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Abstract

This work reports an approach to variationally quantify orbital contraction in chem-

ical bonds by an extension of an energy decomposition analysis (EDA). The orbital

contraction energy is defined as the energy lowering due to optimization of the isolated

fragments (that combine to form the bond) with a specially constructed virtual set of

contraction/expansion functions. This set contains one function per occupied orbital,

obtained as the linear response to scaling the nuclear charges. EDA results for a variety

of single bonds show substantial changes in the importance of orbital contraction; it

plays a critical role for bonds to H, but only a very minor role in the bonds between

heavier elements. Additionally, energetic stabilization due to rehybridization is sepa-

rated from inductive polarization by the fact that no mixing with virtual orbitals is

involved, and is shown to be significant in fragments such as NH2, OH and F.

Graphical TOC Entry

Energy-quantified orbital contraction
on bond formation: hole density (red)
contracts to particle density (blue).
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The physical origin of the covalent bond was the topic of vigorous debate in the 20th cen-

tury. At the core, the two main positions disagreed on whether or not bond formation was

driven by potential energy1 or kinetic energy2 stabilization. Proponents of potential-driven

bond formation pointed to the accumulation of electron density in the internuclear region

and arguments based on the virial theorem.1,3,4 Arguments for kinetic-driven bond formation

were based around the fact that covalent bonding could only be accounted for in a quantum

mechanical treatment while a classical treatment, which would capture the potential energy

effects, cannot.5 Ultimately, for H +
2 and H2, the kinetic-driven interpretation was proven to

be correct by explicitly calculating the kinetic and potential energy along the bond forma-

tion coordinate by Ruedenberg,5,6 Goddard,7 Kutzelnigg,8,9 and Bacskay and Nordholm10,11

(though some12 still argue for potential-driven mechanisms).

Very early work13 suggested that orbital contraction was also important in accounting for

the binding energy of H2. As part of his classic analysis of the H +
2 chemical bond,5 Rueden-

berg emphasized that the apparent violation of the virial theorem is resolved by a lowering

of the atomic potential via orbital contraction toward the nuclei. For H +
2 , at R = 2a0,

variational calculations show that 1s orbital contraction (from exponent α = 1 to α = 1.24)

accounts for 21 kcal/mol out of the 64 kcal/mol of chemical binding.11,14 Other studies by

Ruedenberg6,15–19 and Kutzelnigg8,9 showed that, for many molecules, orbital contraction

is the dominant change in the electron potential energy term on bond formation. Con-

strained variational calculations for molecules in small basis sets20,21 suggested that orbital

contraction could typically be responsible for 25% or more of the chemical binding energy.

Our objective in this paper is to introduce a variational approach to the orbital contraction

contribution to chemical binding as part of an energy decomposition analysis (EDA) of

chemical bonds. In an EDA, the energetic contributions of different physical phenomena are

computed by some means, such as a sequence of variational constraints. There is a wide range

of successful EDA approaches.22–28 We focus here on the EDA based on the use of Absolutely
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Localized Molecular Orbitals (ALMOs), which has been used to understand the nature of

a variety of non-covalent interactions,29–35 radical-neutral interactions,36,37 and covalently

bonded interactions.38 In this approach, the system of interest is broken into a number

of interacting fragments. These fragments are allowed to relax to a supersystem ground

state via a sequence of variational constrained optimizations where successive constraints

are designed to correspond to different physical processes. The A-B single bond energy

in a 2 electrons in 2 orbitals (AB and AB*) complete active space (CAS) is variationally

decomposed as:38

∆Einteraction = ∆EGEOM + ∆EFRZ + ∆ESC + ∆EPOL + ∆ECT (1)

Evaluation of the A-B interaction starts by calculating the geometric distortion energy,

∆EGEOM; the energetic cost of changing from optimal fragment geometries for A and B to

their geometries in the A-B system. The ALMO EDA computes the MOs of each fragment

in isolation. Keeping those orbitals fixed (“frozen”), they are brought together to form

a (non-orthogonal) supersystem whose molecular orbital matrix is block-diagonal (that is,

each orbital is “absolutely localized” to a given fragment). The energy change, ∆EFRZ,

from bringing these fragments together is identified as frozen interactions which consist

of electrostatics, Pauli repulsion, and dispersion. In the case of a bonded interaction, the

assembled supersystem is high-spin and so a spin-flip is carried out to form the low-spin CSF

of the supersystem. This spin-flip stabilization energy, ∆ESC, is termed the spin-coupling

energy and reflects covalent bond formation with the frozen orbitals, and is the term most

related to the kinetic energy stabilization on bond formation. The assembled supersystem is

then optimized by self-consistent field for molecular interactions (SCFMI),29,36 which allows

only on-fragment mixing of frozen occupied MOs with carefully selected fragment virtual

orbitals that describe electrical polarization.37 The energy lowering due to this optimization,

∆EPOL, is identified with on-fragment polarization as, in a Mulliken sense, no charge has
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been transferred between the fragments. Removing the ALMO constraint and permitting all

orbital rotations affords the final SCF solution; this energy lowering, ∆ECT, is described as

charge-transfer because electrons can move between fragments and on-fragment electronic

changes (to first order) have already been accounted for by the polarization step.

Energy lowering due to orbital contraction is not specifically identified in the terms of Eq.

(1), so which term does it stabilize in the above scheme? To have a useful basis set limit,39,40

polarization in the bonded ALMO-EDA involves on-fragment mixing of the occupied frozen

MOs with just a small set of virtual MOs, that are the fragment electric response functions

(FERFs) which exactly describe linear response to electric fields and field gradients.37 By

design, these FERFs describe electrical polarization, that is, FERFs can describe on-fragment

electronic changes that are induced by electric fields due to the other fragment(s). For an

example of what the FERFs are like, we note that the dipolar response of the H atom to a

uniform field is a p function in the direction of the field, while the quadrupolar responses

to field gradients are a set of d functions. By contrast, the orbital contraction that takes

place during bond formation is not associated with any change in multipole moment of

the fragments (for instance the 1s orbital of the H atom becomes smaller upon H−H bond

formation). Thus, the FERFs will not effectively capture orbital contraction effects, which

therefore reside primarily in the CT term. Orbital contraction is a CT effect, but one which

is intra-fragment (even intra-atomic) rather than inter-fragment.

To begin our explorations of the magnitude of orbital contraction, we generated ALMO

EDA data on the covalent bond in H2 (these and all other calculations were performed with

the Q-Chem software package41). In the aug-cc-pV5Z basis set,42 the FERF polarization

stabilization is only 2.0 kcal/mol. If we instead permit on-fragment mixing between the frozen

occupied orbitals and all virtuals of that fragment (this is the original ALMO polarization

model), polarization is 28.6 kcal/mol. The total POL+CT (which is constant regardless of

polarization method) is 29.4 kcal/mol. In other words, in the FERF polarization model,
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nearly all of the stabilization is attributed to CT, while in the ALMO polarization model,

nearly all of the stabilization is polarization. Of course, in the large quintuple zeta basis set,

it is known that the ALMO polarization will grow to engulf the CT term.39,40 Hence, it must

be checked whether the polarization allowed by the ALMO but not by the FERF method is

really the orbital contraction contribution or an artifact of an over-complete basis set.

We truncate the aug-cc-pV5Z basis so that it contains only s-type functions. By use of a basis

of only s-functions, the FERF polarization is necessarily 0 (the response of an s-function

to an electric field is always a higher angular momentum function). In this basis, ALMO

polarization remains 21.3 kcal/mol of 27.2 kcal/mol total POL+CT. We note in passing that

the reduction of 2.2 kcal/mol in POL+CT due to removing all functions with l > 0 agrees

very well with the FERF estimate of 2.0 kcal/mol for POL. Removing the most diffuse s-

function as well (which would cut down on any spurious CT-absorbing effects), gives the

same result: 21.3 kcal/mol of 27.2 kcal/mol total. Removing the next most diffuse function

gives a similar 17.9 out of 24.1 kcal/mol. We can therefore conclude that orbital contraction

accounts for about 21 kcal/mol in the H2 bond. We applied this same analysis to Li2, LiH,

and BeH and found that the value of this orbital contraction is 0.6, 3.2, and 11.3 kcal/mol,

respectively. This straightforward approach cannot, however, be readily extended to systems

where the bonds involve heavier elements with partially occupied p shells.

Instead, we seek a generalization of the FERF procedure that augments the previously

described FERF virtual space with additional functions that describe orbital contraction.

In the spirit of FERFs, in which the appropriate virtual space is determined as a response

to a finite electric field perturbation, the appropriate contraction FERFs are determined as

the orbitals required to respond to a perturbation of the nuclear charge. For an atom, this

corresponds to the addition of a small electric monopole, located at the nucleus, which gives

rise to a monopole FERF effect. For a molecular fragment, scaling the nuclear charge of all

nuclei allows the electron density to contract toward all atomic centers (and, as long as the
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number of occupied orbitals is greater than the number of atoms, which is almost always the

case, the resulting FERFs may be localized to each atomic center separately, preserving the

atomic-like picture, see Supporting Information). These functions may be determined in an

identical manner as the original FERF scheme and introduce one new virtual function for

each occupied orbital. With superscripts as derivatives, ∆ is an orbital perturbation, Z is

a nuclear charge perturbation, VNE is the nuclear-electron attraction, and P is the density,

then the monopole FERFs may be solved by the coupled perturbed-SCF linear equation:

E∆∆ ·∆Z = −E∆Z = −V Z
NE · P∆ (2)

Then, V Z
NE is just the VNE term with all unit nuclear charges.

VNE =
∑
α

Zα

∫
φµ(r)φν(r)

|r − Aα|
dr ⇒ V Z

NE =
∑
α

∫
φµ(r)φν(r)

|r − Aα|
dr (3)

Inclusion of the monopole FERFs therefore adds one additional right-hand side vector to the

FERF linear problem per occupied orbital, which may be solved simultaneously with the

other FERFs by conjugate gradients.

We compute the polarization in H2 using monopole FERFs and find a new polarization energy

of 20.9 kcal/mol, closely matching what was calculated in the basis of only s-functions. The

H2 polarized densities employing DQ (i.e. standard FERFs) and MDQ FERFs are shown in

Figure 1a, and confirm that the effect of the introduction of monopole FERFs is to allow

orbital contraction. Moreover, computation of the monopole FERF polarization for H2 over

the whole potential energy surface in aug-cc-pvtz, aug-cc-pvqz, and aug-cc-pv5z basis sets

are within 1 kJ/mol of each other, verifying a non-trivial basis set limit. The addition of

monopole FERFs does not affect the energy in the non-overlapping regime (see Figure 1b) and

thus the asymptotic behavior of the FERFs are unaffected. Due to the short-range nature of

monopole FERFs, for non-bonded interactions (water-F– , water-Na+, water-Mg2+), addition
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of monopole FERFs do not change the polarization significantly (<1 kcal/mol). The other

orbital contraction stabilization energies estimated for the molecules above also closely match

their monopole FERF calculation (see Table 1).

(a) (b)

Figure 1. a) Polarized H2 densities with MDQ FERFs (purple) and DQ FERFs (red) at
an isovalue of 0.02. Note that addition of monopole FERFs permits orbital contraction. b)
Monopole FERF POL for H2. Note that the monopole FERF POL energy is less than 1
kcal/mol by the time the bond is stretched from 0.8 Å to 1.2 Å.

Table 1. Comparison of estimated orbital contraction effects with monopole
FERF polarization. Energies in kcal/mol.

estimate monopole FERF
H−H 21.3 20.9
Li−H 3.2 2.2
Li−Li 0.6 0.1
Be−H 11.3 11.3

Monopole FERFs also allow us to quantify the importance of orbital contraction effects in

the bonds to atoms with more than s-orbitals (in which the distinction between contraction

and polarization may be less clear). There are now three main polarization effects present

in the ALMO-EDA POL term: rehybridization, contraction, and electric polarization. We

therefore describe a polarization decomposition framework for bonded interactions.

The first term, rehybridization, may be defined as the energy stabilization due to rotations of

the beta hole in the span of the alpha space. This is captured in ALMO-EDA as variational
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optimization between the doubly occupied and singly occupied orbitals (these orbitals were

optimal for the fragments, not the supersystem). Consider an F atom: the 2s orbital is

doubly occupied as are two of the 2p orbitals, one 2p orbital (which will define the bond

axis) is singly occupied. Once there is another atom on the bond axis, 2s(↑↓)–2p(↑) orbital

mixing result in the two sp-orbital hybrids, one which is double occupied and pointing away

from the bond and one which is singly occupied and pointing toward the bond.

The contraction effect is determined by variationally optimizing the rehybridized fragments

with the monopole FERFs. Though a collection of monopole FERFs on different centers

in a non-diatomic molecule could, in theory, alter the multipole moment of the fragment,

in practice, we found this to not be a large effect, and the dominant effect of inclusion of

monopole FERFs was, in fact, to allow for orbital contraction.

Finally, optimization of the orbitals with MDQ FERFs determines the electric polarization.

The balance of the FERF POL term (after removing rehybridization and contraction) is

ascribed to electric polarization. This term corresponds to the energy change due to the

fragments polarizing in the electric field of the other fragments, and is discussed at length in

Ref. 37. Calculated polarization decomposition values are given in Tables 2 and 3 along with

the CT term and the total CAS(2,2) interaction energy (i.e. the bond energy). These data

were obtained from the bonded ALMO-EDA38 (summarized in the Supporting Information)

with a CAS(2,2) wavefunction and therefore do not include dynamic correlation and so

magnitudes of the contributions would likely be slightly larger (by 1-5 kcal/mol) than the

values presented here if dynamic correlation was included.

It is interesting to separate orbital contraction from polarization as the former can be iden-

tified as the orbital response without change of multipole moment, while the latter is the

orbital response with change of multipole moment. In this sense, they are fundamentally

different as orbital contraction is an entirely quantum mechanical effect while polarization

can, at least to some extent, be understood classically. As a result, contraction and polar-
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Table 2. Orbital contraction stabilization for E−H and E−CH3 bonds (basis =
aug-cc-pCVTZ). Energies in kcal/mol.

− H − CH3
Rehyb CON POL CT Tot Rehyb CON POL CT Tot

H 0.0 -20.9 -3.9 -4.5 -95.3 -3.0 -15.6 -7.7 -16.3 -103.8
HBe 0.0 -11.0 -2.9 -5.7 -83.2 -8.5 -1.9 -6.4 -38.2 -87.1
H2B -0.6 -14.2 -5.3 -7.7 -97.7 -8.5 -0.8 -8.2 -35.2 -101.1
H3C -3.0 -15.6 -7.7 -16.3 -103.8 -9.4 -1.0 -7.9 -35.9 -96.8

H3CCH2 -3.4 -15.3 -7.6 -16.0 -101.1
H2N -60.9 -22.7 -11.6 -42.8 -97.5 -107.4 -0.5 -15.3 -66.9 -81.4
HO -33.1 -27.4 -5.6 -73.1 -103.4 -58.7 -1.5 -15.7 -94.7 -84.5
F -23.1 -34.6 -14.4 -98.6 -114.6 -38.1 -1.4 -37.7 -113.6 -97.0

H3Si -0.3 -10.8 -6.0 -5.5 -85.3
F3Si -0.1 -13.0 -5.7 -4.4 -93.7

Table 3. Orbital contraction stabilization for E−F bonds (basis = aug-cc-pcvtz).
Energies in kcal/mol.

Rehyb CON POL CT Tot
H -23.1 -34.6 -14.4 -98.6 -114.6

H3C -38.1 -1.4 -37.7 -113.6 -97.0
F -8.7 -0.9 -17.3 -59.0 -14.7

H3Si -35.0 -0.6 -56.2 -168.0 -129.7
F3Si -45.0 -1.9 -65.6 -138.9 -141.4
Li -0.2 -0.1 -13.4 -128.6 -103.4
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ization do not follow the same trends (See Tables 2 and 3). It becomes immediately clear

that when hydrogen is not involved in the bond of interest, orbital contraction becomes a

very minor part of the bond stabilization. This may be understood because the absence

of a core in H means that contraction allows direct access to the nucleus without much

additional electron-electron repulsion. For atoms with both a core and valence, to prevent

significant increases in inter-shell electron-electron repulsion, all of the shells of the atom

have to contract, which would result in too great of an increase in kinetic energy as well

as increase the intra-shell electron-electron repulsion from compressing the doubly-occupied

core into a smaller volume. This leads to relatively little energetic stabilization on orbital

contraction for these atoms. Small changes in the orbital extent are also more consequential

when the orbital is already small since the electron is deeper in the nuclear potential. The

effect of orbital contraction in hydrogen-containing bonds is to restore virial balance after

the kinetic energy stabilization of bond formation. In non-H atom bonds, we find that this

virial balance restoration is not accomplished by orbital contraction, but by other effects

such as polarization and charge-transfer. The relatively high CT contributions for non-H

atom bonds may be due to the extremely high ionization energy of hydrogen relative to

larger atoms and molecules, which disfavors ionic-type stabilization.

Another way to think about the increased importance of orbital contraction with H atoms

is to note that all bonds are relatively similar in energy (20-150 kcal/mol) on the scale

of total electronic energy and therefore the kinetic energy stabilization on bond formation

as a proportion of the total electronic energy of the system shrinks extremely rapidly as

system size increases beyond hydrogen. Hence, the degree of virial upset is significantly

less, which allows virial balance to be restored by polarization and CT alone (which have

much more modest effects on kinetic and potential enegies). Specifically, the kinetic energy

stabilization after spin-coupling in H2 is 156.0 millihartree (compare to 167.8 as calcuated by

the method of Ruedenberg43) while the potential energy destabilization is 50.9 millihartree

(compare to 58.7 as calculated by Ruedenberg). This leads to a virial ratio of 2.31. After
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orbital contraction, the kinetic energy increases by 291.1 millihartree and the potential energy

decreases by 324.3 millihartree, leading to a virial ratio of 2.003. After CT, the total orbital

deformation has increased kinetic energy by 319.4 millhartree and decreased potential energy

by 366.0 millihartree (compare to Ruedenberg’s 320.1 and 363.3, respectively), leading to a

final virial ratio of 1.99. Since all (single) bonds have broadly similar changes to kinetic and

potential energy (owing to their similar bond strengths, the virial ratio is less affected after

the initial kinetic energy stabilization for systems with large total electronic energy (i.e. core

electrons).

To be clear, the present analysis does not disagree with the considerable work studying the

bonds in H-atom containing bonds. Indeed, this more complex orbital contraction situation

was alluded to recently by Ruedenberg.17 Explicit calculation for larger molecules unfor-

tunately combined polarization and contraction into a single term, obscuring the fact that

orbital contraction is not significant in non-H atom bonds.18

The rehybridization energies contained in Tables 2 and 3 show very interesting trends as

well. Such energies are zero by definition on atoms such as H that do not naturally form

hybrid orbitals, and are also very small on fragments such as pyramidal CH3 where the odd

electron is correctly “pre-hybridized”. By contrast, on F, OH, and NH2, the rehybridization

energy can be quite large, because substantial changes occur in the orbital containing the

odd electron. For instance, an electron initially in the pz orbital of F is rearranged to occupy

an orbital whose shape resembles that of an sp orbital. Even larger changes occur in the NH2

fragment, yielding a substantial improvement in spin-coupling. These changes are illustrated

in Figure 2. Finally, it can be observed by comparing rehybridization energies from Tables

2 and 3 that single bonds to fluorine yield rehybridization energies that are larger than the

sum of the individual values seen in bonds to H. This is consistent with obtaining even better

spin-coupling due to rehybridization in cases where both fragments can meaningfully do so.

In summary, fragment polarization during bond formation can be broken into three main
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N
H

Figure 2. Rehybridization of the amine radical from the free to “prepared” state with only
large orbital lobes shown. The singly occupied orbital is shown in blue, the doubly occupied
orbital is in red, and the hydrogen s-orbital is in black.

effects: rehybridization, contraction, and electric polarization. Rehybridization is defined

through mixing of doubly and single occupied fragment orbitals, and provides substantial

energy stabilization for functional groups like NH2, OH, and F as discussed above. Orbital

contraction effects (which were previously largely absent from the ALMO FERF polarization

scheme) can be captured by inclusion of a “monopole” FERF term calculated as the response

to the addition of a point charge at the nucleus. This polarization decomposition reveals

that orbital contraction, though an important effect in bonds to hydrogen, is fairly minor

for heavier-atom bonds. Virial balance is restored in such systems by electric polarization

and charge-transfer.
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