Title
Measurement of the branching fraction for $B^{-} \rightarrow D^{0} K^{*-}$

Permalink
https://escholarship.org/uc/item/4js961d5

Journal
Physical Review D, 69(5)

ISSN
0556-2821

Authors
Aubert, B
Barate, R
Boutigny, D
et al.

Publication Date
2004-12-01

DOI
10.1103/PhysRevD.69.051101

License
CC BY 4.0

Peer reviewed
Measurement of the branching fraction for $B^- \to D^{0} K^{*-}$


(BABAR Collaboration)

1Laboratoire de Physique des Particules, F-74941 Annecy-le-Vieux, France
2Università di Bari, Dipartimento di Fisica e INFN, I-70126 Bari, Italy
3Institute of High Energy Physics, Beijing 100039, China
4University of Bergen, Institute of Physics, N-5007 Bergen, Norway
5Lawrence Berkeley National Laboratory and University of California, Berkeley, California 94720, USA
6University of Birmingham, Birmingham B15 2TT, United Kingdom
7Ruhr Universität Bochum, Institut für Experimentalphysik I, D-44780 Bochum, Germany
8University of Bristol, Bristol BS8 1TL, United Kingdom
9University of British Columbia, Vancouver, BC, Canada V6T 1Z1
10Brunel University, Uxbridge, Middlesex UB8 3PH, United Kingdom
11Budker Institute of Nuclear Physics, Novosibirsk 630090, Russia
12University of California at Irvine, Irvine, California 92697, USA
13University of California at Los Angeles, Los Angeles, California 90024, USA
14University of California at Riverside, Riverside, California 92521, USA
15University of California at San Diego, La Jolla, California 92093, USA
16University of California at Santa Barbara, Santa Barbara, California 93106, USA
17University of California at Santa Cruz, Institute for Particle Physics, Santa Cruz, California 95064, USA
18California Institute of Technology, Pasadena, California 91125, USA
19University of Cincinnati, Cincinnati, Ohio 45221, USA
20University of Colorado, Boulder, Colorado 80309, USA
21Colorado State University, Fort Collins, Colorado 80523, USA
22Technische Universität Dresden, Institut für Kern-und Teilchenphysik, D-01062 Dresden, Germany
23Ecole Polytechnique, LLR, F-91128 Palaiseau, France
24University of Edinburgh, Edinburgh EH9 3JZ, United Kingdom
25Università di Ferrara, Dipartimento di Fisica e INFN, I-44100 Ferrara, Italy
26Florida A&M University, Tallahassee, Florida 32307, USA
27Laboratori Nazionali di Frascati dell’INFN, I-00044 Frascati, Italy
28Università di Genova, Dipartimento di Fisica e INFN, I-16146 Genova, Italy
29Harvard University, Cambridge, Massachusetts 02138, USA
30Imperial College London, London, SW7 2BW, United Kingdom
31University of Iowa, Iowa City, Iowa 52242, USA
32Iowa State University, Ames, Iowa 50011-3160, USA
33Laboratoire de l’Accélérateur Linéaire, F-91898 Orsay, France
34Lawrence Livermore National Laboratory, Livermore, California 94550, USA
35University of Liverpool, Liverpool L69 3BX, United Kingdom
36Queen Mary, University of London, London E1 4NS, United Kingdom
37University of London, Royal Holloway and Bedford New College, Egham, Surrey TW20 0EX, United Kingdom
38University of Louisville, Louisville, Kentucky 40292, USA
A comprehensive test of CP violation within the standard model requires precision measurements of the three sides and three angles of the unitarity triangle, which are combinations of various Cabibbo-Kobayashi-Maskawa (CKM) matrix elements [1]. The measurement of the angle $\gamma$ of the unitarity triangle is challenging and requires larger samples of $B$ mesons than are currently available. A precise determination of $\gamma$ at the $B$ factories is likely to use many different decay modes. Decays of the form $B \rightarrow D^{(*)}K^{* -}$ can provide a theoretically clean determination of $\gamma$ [2]. For some of the proposed methods, there are distinct advantages to using the $K^*$ modes [3]. In this paper we measure the branching fraction for one of these decays, $B^- \rightarrow D^0 K^{*-}$ [4], which was first observed by the CLEO experiment [5]. If the $D^0$ is 

\[ B(B^- \rightarrow D^0 K^{*-}) = [6.3 \pm 0.7(\text{stat}) \pm 0.5(\text{syst})] \times 10^{-4}. \]

DOI: 10.1103/PhysRevD.69.051101

PACS number(s): 13.25.Hw, 14.40.Nd
We reconstruct $D^0$ candidates from the appropriate combination of tracks and $\pi^0$ candidates. The $K^-$ tracks must satisfy kaon identification criteria resulting in an efficiency of 80–95%, depending on the momentum. The probability of a pion to be misidentified as a kaon is less than 5%. We require the momenta of the $K^-$ candidates to be greater than 250 MeV and their polar angle (relative to magnetic-field axis) to be in the interval $0.25<\theta<2.55$ rad to restrict them to a fiducial region where the kaon identification performance can be determined with small uncertainty. The tracks from the $D^0$ are fitted to a common vertex and we accept candidates if they have an invariant mass within 18 (14) MeV of the $D^0$ mass for the $K^-\pi^+\pi^-\pi^0$ decay. For the $K^-\pi^+\pi^0$ decay, we use an asymmetric mass requirement $-29<(m-1865\text{ MeV})<+24$ MeV, reflecting the distribution of the energy of the photons from the $\pi^0$ decay. It is known that the decay $D^0\rightarrow K^-\pi^+\pi^0$ occurs predominantly through an intermediate state $[K^*(892)$ or $\rho^+(770)]$. Hence, to reduce the combinatorial background in the $K^-\pi^+\pi^0$ decay, we select events in the enhanced regions of the Dalitz plot, using amplitudes and phases determined by the CLEO experiment [8].

In reconstructing the decay chain, the measured momentum vector of each intermediate particle is determined by refitting the momenta of its decay products, constraining the mass to the nominal mass of the particle and requiring the decay products to originate from a common point. For the $K^*$ resonance only a geometrical constraint is used in this kinematic fit. Finally, to reconstruct $B^-$ decays, $D^0$ candidates are combined with $K^{*-}$ candidates.

At this stage of the event selection, the dominant background is from $e^+e^-\rightarrow q\bar{q}$ production. We suppress this background using requirements on the event topology and kinematics, and through the use of a Fisher discriminant. The ratio of the second and zeroth Fox-Wolfram moments [9], which is a measure of the event sphericity and is close to zero for approximately spherical events, is required to be less than 0.5. The absolute value of the cosine of the angle between the thrust axis of the $B$ candidate and the thrust axis of the rest of the event, $|\cos \theta_H|$, is peaked at one for continuum events and is approximately flat for $B$ decays. We require $|\cos \theta_H|<0.8$ for $K^-\pi^+$ and $K^-\pi^+\pi^0$ decays and $|\cos \theta_H|<0.75$ for $K^-\pi^+\pi^+\pi^0$ decays. The Fisher discriminant is built from the momentum of all particles in the event (excluding those used to form the $B$ candidate) and the angle between this momentum and the thrust axis of the reconstructed $B^-$, both in the center-of-mass frame [10]. The $K^{*-}$ helicity angle $\theta_H$, defined as the angle between the $\pi^-$ from the $K^{*-}$ decay and the $B^-$ flight direction in the rest frame of the $K^{*-}$, follows a $\cos^2 \theta_H$ distribution for signal events and is approximately flat for continuum events. To further reject continuum background in the $K^-\pi^-\pi^+\pi^+$ channel, we require $|\cos \theta_H|>0.4$.

The selection criteria just described reject all but approximately 0.001% of the back-ground, while retaining between 4% and 13% of the signal, depending on the $D^0$ mode. The remaining background has approximately equal contributions from continuum and $B$ decays. In the case of events with

We reconstruct $D^0$ candidates from the appropriate combination of tracks and $\pi^0$ candidates. The $K^-$ tracks must satisfy kaon identification criteria resulting in an efficiency of 80–95%, depending on the momentum. The probability of a pion to be misidentified as a kaon is less than 5%. We require the momenta of the $K^-$ candidates to be greater than 250 MeV and their polar angle (relative to magnetic-field axis) to be in the interval $0.25<\theta<2.55$ rad to restrict them to a fiducial region where the kaon identification performance can be determined with small uncertainty. The tracks from the $D^0$ are fitted to a common vertex and we accept candidates if they have an invariant mass within 18 (14) MeV of the $D^0$ mass for the $K^-\pi^+\pi^-\pi^0$ decay. For the $K^-\pi^+\pi^0$ decay, we use an asymmetric mass requirement $-29<(m-1865\text{ MeV})<+24$ MeV, reflecting the distribution of the energy of the photons from the $\pi^0$ decay. It is known that the decay $D^0\rightarrow K^-\pi^+\pi^0$ occurs predominantly through an intermediate state $[K^*(892)$ or $\rho^+(770)]$. Hence, to reduce the combinatorial background in the $K^-\pi^+\pi^0$ decay, we select events in the enhanced regions of the Dalitz plot, using amplitudes and phases determined by the CLEO experiment [8].

In reconstructing the decay chain, the measured momentum vector of each intermediate particle is determined by refitting the momenta of its decay products, constraining the mass to the nominal mass of the particle and requiring the decay products to originate from a common point. For the $K^*$ resonance only a geometrical constraint is used in this kinematic fit. Finally, to reconstruct $B^-$ decays, $D^0$ candidates are combined with $K^{*-}$ candidates.

At this stage of the event selection, the dominant background is from $e^+e^-\rightarrow q\bar{q}$ production. We suppress this background using requirements on the event topology and kinematics, and through the use of a Fisher discriminant. The ratio of the second and zeroth Fox-Wolfram moments [9], which is a measure of the event sphericity and is close to zero for approximately spherical events, is required to be less than 0.5. The absolute value of the cosine of the angle between the thrust axis of the $B$ candidate and the thrust axis of the rest of the event, $|\cos \theta_H|$, is peaked at one for continuum events and is approximately flat for $B$ decays. We require $|\cos \theta_H|<0.8$ for $K^-\pi^+$ and $K^-\pi^+\pi^0$ decays and $|\cos \theta_H|<0.75$ for $K^-\pi^+\pi^+\pi^0$ decays. The Fisher discriminant is built from the momentum of all particles in the event (excluding those used to form the $B$ candidate) and the angle between this momentum and the thrust axis of the reconstructed $B^-$, both in the center-of-mass frame [10]. The $K^{*-}$ helicity angle $\theta_H$, defined as the angle between the $\pi^-$ from the $K^{*-}$ decay and the $B^-$ flight direction in the rest frame of the $K^{*-}$, follows a $\cos^2 \theta_H$ distribution for signal events and is approximately flat for continuum events. To further reject continuum background in the $K^-\pi^-\pi^+\pi^+$ channel, we require $|\cos \theta_H|>0.4$.

The selection criteria just described reject all but approximately 0.001% of the back-ground, while retaining between 4% and 13% of the signal, depending on the $D^0$ mode. The remaining background has approximately equal contributions from continuum and $B$ decays. In the case of events with

We reconstruct $D^0$ candidates from the appropriate combination of tracks and $\pi^0$ candidates. The $K^-$ tracks must satisfy kaon identification criteria resulting in an efficiency of 80–95%, depending on the momentum. The probability of a pion to be misidentified as a kaon is less than 5%. We require the momenta of the $K^-$ candidates to be greater than 250 MeV and their polar angle (relative to magnetic-field axis) to be in the interval $0.25<\theta<2.55$ rad to restrict them to a fiducial region where the kaon identification performance can be determined with small uncertainty. The tracks from the $D^0$ are fitted to a common vertex and we accept candidates if they have an invariant mass within 18 (14) MeV of the $D^0$ mass for the $K^-\pi^+\pi^-\pi^0$ decay. For the $K^-\pi^+\pi^0$ decay, we use an asymmetric mass requirement $-29<(m-1865\text{ MeV})<+24$ MeV, reflecting the distribution of the energy of the photons from the $\pi^0$ decay. It is known that the decay $D^0\rightarrow K^-\pi^+\pi^0$ occurs predominantly through an intermediate state $[K^*(892)$ or $\rho^+(770)]$. Hence, to reduce the combinatorial background in the $K^-\pi^+\pi^0$ decay, we select events in the enhanced regions of the Dalitz plot, using amplitudes and phases determined by the CLEO experiment [8].

In reconstructing the decay chain, the measured momentum vector of each intermediate particle is determined by refitting the momenta of its decay products, constraining the mass to the nominal mass of the particle and requiring the decay products to originate from a common point. For the $K^*$ resonance only a geometrical constraint is used in this kinematic fit. Finally, to reconstruct $B^-$ decays, $D^0$ candidates are combined with $K^{*-}$ candidates.

At this stage of the event selection, the dominant background is from $e^+e^-\rightarrow q\bar{q}$ production. We suppress this background using requirements on the event topology and kinematics, and through the use of a Fisher discriminant. The ratio of the second and zeroth Fox-Wolfram moments [9], which is a measure of the event sphericity and is close to zero for approximately spherical events, is required to be less than 0.5. The absolute value of the cosine of the angle between the thrust axis of the $B$ candidate and the thrust axis of the rest of the event, $|\cos \theta_H|$, is peaked at one for continuum events and is approximately flat for $B$ decays. We require $|\cos \theta_H|<0.8$ for $K^-\pi^+$ and $K^-\pi^+\pi^0$ decays and $|\cos \theta_H|<0.75$ for $K^-\pi^+\pi^+\pi^0$ decays. The Fisher discriminant is built from the momentum of all particles in the event (excluding those used to form the $B$ candidate) and the angle between this momentum and the thrust axis of the reconstructed $B^-$, both in the center-of-mass frame [10]. The $K^{*-}$ helicity angle $\theta_H$, defined as the angle between the $\pi^-$ from the $K^{*-}$ decay and the $B^-$ flight direction in the rest frame of the $K^{*-}$, follows a $\cos^2 \theta_H$ distribution for signal events and is approximately flat for continuum events. To further reject continuum background in the $K^-\pi^-\pi^+\pi^+$ channel, we require $|\cos \theta_H|>0.4$.

The selection criteria just described reject all but approximately 0.001% of the back-ground, while retaining between 4% and 13% of the signal, depending on the $D^0$ mode. The remaining background has approximately equal contributions from continuum and $B$ decays. In the case of events with
We have studied the cos	_i{tively, $s^2$B$D$ systematic error. We have also verified that use of the is negligible and the uncertainty in its determination from the ground. Therefore, we assume that the peaking background
cates no enhancement in the signal region from this back-

Finally, we identify B-meson decays kinematically using
two nearly independent variables: the energy-substituted B mass $m_{ES}=\sqrt{(s/2+p_0\cdot p_p/E_0^2)}$, where the subscripts 0 and B refer to the $e^+e^-$ system and the B candidate respectively, $s$ is the square of the center-of-mass energy, and energies ($E$) and momentum vectors ($p$) are computed in the laboratory frame; and $|\Delta E|=E_E^*-\sqrt{s/2}$, where $E_E^*$ is the B candidate energy in the center-of-mass frame. We select B$^-$ candidates with $|\Delta E|<25$ MeV, which corresponds to approximately $\pm 2.2\sigma$ (where the resolution $\sigma$ is found to be independent of the D$^0$ decay mode). In addition, the signal events are expected to have values of $m_{ES}$ close to the B$^-$ mass.

We determine the signal yield of $B^-\rightarrow D^0K^{*-}$ events by performing an unbinned maximum likelihood fit to the $m_{ES}$ distribution of the selected candidates for the signal region in $\Delta E$. The signal distribution is parametrized as a Gaussian function and the combinatorial background as a threshold function [11]. All parameters except the end point of the threshold function are unconstrained in the fit.

The signal yield determined from the fit potentially includes backgrounds from other $B\bar{B}$ decays that also peak in $m_{ES}$. To investigate this, we have studied a simulated sample of generic $B\bar{B}$ decays and also high statistics simulated samples of other $B\rightarrow D^{(*)}K^{(*)}$ decays. The simulation indicates no enhancement in the signal region from this background. Therefore, we assume that the peaking background is negligible and the uncertainty in its determination from the studies of various simulated event samples is included as a systematic error. We have also verified that use of the $B^-$ mass and error in the $\chi^2$ calculation for the choice of the best $B^-$ candidate does not affect the smooth shape of the background in $m_{ES}$.

Figure 1 shows the $m_{ES}$ distribution for the three different $D^0$ decay modes with the fit function superimposed. A clear signal is seen in all cases. The signal yield is detailed in Table I. We observe a total of $161\pm 17\ B^-\rightarrow D^0K^{*-}$ events. We have studied the cos$\theta_H$ distribution for the selected candidates and determined that the data are consistent with pure $B^-\rightarrow D^0K^{*-}$ decay.

We determine the selection efficiency for each sample of $B^-\rightarrow D^0K^{*-}$ events from samples of simulated signal events. We apply small corrections determined from data to the efficiency calculation to account for the overestimation of the tracking and particle-identification performance, and of the $\pi^0$ and $K_S^0$ reconstruction efficiencies in the Monte Carlo simulation. The product of these efficiency corrections is about 0.9.

To quantify the ability of the simulation to model the variables used in the event selection, we use a sample of

<table>
<thead>
<tr>
<th>$K^-\pi^+$</th>
<th>$K^-\pi^0\pi^0$</th>
<th>$K^-\pi^+\pi^-\pi^+$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Signal yield</td>
<td>$56.2\pm 9.4$</td>
<td>$51.7\pm 11.0$</td>
</tr>
<tr>
<td>Efficiency (%)</td>
<td>12.8</td>
<td>3.5</td>
</tr>
<tr>
<td>$B(10^{-4})$</td>
<td>$5.8\pm 1.0\pm 0.5$</td>
<td>$5.8\pm 1.2\pm 0.7$</td>
</tr>
</tbody>
</table>


$B^0 \rightarrow D^0 K^{*-}$ selection. We include the statistical precision of these corrections in the systematic error of the branching fraction. The obtained correction factors vary from about 0.95 for the $K^- \pi^+$ and $K^- \pi^+ \pi^- \pi^+$ decays to 0.85 for the $K^- \pi^+ \pi^0$ decay. The largest correction factor comes from the modeling of the $D^0$ mass distribution. Figure 2 shows the background subtracted $D^0$ mass distributions from data compared with the simulated distributions for the $B^0 \rightarrow D^0 \pi^-$ sample. Small differences in the mean and width of the reconstructed $D^0$ candidates are evident for all three $D^0$ modes.

We determine the branching fraction separately for each of the $D^0$ decay modes from

$$B(B^0 \rightarrow D^0 K^{*-}) = \frac{N}{\epsilon \cdot N_{B\bar{B}} \cdot B_{D^0} \cdot B_{K^{*-}} \cdot B_{K_S} \cdot B_{\pi^0}}$$

for a signal yield of $N$ events and a sample containing $N_{B\bar{B}}$ pairs of $B$ mesons. The selection efficiencies $\epsilon$ after all corrections are reported in Table I. $B_{D^0}, B_{K^{*-}}, B_{K_S} \text{ and } B_{\pi^0}$, the branching fractions for the $D^0, K^{*-}, K_S^0$, and $\pi^0$, respectively, to the relevant final states, are obtained from Ref. [7] ($B_{\pi^0}$ in the equation is only relevant for the $K^- \pi^+ \pi^0$ mode). We assume that the $Y(4S)$ decays to pairs of $B^+ B^-$ and $B^0 \bar{B}^0$ mesons with equal probability and we do not include any additional uncertainty due to this assumption.

We have identified several sources of systematic uncertainty as significant, as shown in Table II. The number of $B\bar{B}$ pairs in the data sample is known with an uncertainty of 1.1%. The uncertainties in the $D^0$ branching fractions are taken from Ref. [7]. We determine the systematic errors arising from uncertainties in track, $K_S^0$ and $\pi^0$ reconstruction and in kaon identification from studies of high statistics data control samples. The uncertainty in the track reconstruction efficiency is determined to be 0.8% per track originating from the interaction region. There is an additional uncertainty of 3% arising from the knowledge of the $K_S^0$ reconstruction efficiency. The charged kaon identification leads to a systematic uncertainty of 2%, and the $\pi^0$ reconstruction to a systematic uncertainty of 5%. The systematic error from the knowledge of the peaking background is taken from the studies of various simulated data samples described above. An additional uncertainty from the knowledge of the $K^{*-}$ line shape has been determined to be 3%. Finally, we include the errors on the correction factors determined from the $B^- \rightarrow D^0 \pi^-$ sample. We have studied the uncertainty in the parametrization of the background and of the signal by repeating the $m_{ES}$ fits with different combinations of parameters of the functional form fixed to values obtained either from simulation or from studies of sideband regions in $\Delta E$. We conclude that the systematic uncertainty from this source is negligible.

The resulting $B$ branching fractions corresponding to three different $D^0$ decay modes are listed in Table I. The $\chi^2$ of the three measurements is 2.7, giving a probability of 26% that they are consistent. We determine the weighted average of the three measurements, $B(B^- \rightarrow D^0 K^{*-}) = (6.3 \pm 0.7 \pm 0.5) \times 10^{-4}$, taking into account the correlations between the systematic uncertainties. The result of this analysis is in good agreement with a previous measurement by CLEO,

![Figure 2](https://example.com/image.png)

**FIG. 2.** The $D^0$ mass distributions of $B^- \rightarrow D^0 \pi^-$ candidates: (a) $D^0 \rightarrow K^- \pi^+$, (b) $D^0 \rightarrow K^- \pi^+ \pi^0$, and (c) $D^0 \rightarrow K^- \pi^+ \pi^- \pi^+$. The data are background subtracted and are displayed as points. The solid distributions were obtained from simulated signal events.

**TABLE II.** Systematic uncertainty estimates for each of the three $D^0$ decay samples.

<table>
<thead>
<tr>
<th>Source</th>
<th>$K^- \pi^+$</th>
<th>$K^- \pi^+ \pi^0$</th>
<th>$K^- \pi^+ \pi^- \pi^+$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of $B\bar{B}$ events</td>
<td>1.1</td>
<td>1.1</td>
<td>1.1</td>
</tr>
<tr>
<td>Simulation statistics</td>
<td>5.6</td>
<td>6.5</td>
<td>6.0</td>
</tr>
<tr>
<td>$D^0$ branching fraction</td>
<td>2.4</td>
<td>6.2</td>
<td>4.2</td>
</tr>
<tr>
<td>Tracking efficiency</td>
<td>2.4</td>
<td>2.4</td>
<td>4.0</td>
</tr>
<tr>
<td>$K_S^0$ efficiency</td>
<td>3.0</td>
<td>3.0</td>
<td>3.0</td>
</tr>
<tr>
<td>Particle identification</td>
<td>2.0</td>
<td>2.0</td>
<td>2.0</td>
</tr>
<tr>
<td>$\pi^0$ efficiency</td>
<td>-</td>
<td>5.0</td>
<td>-</td>
</tr>
<tr>
<td>Peaking background</td>
<td>2.3</td>
<td>1.4</td>
<td>3.1</td>
</tr>
<tr>
<td>$K^{*-}$ line shape</td>
<td>3.0</td>
<td>3.0</td>
<td>3.0</td>
</tr>
<tr>
<td>Data/simulation differences</td>
<td>1.4</td>
<td>2.4</td>
<td>2.1</td>
</tr>
<tr>
<td>Total</td>
<td>8.6</td>
<td>11.9</td>
<td>10.3</td>
</tr>
</tbody>
</table>
In summary, we have studied the decay $B^- \rightarrow D^0 K^{*-}$, where the $D^0$ was detected through its decays to $K^- \pi^+$, $K^- \pi^- \pi^0$, and $K^- \pi^- \pi^- \pi^+$ and the $K^{*-}$ through its decay to $K^0 \pi^-$. We have measured the branching fraction $B(B^- \rightarrow D^0 K^{*-}) = (6.3 \pm 0.7 \pm 0.5) \times 10^{-4}$. This is in good agreement with the previous measurement of this branching fraction, and significantly improves on its precision. In the future, with larger data samples, this decay will be studied with the $D^0$ reconstructed in $CP$ eigenstates. Eventually it is hoped that decays of the form $B \rightarrow D^{(*)} K^{(*)}$ can provide important constraints on the angle $\gamma$ of the unitarity triangle.

We are grateful for the excellent luminosity and machine conditions provided by our PEP-II colleagues, and for the substantial dedicated effort from the computing organizations that support BABAR. The collaborating institutions wish to thank SLAC for its support and kind hospitality. This work is supported by U.S. DOE and NSF (USA), NSERC (Canada), IHEP (China), CEA and CNRS-IN2P3 (France), BMBF and DFG (Germany), INFN (Italy), FOM (The Netherlands), NFR (Norway), MIST (Russia), and PPARC (United Kingdom). Individuals have received support from the A. P. Sloan Foundation, Research Corporation, and Alexander von Humboldt Foundation.

[4] Charge conjugate decays are implied throughout this paper.
[6] BABAR Collaboration, B. Aubert et al., Nucl. Instrum. Meth-