Title
ON THE ROLE OF DANGLING BOND DEFECTS IN EARLY RECOMBINATION IN HYDROGENATED AMORPHOUS SILICON

Permalink
https://escholarship.org/uc/item/4jn8x2v0

Authors
Wake, D.R.
Amer, N.M.

Publication Date
1982-08-01
Submitted to Physical Review Letters

ON THE ROLE OF DANGLING BOND DEFECTS IN EARLY RECOMBINATION IN HYDROGENATED AMORPHOUS SILICON

Douglas R. Wake and Nabil M. Amer

August 1982

TWO-WEEK LOAN COPY

This is a Library Circulating Copy which may be borrowed for two weeks. For a personal retention copy, call Tech. Info. Division, Ext. 6782.

Prepared for the U.S. Department of Energy under Contract DE-AC03-76SF00098
DISCLAIMER

This document was prepared as an account of work sponsored by the United States Government. While this document is believed to contain correct information, neither the United States Government nor any agency thereof, nor the Regents of the University of California, nor any of their employees, makes any warranty, express or implied, or assumes any legal responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by its trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof, or the Regents of the University of California. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof or the Regents of the University of California.
On the Role of Dangling Bond Defects in Early Recombination in Hydrogenated Amorphous Silicon

Douglas R. Wake and Nabil M. Amer

Applied Physics and Laser Spectroscopy Group
Lawrence Berkeley Laboratory
University of California
Berkeley, California 94720

August 1982

This work was supported by the Assistant Secretary for Conservation & Solar Energy, Photovoltaic Systems Division of the US Department on Energy under Contract No.DE-AC03-76SF00098.
On the Role of Dangling Bond Defects in Early Recombination in Hydrogenated Amorphous Silicon

Douglas R. Wake and Nabil M. Amer

Applied Physics and Laser Spectroscopy Group
Lawrence Berkeley Laboratory
University of California
Berkeley, California 94720

Abstract: Relaxation of photoexcited carriers is studied in a-Si:H using photoinduced IR absorption. The role of the dangling bond defect in recombination is investigated with samples of defect density from 10^{15} to $>10^{18}$ cm$^{-3}$. During the first μsec the dangling bond acts indirectly through its influence on the density and shape of the exponential distribution of trap states extending beyond the band edges (the band tail) rather than as a recombination center, contrary to the common perception of the defect's role.

PACS: 72.20.Jv, 71.55.Fr, 81.40.Tv, 78.65.Jd
Dangling bond (DB) defects are the focus of many investigations dealing with tetrahedrally bonded amorphous semiconductors [1]. The simple picture is that of an unsatisfied tetrahedral bond with an unpaired electron which is disruptive both structurally and electronically, and whose density can be observed by electron spin resonance (ESR). The presence of DB defects correlates strongly with luminescence quenching [2], short free carrier lifetime [3], increased sub-gap absorption [4], and the shape of the absorption edge [5], [6]. DB defects can be passivated in amorphous silicon (a-Si) by alloying with hydrogen (a-Si:H). The defect density is controlled by material deposition conditions; it is increased with hydrogen evolution and is partially diminished by rehydrogenation.

There is strong circumstantial evidence from several experiments that DB defects play an active role in electron hole recombination in amorphous silicon [1] analogous to the role of defects in crystalline materials [7]. In particular, at low temperatures fast recombination by direct tunneling of carriers to DB defects is assumed to be the main mechanism which limits carrier lifetime and quenches luminescence [2]. In this Letter we present evidence that DB defects are not fast recombination centers. We emphasize that the dispersive influence of the exponential distribution of localized states extending into the gap (the band tail) dominates the recombination process in the multiple trapping model (MTM) [8].

Photoexciting carriers across the gap in a-Si:H allows the absorption of IR by the nonequilibrium population of electrons and holes, as these carriers make transitions to the extended states deeper in the
bands. Similar PA data have been reported for a-Si:H for times from 0.5
μsec and have been interpreted in terms of multiple trapping [9], [10].
Our data span the time regime from 4 to 500 nsec. This time regime is
important for a number of reasons: very few carriers have actually
recombined, although trapping processes and luminescence quenching have
begun, and carrier thermalization is important.

We used a 10 Hz Nd:Yag pumped dye laser with 4 nsec (FWHM) pulses
of 2.2 eV photons to photoexcite a carrier density of \(\sim 10^{18} \text{ cm}^{-3} \) in a-
Si:H. A cw IR beam (0.9 to 1.45 eV) from a filtered tungsten lamp was
passed through this carrier population, and changes in the IR trans-
sparency were detected by a fast Ge photodiode with a rise time of 1.5
nsec. Changing the spectral width of the IR with a crystalline Si
filter had no effect on the PA response. The change in detector photo-
current was amplified and recorded by a Tektronix 7912 AD transient
digitizer. At low temperatures, luminescence is unavoidably emitted into
the photodiode optics, but it was separately recorded and subtracted.
Data were taken for undoped samples of various defect densities over a
temperature range of 10 to 300 K.

Fig. 1 shows the PA data for representative a-Si:H samples. The
defect density, \(N_S \), is measured by ESR at \(g = 2.0055 \). A simple power
law describes the PA decay of these samples over this time period very
well with an exponent of "a". The rate of decay systematically decreases
with increasing defect density. This trend is opposite to that expected
if DB defects were controlling recombination!

We can, however, successfully interpret these results in terms of a
multiple trapping model [8] with a distribution of localized trapping
states, $N_t(E)$, whose density declines exponentially into the gap; $N_t(E) = N_0 \exp(-E/E_0)$, where E is the depth of the trap level from the band edge and E_0 is the width of this band tail. There is evidence that this is the case not only for a-Si:H but also for a large number of amorphous and disordered crystalline systems. The model implicitly assumes that direct transitions either within the band tail or to deep centers are negligible when compared to thermally stimulated transitions to the band edge followed by retrapping. Upon photoexcitation, the carriers are quickly trapped into the band tails [3], acquiring an exponential energy distribution which parallels the density of trap states. The top of the trapped distribution thermalizes; the level at which thermalization begins, E_d, descends through the distribution as $E_d = k_B T \ln \nu t$, where ν is an attempt-to-escape frequency on the order of 10^{13} sec$^{-1}$. Below E_d, the probability of thermal release at time t is negligible. The consequence is an exponentially spiked distribution of charge localized (energetically) near E_d. Capture by carriers of opposite charge or deeper levels which are not part of the band tail competes with retrapping; when the probability of capture there exceeds the probability of retrapment at states below E_d, the population in the band tail diminishes as $t^{-\alpha}$, where $\alpha = T/T_0$, and $T_0 = E_0/k_B$. This time dependence is observed from our earliest time of 4 nsec.

The shape of the trap distribution, then, determines the exit rate of the carriers from the band tail. Other experiments have shown that increasing the DB defect density leads to widening of the band edge, increasing E_0 [5,6]. Since E_d descends through the band tail at a rate independent of trap or defect density, a larger fraction of carriers are
localized below E_d in a high defect density material than in a low defect density material at comparable times. The high defect density material holds carriers in the band tail longer.

A test of this interpretation is to decrease the temperature, which slows the rate that carriers are released to the band edge and thus the rate at which E_d moves through the trap state distribution. In Fig. 2 we plot "a", obtained from the power law fit to PA at 200 nsec, as a function of temperature for a sample of defect density of 1.5×10^{16} cm$^{-3}$. As predicted by the MTM, a varies linearly with temperature between 50 and 250K. A similar temperature dependence has already been observed at longer times [9]. Fig. 2 shows that the band tail width of this sample is $E_0 = 46$ meV or $T_0 = 534K$.

We have also measured E_0 directly from optical absorption and in Fig. 3 compared $k_B T/E_0$ with the "a" from PA. Since the optical absorption data represents a joint density of states involving both the valence and conduction bands, the convolution of a narrow feature of one band with a broad feature of the other band will map out the broad feature in the absorption spectrum. The broader of the two band tails will dominate the optical absorption edge; in a-Si:H this is the valence band edge [11]. Thus the excellent agreement in Fig. 3 for all but the lowest defect density samples ($<10^{16}$ cm$^{-3}$) indicates that the shape of the valence band tail determines the rate of PA decay. O’Connor and Tauc [12] have concluded that they are not observing electrons in their PA experiments on a-Si:H. We interpret our results as strong and direct evidence that the PA decay is due to hole activity. In the lowest defect density samples, the PA decays faster than the rate predicted by
optical absorption, indicating that hole movement is not the limiting rate that it is in the samples with more defects. This suggests that electron transport assists band-to-band recombination in the lowest defect density samples, and that the faster decay perhaps yields information on the conduction band instead of the valence band.

Fig. 1 shows that at 295 K, the low defect density sample relaxes much more quickly than the high defect density sample. Below 50 K both samples are relaxing at about the same rate, with the PA signal is approximately equal for all samples near 10 nsec [13]. This is in sharp contrast to luminescence experiments which show that the low defect density material has a luminescence quantum efficiency near unity for the 1.4 eV emission and the high defect density material has a weaker band at 0.9 eV [14]. One interpretation of this has been that the carriers are rapidly tunneling to the DB defects which act as nonradiative recombination centers. The PA results indicate this is not happening. At low T, the highest defect density sample's IR absorption is reduced only 50% at 2 μsecs; yet the luminescence is weak and decays rapidly. The rate of PA decay correlates with spin density, but with scatter typical of efforts to link other sample properties to spin density. Correlation of band tail widths with PA decay rate shows less scatter. We conclude that the DB defect is not a rapid recombination center in undoped amorphous silicon, but instead influences the recombination process indirectly by its effect on the width of the band tail.

We can only suggest alternative quenching mechanisms for the luminescence such as charged defect electric field quenching [15], DB induced strains, or tightly localized carriers in the higher defect den-
sity material. We do not completely rule out the possibility that the electrons are rapidly captured by DB defects followed by a slower capture of holes. Yet serious difficulties exist with all of these suggestions and will be discussed in a future paper.

In order to separate the role of defects from the effects of various deposition conditions used in the samples in Fig. 3, we stepwise evolved hydrogen from an initially low defect density sample by annealing it to temperatures of 300 to 530 °C. We directly monitored the optical absorption edge with photothermal deflection spectroscopy [16] and found that the edge widened (E_0 increased) as the DB defect density increased, in agreement with Cody et al. [5]. The dashed line of Fig. 3 follows the comparison between the PA "a" and $k_B T/E_0$ as the sample is annealed to higher temperatures. The comparison is complicated by the faster decay noted for the lower defect density material, but the trend to slower PA decay with increasing E_0 is confirmed.

We find it unlikely that PA and luminescence do not arise from the same population of electrons and holes due to the following considerations. 1) Assuming oscillator strengths of unity for the IR cross sections over the bandwidth used, we find a minimum estimate for the population observed when PA is at its highest (earliest) level. We obtain a value from an integrated absorption estimate [17] that is ~80% of that expected from the photoexcited carrier density. Coupled with an estimated luminescence efficiency of 50-100% in low defect density material, this argues against separate populations. 2) PA and luminescence have very similar temperature quenching dependences. 3) Similar PA maximum amplitudes near 10 nsec for all the samples support the argu-
ment that nearly all of the photoexcited population is being observed.

4) Luminescence recombination kinetics have been observed to change from monomolecular to bimolecular at a photoexcited carrier density, \(N_p \), of \(1-2 \times 10^{18} \, \text{cm}^{-3} \) [18]. We have discovered [19] a similar change in recombination kinetics at the same density of \(1 \times 10^{18} \, \text{cm}^{-3} \), where the PA amplitude shifts from \(N_p^{0.9} \) to \(N_p^{0.5} \) with increasing excitation density. A more extensive study of this transition is in progress.

There may be another deep gap state more important in recombination than the DB since even at \(N_s > 10^{18} \, \text{cm}^{-3} \) the recombination is slow. Evidence for other states exists in the light induced Staebler-Wronski states [20], the hole trap state deduced from photoconductivity [21], and the hole trap states observed in a-Si:H:P [22]. The luminescence line due to oxygen is occasionally reported but other impurities may exist at significant densities in a typical sample. Surface states may also play a role. Clearly more work is needed.

In conclusion, our PA data show that the band tail of a-Si:H plays a more important role in the early recombination process than does the DB defect density. Luminescence does not detect carriers which do not radiatively recombine and photoconductivity does not detect carriers which are immobilized in deep traps. PA is a complimentary probe for studying the time evolution of the carrier population. We have shown that DB defects are not fast recombination centers. We suggest another more important recombination channel may exist, although we acknowledge the difficulty of reconciling the evidence from non-PA experiments that seem to imply otherwise. If the DB defects are not important recombination centers, then other roles proposed for this state [23] must be more
carefully considered.

We thank W. B. Jackson for several helpful discussions and W. B. Jackson and A. Skumanich for assistance with the optical absorption data. We thank J. Knights and R. A. Street for the samples used in this investigation.

This work was supported by U. S. Department of Energy under Contract No. DE-AC03-76SF0098.
REFERENCES

[14] We have not spectrally resolved the luminescence. However we have confirmed that the luminescence is quenched in our high defect density samples and that the temperature dependence of the high defect density luminescence is substantially weaker, as expected.

[19] D. R. Wake and N. M. Amer, to be published.

Fig. 1: Relative change in transmission (photoinduced absorption) vs. time delay for samples of various defect densities showing a power law decay $t^{-\alpha}$.

Fig. 2: Temperature dependence of α. The weakening of the temperature dependence at low temperature is most likely due to a competing local-to-local recombination process.

Fig. 3: α from transient photoinduced absorption compared with $k_B T/E_0$ from optical absorption at 295K. Open symbols represent samples deposited under a range of conditions which vary N_s (ESR), triangles are "optimal", low defect density samples. Solid symbols show the effect of evolving H from a single sample.
Fig. (1)

- $N_s = 1.5 \times 10^{18}\text{cm}^{-3}$
- $N_s = 2.3 \times 10^{17}\text{cm}^{-3}$
- $N_s = 1.5 \times 10^{16}\text{cm}^{-3}$
- $N_s = 3 \times 10^{15}\text{cm}^{-3}$

$T = 295\text{K}$

$-\Delta T/Tr$ vs. Time (nsec)
Fig. (3)
This report was done with support from the Department of Energy. Any conclusions or opinions expressed in this report represent solely those of the author(s) and not necessarily those of The Regents of the University of California, the Lawrence Berkeley Laboratory or the Department of Energy.

Reference to a company or product name does not imply approval or recommendation of the product by the University of California or the U.S. Department of Energy to the exclusion of others that may be suitable.