on the ratio.

VIII. BRANCHING FRACTION RESULTS

We determine the branching fraction for each of the eight \(B \to h\tau\ell \) modes using a likelihood function which is the product of three Poisson PDFs, one for each of the three \(\tau \) channels. The expected number of events in a particular \(\tau \) channel is given by

\[
i_n = N_{h\tau\ell,i} + b_i, \tag{7}
\]

\[
i_n = B_{h\tau\ell}\epsilon_{h\tau\ell,i}S_0 + b_i, \tag{8}
\]

where \(N_{h\tau\ell,i} \) \((b_i)\) is the expected number of signal (background) events in channel \(i \). Total uncertainties on the signal efficiency \(\epsilon_{h\tau\ell,i} \), common factor \(S_0 \), and expected background \(b_i \) are included by convolving the likelihood with Gaussian distributions in \(\epsilon_{h\tau\ell,i}, S_0, \) and \(b_i \).

We set 90% confidence intervals on the branching fractions of the eight \(B \to h\tau\ell \) modes assuming uniform three-body phase space decays using the likelihood ratio ordering principle of Feldman and Cousins [19] to construct the confidence belts.

The 90% C.L. upper limits on the \(B \to h\tau\ell \) branching fractions are between \(1.5 \times 10^{-5} \) and \(7.4 \times 10^{-5} \). Table IV includes the final results for the \(B \to h\tau\ell \) branching fraction and 90% C.L. upper limits. In Table V, we give combined results for \(B(B^+ \to h^+\tau\ell) = B(B^+ \to h^+\tau^-\ell^+) + B(B^+ \to h^-\tau^+\ell^-) \) with the assumption \(B(B^+ \to h^+\tau^-\ell^+) = B(B^+ \to h^+\tau^+\ell^-) \). The uncertainties include statistical and systematic sources.

<table>
<thead>
<tr>
<th>Mode</th>
<th>Central value</th>
<th>90% C.L. UL</th>
</tr>
</thead>
<tbody>
<tr>
<td>(B^+ \to K^+\tau\mu)</td>
<td>0.0^{+2.7}_{-1.4} \times 10^{-5}</td>
<td><4.8</td>
</tr>
<tr>
<td>(B^+ \to K^-\tau\mu)</td>
<td>(-0.6^{+1.7}_{-1.4} \times 10^{-5})</td>
<td><3.0</td>
</tr>
<tr>
<td>(B^+ \to \pi^+\tau\mu)</td>
<td>0.5^{+3.8}_{-3.2} \times 10^{-5}</td>
<td><7.2</td>
</tr>
<tr>
<td>(B^+ \to \pi^-\tau\mu)</td>
<td>2.3^{+2.8}_{-1.2} \times 10^{-5}</td>
<td><7.5</td>
</tr>
</tbody>
</table>

IX. SUMMARY AND CONCLUSIONS

We have searched for the lepton flavor violating decays \(B \to h\tau\ell \). We find no evidence for these decays and set 90% C.L. upper limits on the branching fractions of a few times \(10^{-5} \). The results for the \(B \to K\tau\mu \) mode supersedes our previous result [6]. The results for \(B \to K\tau\mu, B \to \pi\tau\mu, B \to \pi\tau\mu \) modes are the first experimental limits for these decays. We use our results to improve model-independent limits on the energy scale of new physics in flavor-changing operators [4] to \(\Lambda_{bd} > 11 \text{ TeV} \) and \(\Lambda_{bs} > 15 \text{ TeV} \).

ACKNOWLEDGMENTS

We are grateful for the extraordinary contributions of our PEP-II colleagues in achieving the excellent luminosity and machine conditions that have made this work possible. The success of this project also relies critically on the expertise and dedication of the computing organizations that support BABAR. The collaborating institutions wish to thank SLAC for its support and the kind hospitality extended to them. This work is supported by the US Department of Energy and National Science Foundation, the Natural Sciences and Engineering Research Council (Canada), the Commissariat à l’Energie Atomique and Institut National de Physique Nucléaire et de Physique des Particules (France), the Bundesministerium für Bildung und Forschung and Deutsche Forschungsgemeinschaft (Germany), the Istituto Nazionale di Fisica Nucleare (Italy), the Foundation for Fundamental Research on Matter (Netherlands), the Research Council of Norway, the Ministry of Education and Science of the Russian Federation, Ministerio de Ciencia e Innovación (Spain), and the Science and Technology Facilities Council (United Kingdom). Individuals have received support from the Marie-Curie IEF program (European Union) and the A.P. Sloan Foundation (USA).
[9] Charge-conjugate decays are implied throughout the paper.

[13] All energies and momenta are in the \(e^+ e^- \) center-of-mass reference frame unless explicitly stated otherwise.