Title
Coevolution of gene expression among interacting proteins

Permalink
https://escholarship.org/uc/item/4k0632w4

Authors
Fraser, Hunter B.
Hirsh, Aaron E.
Wall, Dennis P.
et al.

Publication Date
2004-03-01

Peer reviewed
Proceedings of the National Academy of Sciences

Please print all pages of the proof PDF (use “normal quality”). Note the following directions for correcting and returning your proofs. Important: For your convenience, this page contains a shortened version of the content in the proof notification e-mail, and some information is not repeated here. Please read the e-mail letter, which will inform you if your article exceeds our page limit.

Text
1) Clearly mark all of your changes and answers to author queries in the margins next to the article text in the proofs;
2) Review and answer ALL author queries (marked in the margins of the text with AQ: A, etc.) that are listed on the query sheet(s);
3) Proofread tables and equations carefully; and
4) Make sure that any Greek/special characters appear correctly throughout the text.

Figures
• Proofs contain low-resolution figures (so proofs can be downloaded and printed quickly). Figure quality will be higher in the printed and online html versions of the journal. Please note any figure quality concerns next to the figure on the proofs.
• Carefully check fig. numbering, color, text labeling, and cropping; if elements are missing from or moved within a figure, or if your color figure does not appear in color in the PDF, please note this on your proofs and send us a printed copy of the correct figure for comparison;
• Replacing, deleting, or resizing color figures will cost $150/figure and replacing a black-and-white figure will cost $25/figure.

Supporting Information
• If you submitted supporting information (SI) to be posted on the PNAS web site, you will receive a PDF proof of the SI in a separate e-mail (to be delivered the next business day).

Within 48 hours, please express mail (by overnight or 2-day delivery, if possible) the following items to the address given below. (WE CANNOT ACCEPT FAXES OF PROOFS OR E-MAILED CORRECTIONS.)
1) The original printed copy of the PDF, including query sheet(s), with your corrections marked in the margins next to the article text;
2) High-quality prints for any corrected figures (we must have prints suitable for scanning even if you submit digital files of the revised figures); and
3) The reprint order form (including the price sheet). You can fax this form to the number listed on it instead of mailing the form back to us.

Please retain a copy of ALL pages of the proof PDF for your records. Please include your manuscript number with all correspondence.

Thank you.

Return address for proofs:
Attn: PNAS
940 Elkridge Landing Road
Linthicum, MD 21090-2908
pnas@cadmus.com
Tel: 410-850-0500 (Use this number for shipping purposes only; see query A on the Author Queries sheet in your proof PDF for contact information for your article.)

Please note: The date a paper appears online in PNAS daily Early Edition is the publication date of record and is posted with the article text online. All author changes must be made before the paper is published online or will be handled as errata.
Coevolution of gene expression among interacting proteins

Hunter B. Fraser*,1, Aaron E. Hirsh†, Dennis P. Wall§, and Michael B. Eisen*‡

*Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720; †Department of Biological Sciences, Stanford University, Stanford, CA 94305; §Department of Systems Biology and the Computational Biology Initiative, Harvard Medical School, Boston, MA 02115; and ‡Department of Genome Sciences, Lawrence Berkeley National Laboratory, Berkeley, CA 94720

Edited by Wen-Hsiung Li, University of Chicago, Chicago, IL, and approved May 4, 2004 (received for review April 13, 2004)

Coevolution is an evolutionary process in which a heritable change in one entity establishes selective pressure for a change in another entity. These entities can range from nucleotides to amino acids to proteins to entire organisms and perhaps even ecosystems. A relatively simple and well studied example of coevolution involves physically interacting proteins, in which precise, complementary structural conformations of interacting partners are usually needed to maintain a functional interaction. If the conformation of one protein is interrupted by mutation, a compensatory change may be selected for in its interacting partner. When such compensatory changes occur, the two proteins are said to coevolve.

Coevolution of interacting amino acids and proteins has been studied intensively for more than a decade (see refs. 1–8). The identification of coevolving pairs of genes is interesting and important for several reasons. First, it can aid in functional annotations: When an uncharacterized gene is found to coevolve with several different genes, all of which encode proteins of a single function, the unknown gene is likely to share that same function. Second, identification of likely physical interactions through detection of coevolution can contribute to our understanding of how proteins work together to execute their functions. Third, coevolution may be a critical process by which complex cellular components, such as multimolecule machines and metabolic pathways, undergo adaptive or constructive change without disruption of organismal integrity.

Various methods have been developed to detect coevolution of proteins, most based on a common principle: Evolutionary distances between all possible pairs of amino acid sites or proteins are estimated from multiple alignments of protein sequences, and the extent of coevolution for each pair is determined by measuring the correlation of their evolutionary rates across different lineages. Such methods have been successful in quantifying the extent of coevolution between proteins, protein domains, and amino acid residues known to interact physically (3–8). These methods also have been used to predict specific interactions between receptors and their substrates in large paralogous protein families (4, 8) and between proteins from the bacterium Escherichia coli (6, 7).

In previous applications of this approach to the study of protein coevolution, ≥11 sequences (and sometimes many more) have been used in each multiple alignment (3–8). Whereas such extensive taxonomic sampling is possible in studies of prokaryotes, for which >100 genome sequences are available, it remains difficult in studies of eukaryotes.

Here, we examine whether coevolution can be detected not only in protein sequences but also in their levels of expression. The expectation that expression levels should coevolve stems in part from the observation that the expression levels of genes encoding interacting proteins are strongly correlated over different experimental conditions in Saccharomyces cerevisiae (9–11). This observation is thought to reflect the requirement for interacting proteins to be present in the cell in similar amounts at the same time to properly form stoichiometric complexes and execute their function. When protein complex subunits are misexpressed, they tend to have more severe consequences on growth than proteins that do not participate in stable protein interactions (12). Thus, we predicted that natural selection would maintain precise coexpression of interacting proteins; if the expression of one gene changes, it would be expected to result in a selection pressure for a similar expression change in its interacting partners, analogous to the coevolution of amino acid sequence described above.

In this study, we use the genome sequences of four closely related yeasts (Saccharomyces cerevisiae, Saccharomyces paradoxus, Saccharomyces mikatae, and Saccharomyces bayanus) along with protein interaction data from S. cerevisiae to introduce a previously unrecognized method to detect coevolution of gene expression based on coordinated changes in gene expression, as estimated by codon usage bias. We also examine protein sequence coevolution to evaluate whether sequence data from these four species alone allow the coevolution of interacting proteins to be detected on a genomic scale and to compare the strength of expression coevolution with the strength of sequence coevolution.

Materials and Methods

Sequence Data. For all analyses described in this work, we used the complete genome sequences of four closely related (<20 million years divergence, corresponding to an average of 2.2 synonymous substitutions per site after correcting for nonneutral synonymous sites) yeast species in the genus Saccharomyces: S. cerevisiae (13),

*This paper was submitted directly (Track II) to the PNAS office.
Abbreviations: CAI, codon adaptation index; KS, Kolmogorov–Smirnov.

1To whom correspondence should be addressed at: 1 Cyclotron Road, Berkeley, CA 94720. E-mail: hunter@ocf.berkeley.edu.

© 2004 by The National Academy of Sciences of the USA
Results

Coevolution of Protein Sequences. We began by examining metrics of coevolution for proteins that have been observed to interact in *S. cerevisiae*. From a set of 4,175 relatively high-confidence protein–protein interactions involving 1,360 proteins (20), we identified 1,377 interacting pairs involving 621 proteins in which both proteins had clear orthologs in all four *Saccharomyces* species and the alignments of the protein sequences were of high quality. We used the multiple alignments to estimate rates of evolution for each protein in each lineage. As a measure of their coevolution, for all pairs of proteins we computed the correlation coefficient between their rates of evolution in the different lineages (see Materials and Methods). For comparison to the set of interacting proteins, we generated a list of all 192,510 possible pairs (involving the same 621 proteins) that were not in our list of 1,377 interactions.

Because there was a wide range in the amount of variance in evolutionary rates for different pairs of proteins (Fig. 1A), we reasoned that pairs in which one or both proteins had very little variance in evolutionary rates would not be very informative for detecting coevolution because the small changes that are indicated by a small variance are more likely to reflect random fluctuations or noise instead of authentic changes in the evolutionary rates of a gene along different lineages. For this reason, we restricted our analysis to the 200 interacting pairs (of the 1,377 total) with the greatest variance in both proteins of the pair (i.e., only the variance in the less variable of the two proteins was used to represent the pair). This variance cutoff (Fig. 1A, dashed line) was then applied to the complete list of 192,510 random pairs, resulting in a list of 26,796 pairs (200 known interactions and 26,596 others) with a variance in evolutionary rates above the cutoff for every protein in the list. In other words, a minimum variance cutoff was applied to all 621 proteins, and all possible pairs among those satisfying the cutoff were included for further analysis.

If the amino acid sequences of our 200 interacting proteins were coevolving, we would expect to see the distribution of correlation coefficients (our metric of coevolution) to be greater in the 200 interacting pairs than in the 26,596 noninteracting pairs. To test this hypothesis, we separated the interacting and noninteracting pairs into 10 bins each, separating protein pairs by the strength of the correlation between their sets of evolutionary rates. This analysis confirmed that we could observe such coevolution at a genomic scale: For all bins of correlation coefficients (our metric of coevolution) to be greater in the 200 interacting pairs than in the 26,596 noninteracting pairs, resulting in a list of 26,796 pairs (200 known interactions and 26,596 others) with a variance in evolutionary rates above the cutoff for every protein in the list. In other words, a minimum variance cutoff was applied to all 621 proteins, and all possible pairs among those satisfying the cutoff were included for further analysis.

Because there was a wide range in the amount of variance in evolutionary rates for different pairs of proteins (Fig. 1A), we reasoned that pairs in which one or both proteins had very little variance in evolutionary rates would not be very informative for detecting coevolution because the small changes that are indicated by a small variance are more likely to reflect random fluctuations or noise instead of authentic changes in the evolutionary rates of a gene along different lineages. For this reason, we restricted our analysis to the 200 interacting pairs (of the 1,377 total) with the greatest variance in both proteins of the pair (i.e., only the variance in the less variable of the two proteins was used to represent the pair). This variance cutoff (Fig. 1A, dashed line) was then applied to the complete list of 192,510 random pairs, resulting in a list of 26,796 pairs (200 known interactions and 26,596 others) with a variance in evolutionary rates above the cutoff for every protein in the list. In other words, a minimum variance cutoff was applied to all 621 proteins, and all possible pairs among those satisfying the cutoff were included for further analysis.

If the amino acid sequences of our 200 interacting proteins were coevolving, we would expect to see the distribution of correlation coefficients (our metric of coevolution) to be greater in the 200 interacting pairs than in the 26,596 noninteracting pairs. To test this hypothesis, we separated the interacting and noninteracting pairs into 10 bins each, separating protein pairs by the strength of the correlation between their sets of evolutionary rates. This analysis confirmed that we could observe such coevolution at a genomic scale: For all bins of correlation coefficients (our metric of coevolution) to be greater in the 200 interacting pairs than in the 26,596 noninteracting pairs, resulting in a list of 26,796 pairs (200 known interactions and 26,596 others) with a variance in evolutionary rates above the cutoff for every protein in the list. In other words, a minimum variance cutoff was applied to all 621 proteins, and all possible pairs among those satisfying the cutoff were included for further analysis.

If the amino acid sequences of our 200 interacting proteins were coevolving, we would expect to see the distribution of correlation coefficients (our metric of coevolution) to be greater in the 200 interacting pairs than in the 26,596 noninteracting pairs. To test this hypothesis, we separated the interacting and noninteracting pairs into 10 bins each, separating protein pairs by the strength of the correlation between their sets of evolutionary rates. This analysis confirmed that we could observe such coevolution at a genomic scale: For all bins of correlation coefficients (our metric of coevolution) to be greater in the 200 interacting pairs than in the 26,596 noninteracting pairs, resulting in a list of 26,796 pairs (200 known interactions and 26,596 others) with a variance in evolutionary rates above the cutoff for every protein in the list. In other words, a minimum variance cutoff was applied to all 621 proteins, and all possible pairs among those satisfying the cutoff were included for further analysis.

If the amino acid sequences of our 200 interacting proteins were coevolving, we would expect to see the distribution of correlation coefficients (our metric of coevolution) to be greater in the 200 interacting pairs than in the 26,596 noninteracting pairs. To test this hypothesis, we separated the interacting and noninteracting pairs into 10 bins each, separating protein pairs by the strength of the correlation between their sets of evolutionary rates. This analysis confirmed that we could observe such coevolution at a genomic scale: For all bins of correlation coefficients (our metric of coevolution) to be greater in the 200 interacting pairs than in the 26,596 noninteracting pairs, resulting in a list of 26,796 pairs (200 known interactions and 26,596 others) with a variance in evolutionary rates above the cutoff for every protein in the list. In other words, a minimum variance cutoff was applied to all 621 proteins, and all possible pairs among those satisfying the cutoff were included for further analysis.

If the amino acid sequences of our 200 interacting proteins were coevolving, we would expect to see the distribution of correlation coefficients (our metric of coevolution) to be greater in the 200 interacting pairs than in the 26,596 noninteracting pairs. To test this hypothesis, we separated the interacting and noninteracting pairs into 10 bins each, separating protein pairs by the strength of the correlation between their sets of evolutionary rates. This analysis confirmed that we could observe such coevolution at a genomic scale: For all bins of correlation coefficients (our metric of coevolution) to be greater in the 200 interacting pairs than in the 26,596 noninteracting pairs, resulting in a list of 26,796 pairs (200 known interactions and 26,596 others) with a variance in evolutionary rates above the cutoff for every protein in the list. In other words, a minimum variance cutoff was applied to all 621 proteins, and all possible pairs among those satisfying the cutoff were included for further analysis.

If the amino acid sequences of our 200 interacting proteins were coevolving, we would expect to see the distribution of correlation coefficients (our metric of coevolution) to be greater in the 200 interacting pairs than in the 26,596 noninteracting pairs. To test this hypothesis, we separated the interacting and noninteracting pairs into 10 bins each, separating protein pairs by the strength of the correlation between their sets of evolutionary rates. This analysis confirmed that we could observe such coevolution at a genomic scale: For all bins of correlation coefficients (our metric of coevolution) to be greater in the 200 interacting pairs than in the 26,596 noninteracting pairs, resulting in a list of 26,796 pairs (200 known interactions and 26,596 others) with a variance in evolutionary rates above the cutoff for every protein in the list. In other words, a minimum variance cutoff was applied to all 621 proteins, and all possible pairs among those satisfying the cutoff were included for further analysis.
estimate of the fraction of false positives from the fraction of true positives to find the number of true positives not because of random chance. We calculated this value to be 0.113, indicating that we detected coevolution in the sequences of 23 (11.3%) of our 200 interacting pairs. Because this calculation assumes that our list of interactions is free of false positives and that our noninteractor list is free of false negatives, it should be interpreted as a lower bound for the amount of sequence coevolution that we can detect with four genome sequences.

**Coevolution of Gene Expression.** Although our finding coevolution for 11.3% of the interacting pairs is significant, it still represents only a small fraction of the interactions in our list. Thus, we wished to develop a method to extract more information about protein interactions than we could from the coevolution of protein sequence alone. Because it has been shown that genes coding for physically interacting proteins tend to be coexpressed (9–11), we reasoned that interacting proteins might indicate detectable coevolution of expression levels if such coexpression must be maintained even as expression patterns change over evolutionary time.

One method to test whether expression levels coevolved would be to use DNA microarrays to measure the expression levels in various species and conditions and then to search for cases in which expression patterns of mRNAs encoding a protein and its interacting partner have changed in a coordinated fashion. Although such experiments are feasible, they are labor-intensive and expensive, and we can expect the generation of expression data to lag behind genomic sequencing for some time. Therefore, we asked instead whether we could detect coevolution of gene expression using sequence alone. Although we have no method to accurately infer patterns of expression from sequence, there does exist a very well characterized method to estimate a gene’s average expression level from its sequence. Bias in the usage of synonymous codons, which was first noted >20 years ago (21), is a remarkably good predictor of average expression level. The strong association between codon bias and expression is thought to be because of selection for translational efficiency and accuracy of highly expressed genes (22). (Because the changes in gene-expression levels we are interested in occurred over the last several million years of evolution in our four *Saccharomyces* species, codon bias may reflect aspects of previous selection on gene expression that may not be apparent in microarray expression data because microarray data are measured in laboratory conditions that are undoubtedly quite different from those of a natural yeast habitat. Also for this reason, the strength of the correlation between codon bias values and microarray expression data from the laboratory cannot be taken as a precise indicator of how well codon bias predicts historical expression levels.) Because codon bias can be calculated easily for any gene sequence, we tested the hypothesis that genes encoding interacting proteins tend to coevolve in expression and thus indicate coordinated changes in codon bias in different species. In other words, if codon bias for gene *X* is greater in species *A* than in species *B*, then we might expect codon bias for some or all genes whose protein products interact with the protein encoded by *X* to be greater in species *A* than in species *B* as well.

To test this hypothesis, we again began with our list of 1,377 interactions among 621 proteins. We used the codon usage from the 20 most highly expressed genes in *S. cerevisiae* (19) to parameterize the CAI (see Materials and Methods) for each species and used the CAI to estimate expression levels for each of the 621 genes in all four species. There was a wide range of values in CAI for the 192,510 pairs (Fig. 2A), so, for the same reasons described above, we restricted our attention to the 200 interacting pairs with the highest variance in CAI for both species and used the CAI to estimate expression levels for each of the 621 genes in all four species. There was a wide range of values in CAI for the 192,510 pairs (Fig. 2A), so, for the same reasons described above, we restricted our attention to the 200 interacting pairs with the highest variance in CAI for both species. Application of this cutoff (Fig. 2A, dashed line) to the list of all possible pairs yielded 11,781 pairs (of which 200 were known interactions and 11,581 were not). Comparison of the distribution of correlation coefficients for the 200 interacting pairs with the 11,581 noninteractors revealed a striking difference, with the interacting pair distribution sharply skewed toward high values (Fig. 2B, solid line). The median correlation coefficient for interacting pairs was 0.822, whereas that of noninteractors was only 0.1997. The KS test confirmed that the difference between the two distributions was quite significant (*P* < 10⁻²⁶). Calculating the fraction of interacting pairs for which we could detect expression coevolution (as described above for protein sequence coevolution) resulted in a value of 37.3%, or ~75 of our 200 interacting pairs, which again should be interpreted only as a lower bound. Thus, we were able to detect expression coevolution at a level above the random
Fig. 2. Coevolution of expression. (A) A histogram of the base 10 logarithms of variance in CAI for all 192,510 possible pairs of the 621 proteins in this study. The variance for each protein in a pair was calculated, and the lower of the two was used to represent the pair. The dashed line indicates the variance cutoff described in the main text. (B) A histogram of the correlation coefficients indicating the strength of CAI coevolution for 200 pairs of interacting proteins (solid line) and 11,581 pairs of noninteracting proteins (dashed line). The two distributions are significantly different from one another (KS test, $P < 10^{-26}$). Bin labels are the upper bound for each bin (e.g., the label 0.9 indicates $0.8 < r \leq 0.9$).

Although our finding of strong correlations between expression levels of interacting proteins in different organisms is consistent with our hypothesis of coevolution occurring by sequential mutations, another possibility must also be considered. If the genes encoding interacting proteins are often regulated by the same transcription factor, then a single change affecting that factor could lead to up- or down-regulation of both interacting proteins in one species. Even though this scenario does lead to correlated changes in expression, it would not truly be coevolution. To distinguish between the true coevolution possibility and the single transacting mutation possibility, we used experimental genome-wide transcription factor binding data that are available for 113 transcription factors in yeast (23).

We reasoned that, if single mutations in transcription factors account for some or all of our apparent expression coevolution, then genes encoding pairs of interacting proteins that are regulated by the same transcription factor should indicate stronger coevolution, on average, than those that are regulated by different transcription factors. Among our 1,377 interacting pairs, we found 59 that were coregulated (both genes being bound by one transcription factor with a confidence of $P < 0.001$). These 59 had a median CAI correlation coefficient of 0.111, significantly lower than that of the rest of the interacting pairs (KS test, $P = 0.047$). Although we expect that we have missed many interacting pairs that are regulated by the same transcription factor (due to both false negatives in the binding data and our lack of binding data for all transcription factors), this should only serve to weaken any bias we find. Our finding that interacting pairs regulated by the same transcription factor actually have weaker coevolution than others supports our interpretation of the correlations as evidence of coevolution by sequential mutations; however, we note that this analysis does not address whether those sequential mutations occurred in cis or in trans. We do not have an explanation for why interacting proteins whose genes are regulated by the same transcription factor indicate less expression coevolution than other interacting proteins.

Prediction of Protein Interactions. Considering that we have two metrics that are both indicative of physical interaction between proteins, we asked whether protein pairs with coevolving expression levels were more likely to indicate detectable protein sequence coevolution or whether instead the two metrics are largely independent. We found the latter to be the case, because the correlation between our two metrics of coevolution was extremely weak (Pearson $r = 0.016$). Because the metrics are independent, it is possible that they could be combined to yield more information than either in isolation.

To test the power of combining the two metrics, we generated predictions of previously uncharacterized protein interactions. We started with the list of random protein pairs that satisfied the variance cutoffs used above for both evolutionary rates and CAI (1,711 total pairs), and we applied cutoffs for both correlation coefficients. We began with the arbitrary cutoffs of $r > 0.75$ for protein sequence coevolution and $r > 0.9$ for CAI coevolution, which yielded a list of 21 predictions (Table 1) involving proteins of both high and low CAI (ranging from 0.197 to 0.85 in S. cerevisiae). Of these 21 pairs, four were interactions from our list of 1,377, which is 27-fold higher than expected by chance and is thus unlikely to occur randomly ($P = 3 \times 10^{-5}$). This enrichment can be interpreted as the approximate enrichment for interacting proteins for all pairs in the list that are not known to interact. In other words, each pair in Table 1 (aside from known interactors) is $\approx 27$-fold more likely to interact than a random pair of yeast proteins. More or less stringent cutoffs also can be used to generate either more predictions with less confidence or fewer predictions with greater confidence. For example, use of a more stringent cutoff (evolutionary rate $r > 0.9$, CAI $r > 0.95$) on these same 1,711 pairs resulted in a list of 10 predictions (Table 1, first 10 rows), of which three were from our list of known interactions (42-fold enrichment, $P = 4 \times 10^{-6}$). These enrichments are stronger than those resulting from the application of either metric alone (data not shown), confirming our expectation that combining the two increases their power. Although we could undoubtedly have improved these enrichments for known interacting pairs by testing many different cutoffs to finely tune them, one must be careful not to overfit the data or to perform multiple tests without the appropriate statistical corrections; thus, we have chosen not to do this testing.

It should be noted that several genes appear multiple times in the list of our predictions (Table 1), indicating that our method may prove useful at predicting small networks of interacting proteins, but care must be taken not to overfit the data.
To detect coevolution, Fraser et al. used stringent cutoffs of evolutionary rate for expression and sequence coevolution metrics. The first 10 pairs satisfy the stringent cutoffs of evolutionary rate r > 0.9, CAI r > 0.95; all 21 satisfy the cutoffs of evolutionary rate r > 0.75, CAI r > 0.83.

A-list of 21 protein interaction predictions made by combining the sequence and expression coevolution metrics. The first 10 pairs satisfy the stringent cutoffs of evolutionary rate r > 0.9, CAI r > 0.95; all 21 satisfy the cutoffs of evolutionary rate r > 0.75, CAI r > 0.83.

Discussions

We have shown that the expression levels of genes encoding interacting proteins tend to coevolve in yeast. This coevolution is of a nature fundamentally different from the only other type of coevolution that has thus far been studied in interacting proteins, namely the coevolution of amino acid sequence, and it may represent a widespread and important mode of evolutionary change. Both types of coevolution can be detected in scores of genes by using a large set of protein interactions in yeast, although >3-fold more interacting pairs showed detectable coevolution of expression than of protein sequence in this study.

What is perhaps most surprising is the extent of coevolution we were able to detect using only four genome sequences. We did not use partial genome sequences that are available for many more yeast species, because including them dramatically reduced the number of genes for which alignments of orthologous genes in all species were available. However, because many more yeast species will soon have complete genome sequences available, we expect that the power of the tests introduced here will increase greatly. Furthermore, our use of four genome sequences provides a reasonable benchmark for future studies in other eukaryotes such as Drosophila melanogaster, Caenorhabditis elegans, and others because close relatives of these species (Drosophila pseudoobscura and Caenorhabditis briggsae) already have been fully sequenced and several close relatives soon will have sequenced genomes. Our method may not be as easily applicable in species with very little codon bias determined by gene expression levels, such as humans.

Aside from being useful for studying the evolution of gene regulation, our finding of expression coevolution has a practical application in predicting pairs of interacting proteins. Because these predictions are more accurate when the expression coevolution metric is combined with another method of interaction prediction based on amino acid sequence coevolution, suggest that future studies in which protein interactions are predicted from genome sequences will be more comprehensive if expression coevolution is included. Because even our combined metric cannot detect most protein interactions when only four genome sequences are used, we have not yet attempted to make large-scale predictions of interacting proteins in yeast.

In addition to the metric of expression coevolution that we introduced here, several other purely sequence-based methods for predicting protein interactions exist, such as phylogenetic profiling (30), conservation of gene neighborhood (31), and gene fusions (32, 33). Because these methods are mostly independent, combining them might greatly increase the power to predict protein interactions based on genome sequences alone. The methods could be integrated in a Bayesian framework (34); for example, the extent of expression coevolution could serve as a prior probability of interaction, which can then be increased or decreased based on any other metric for interaction prediction. We note, however, that these other methods of protein interaction prediction would not have added any information in this study. Phylogenetic profiling depends on the absence of some genes from some genomes, but all genes we used were present in all four genomes; conservation of gene neighborhood requires shuffling of genes, but all genes we used had conserved synteny in the four genomes; and the method of gene fusions depends on rare events, and even these are rare, with none of our genes having undergone in these four species.

Another unexplored application of both sequence and expression coevolution metrics is assessment of the quality of high-throughput protein-interaction data sets (e.g., ref. 20). One could use the degree of expression and sequence coevolution in a set of putative protein interactions to determine the accuracy of the data using a set of well established interactions to determine a baseline of the maximum amount of coevolution expected if all interactions in a list were correct.

It is interesting to speculate about the future direction of work investigating expression coevolution. Current research into the cis-regulatory gene expression “code” of yeast, Drosophila, and other organisms may soon make it possible to predict the approximate expression patterns of genes in different conditions on a genome-wide scale (35). If this technique becomes possible, it will greatly increase the power to detect expression coevolution from sequence alone. Instead of a single number (mean gene expression level, estimated by codon bias), one could calculate a vector representing the expression over many conditions for each gene in each organism. With this more detailed picture of gene expression regulation across different species, expression coevolution could be studied in far greater detail.

Finally, it is possible that coevolution of both protein sequences and expression levels may also be a property of pairs or groups of genes that do not necessarily interact physically.
Larger groups, or modules, of genes that work together to produce some output or trait (e.g., a single metabolic pathway) may indicate coordinated changes in expression levels and/or evolutionary rates because of increased or decreased utilization of those genes over evolutionary time. For example, if the genes specifically responsible for galactose transport and metabolism in yeast (the GAL genes) were used frequently in one species but seldom or never in another related yeast, we would expect to see an increase in the average expression (and thus codon bias) of those genes in the species that metabolized galactose more often. Changes in evolutionary rates also might be seen because the species that seldom use galactose for energy would have little selective pressure to maintain the amino acid sequences of those genes; they would drift more than their orthologous counterparts in the other species, and this characteristic may be reflected as coevolution of amino acid sequences. Such coevolution at the levels of both expression and sequence evolution may allow inference of functional relationships between groups of genes that do not necessarily physically interact; this evolutionary approach to prediction of genetic relationships and functions may prove to be quite useful as the amount of genome sequence data continues to increase.

We thank several anonymous referees for their comments.

H.B.F. is a National Science Foundation predoctoral fellow, and M.B.E. is a Pew Scholar in the biomedical sciences.

A—Please contact Jill Cortright (e-mail: cortrightj@cadmus.com; phone: 410-694-4166) if you have questions about editorial changes, this list of queries, or the figures in your article. Please review the author affiliation and footnote symbols carefully and indicate whether they are correct by writing ‘OK’ in the margin next to the author line. Please also check the spelling of all author names and affiliations and indicate if they are correct (write ‘OK’ in margin).

B—PNAS does not allow statements of novelty or priority. Is ‘previously uncharacterized’ OK?

C—PNAS mandates unambiguous pronoun antecedents. If you would prefer another word instead of ‘observation’ after ‘This,’ then please provide it.

D—PNAS does not allow statements of novelty or priority.

E—Per journal style, nonstandard abbreviations must be used at least 4 times after definition in the main text, figures, and tables; otherwise the term (dN/dS) is spelled out. Is shortened explanation of dN/dS OK?

F—PNAS style mandates that references be cited in numerical order. To preserve that, refs. 17-20 have been renumbered – please check carefully.

G—Are changes to sentence on correlation coefficient OK?

H—PNAS mandates unambiguous pronoun antecedents. If you would prefer another word instead of ‘hypothesis’ after ‘this’ then please provide it.

I—Are changes to first sentence in paragraph OK?

J—Are changes to sentence regarding ‘the value we seek’ OK?

K—Please confirm that you are referring to ref. 19 here.

L—PNAS mandates unambiguous pronoun antecedents. Please provide an appropriate noun after ‘this.’

M—PNAS does not allow statements of novelty or priority. Is previously uncharacterized OK?

N—PNAS mandates unambiguous pronoun antecedents. If you would prefer another word instead of ‘testing’ after ‘this,’ then please provide it.

O—Are changes to last sentence in paragraph OK?
AUTHOR PLEASE ANSWER ALL QUERIES

P—PNAS mandates unambiguous pronoun antecedents. If you would prefer another word after ‘this’ instead of ‘technique,’ then please provide it.

Q—PNAS mandates unambiguous pronoun antecedents. If you would prefer another word instead of ‘characteristic’ after ‘this,’ then please provide it.

R—Please confirm National Science Foundation for NSF.

S—Is change to ‘variance in CAI’ accurate?
2004 Reprint Order Form or Proforma Invoice

(Please keep a copy of this document for your records.)

Reprint orders and payments must be received no later than 2 weeks after return of your proofs. Color Offprints must be ordered before the journal issue is printed.

1 Publication Details

Reprint Order Number 1164286

Author’s Name ____________________________________________

Title of Article ____________________________________________

Number of Pages ___________ Manuscript Number 04-02591

Are there color figures in the article? ☐ Yes ☐ No

2 Reprint Charges (Use Rates Listed on Next Page)

Indicate the number of reprints ordered and the total due. Minimum order is 100 copies; prices include shipping.

Research, Special Feature Research, and Colloquium Articles:

☐ Reprints (black/white only) $ ___________

☐ Color Offprints (with color figures) $ ___________

☐ Covers $ ___________

For Commentary, Inaugural, Solicited Review, and Solicited Perspective Articles Only:

☐ First 100 Reprints (free; black/white or color) $ ___________

☐ Additional 100s (apply “Add’l 100s” rates listed on next page for orders larger than 100 reprints) $ ___________

☐ Covers $ ___________

Subtotal $ ___________

Sales Tax* $ ___________

Total $ ___________

*For orders shipped to Florida add 6% sales tax and local surtax, if you are in a taxing county. For orders shipped to Washington, DC, add 5.75% sales tax.

3 Publication Fees (Research Articles Only)

Pages in article @ $70 per page requested $ ___________

First color figure in article @ $475 $ ___________

Additional color figures @ $300 each $ ___________

Replacement or deletion of color figures @ $150 each $ ___________

Replacement of black/white figures @ $25 each $ ___________

Supporting information @ $100 per article $ ___________

Subtotal $ ___________

4 Invoice Address

Name ____________________________________________

Institution ____________________________________________

Department ____________________________________________

Street ____________________________________________

City _________ State _________ Zip _________

Country ____________________________________________

Phone __________________ Fax __________________

Purchase Order Number __________________

It is PNAS policy to issue one invoice per order.

5 Shipping Address

Name ____________________________________________

Institution ____________________________________________

Address ____________________________________________

Street ____________________________________________

City _________ State _________ Zip _________

Country ____________________________________________

Quantity of Reprints __________________

Phone __________________ Fax __________________

6 Additional Shipping Address*

Name ____________________________________________

Institution ____________________________________________

Address ____________________________________________

Street ____________________________________________

City _________ State _________ Zip _________

Country ____________________________________________

Quantity of Reprints __________________

Phone __________________ Fax __________________

*Add $30 for each additional shipping address.

7 Payment Details

Enclosed: ☐ Personal Check ☐ Institutional Purchase Order ☐ Credit Card

8 Credit Card Payment Details

Total Due $ ___________

☐ Visa ☐ MasterCard ☐ AMEX

Card Number __________________ Exp. Date __________________

Signature ____________________________________________

9 Payment Authorization

☐ I assume responsibility for payment of these charges.

(Signature is required. By signing this form, the author agrees to accept responsibility for payment of all charges described in this document.)

Signature of Responsible Author ____________________________________________

Phone __________________ Fax __________________

Send payment and order form to PNAS Reprints, PO Box 631694 Baltimore, MD 21263-1694 FEIN 53-0196932

Please call 1-800-407-9190 (toll free) or 1-410-819-3994, fax 1-410-820-9765 or email billmanj@cadmus.com if you have any questions.

Rev 5/04
2004 Reprint and Publication Charges

Reprint orders and prepayments must be received no later than 2 weeks after return of your page proofs.

### Rates for Black/White Reprints (Minimum Order 100. Includes Shipping.)

<table>
<thead>
<tr>
<th>Quantity</th>
<th>100</th>
<th>200</th>
<th>300</th>
<th>400</th>
<th>500</th>
<th>Add’l 100s</th>
</tr>
</thead>
<tbody>
<tr>
<td>Domestic</td>
<td>$470</td>
<td>$510</td>
<td>$555</td>
<td>$600</td>
<td>$645</td>
<td>$45</td>
</tr>
<tr>
<td>Foreign</td>
<td>$500</td>
<td>$565</td>
<td>$635</td>
<td>$700</td>
<td>$765</td>
<td>$65</td>
</tr>
</tbody>
</table>

### Rates for Color Offprints* (Minimum Order 100. Includes Shipping.)

<table>
<thead>
<tr>
<th>Quantity</th>
<th>100</th>
<th>200</th>
<th>300</th>
<th>400</th>
<th>500</th>
<th>Add’l 100s</th>
</tr>
</thead>
<tbody>
<tr>
<td>Domestic</td>
<td>$480</td>
<td>$690</td>
<td>$985</td>
<td>$1,280</td>
<td>$1,575</td>
<td>$295</td>
</tr>
<tr>
<td>Foreign</td>
<td>$525</td>
<td>$765</td>
<td>$1,095</td>
<td>$1,425</td>
<td>$1,755</td>
<td>$330</td>
</tr>
</tbody>
</table>

*Covers are black/white imprinted with title, volume, issue, and page numbers.

### Supporting Information (Research Articles Only)

Supporting information for the web will cost $100 per article.

### UPS

UPS ground shipping within the continental United States (1-5 days delivery) is included in the reprint prices, except for orders over 1,000 copies. Orders are shipped to authors outside the continental United States via expedited delivery service (included in the reprint prices).

### Multiple Shipments

You may request that your order be shipped to more than one location. Please add $30 for each additional address.

### Delivery

Your order will be shipped within 2 weeks of the journal publication date. Allow extra time for delivery.

### Tax Due

Florida authors add 6% sales tax and local sur-tax, if you are in a taxing county. Washington, DC, authors add 5.75% sales tax.

### Ordering

Prepayment or a signed institutional purchase order is required to process your order. You may use the previous page as a Proforma Invoice. Please return your order form, purchase order, and payment to:

PNAS Reprints
PO Box 631694
Baltimore, MD 21263-1694
FEIN 53-0196932

Please contact June Billman at 1-800-407-9190 (toll free) or 1-410-819-3994, fax 1-410-820-9765, or e-mail billmanj@cadmus.com if you have any questions.

---

*Color offprints must be ordered before the journal issue is printed. Please return your order form promptly.*
# Proofreader's Marks

<table>
<thead>
<tr>
<th>MARK</th>
<th>EXPLANATION</th>
<th>EXAMPLE</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>.</code></td>
<td>TAKE OUT CHARACTER INDICATED</td>
<td><code>.</code> Your proof.</td>
</tr>
<tr>
<td><code>^</code></td>
<td>LEFT OUT, INSERT</td>
<td><code>^</code> Your proof.</td>
</tr>
<tr>
<td><code>#</code></td>
<td>INSERT SPACE</td>
<td><code>#</code> Your proof.</td>
</tr>
<tr>
<td><code>9</code></td>
<td>TURN INVERTED LETTER</td>
<td><code>9</code> Your proof.</td>
</tr>
<tr>
<td><code>X</code></td>
<td>BROKEN LETTER</td>
<td><code>X</code> Your proof.</td>
</tr>
<tr>
<td><code>qq</code></td>
<td>EVEN SPACE</td>
<td><code>qq</code> A good proof.</td>
</tr>
<tr>
<td><code>.</code></td>
<td>CLOSE UP: NO SPACE</td>
<td><code>.</code> Your proof.</td>
</tr>
<tr>
<td><code>r</code></td>
<td>TRANPOSE</td>
<td><code>r</code> A proof good</td>
</tr>
<tr>
<td><code>w</code></td>
<td>WRONG FONT</td>
<td><code>w</code> Your proof.</td>
</tr>
<tr>
<td><code>lc</code></td>
<td>LOWER CASE</td>
<td><code>lc</code> Your proof.</td>
</tr>
<tr>
<td><code>caps</code></td>
<td>CAPITALS</td>
<td>Your proof. caps Your proof.</td>
</tr>
<tr>
<td><code>ital</code></td>
<td>ITALIC</td>
<td><code>ital</code> Your proof.</td>
</tr>
<tr>
<td><code>rom</code></td>
<td>ROMAN, NON ITALIC</td>
<td><code>rom</code> Your proof.</td>
</tr>
<tr>
<td><code>bf</code></td>
<td>BOLD FACE</td>
<td><code>bf</code> Your proof.</td>
</tr>
<tr>
<td><code>.....</code></td>
<td>LET IT STAND</td>
<td><code>.....</code> Your proof.</td>
</tr>
<tr>
<td><code>stet</code></td>
<td></td>
<td><code>stet</code> Your proof.</td>
</tr>
<tr>
<td><code>out sc</code></td>
<td>DELETE; SEE COPY</td>
<td><code>out sc</code> She Our proof.</td>
</tr>
<tr>
<td><code>spell out</code></td>
<td></td>
<td><code>spell out</code> Queen Elizabeth</td>
</tr>
<tr>
<td><code>^</code></td>
<td>START PARAGRAPH</td>
<td><code>^</code> read. Your proof.</td>
</tr>
<tr>
<td><code>no ^</code></td>
<td>NO PARAGRAPH: RUN IN</td>
<td><code>no ^</code> marked Your proof.</td>
</tr>
<tr>
<td><code>\</code></td>
<td>LOWER</td>
<td><code>\</code> Your proof.</td>
</tr>
<tr>
<td><code>\</code></td>
<td>RAISE</td>
<td><code>\</code> Your proof.</td>
</tr>
<tr>
<td>`</td>
<td>`</td>
<td>MOVE LEFT</td>
</tr>
<tr>
<td>`</td>
<td>`</td>
<td>MOVE RIGHT</td>
</tr>
<tr>
<td><code>\</code></td>
<td>ALIGN TYPE</td>
<td><code>\</code> Three dogs. Two horses.</td>
</tr>
<tr>
<td><code>==</code></td>
<td>STRAIGHTEN LINE</td>
<td><code>==</code> Your proof.</td>
</tr>
<tr>
<td><code>\)</code></td>
<td>INSERT PERIOD</td>
<td><code>\)</code> Your proof.</td>
</tr>
<tr>
<td><code>/</code></td>
<td>INSERT COMMA</td>
<td><code>/</code> Your proof.</td>
</tr>
<tr>
<td><code>:/</code></td>
<td>INSERT COLON</td>
<td><code>:/</code> Your proof.</td>
</tr>
<tr>
<td><code>:/</code></td>
<td>INSERT SEMICOLON</td>
<td><code>:/</code> Your proof.</td>
</tr>
<tr>
<td><code>\</code></td>
<td>INSERT APOSTROPE</td>
<td><code>\</code> Your mans proof.</td>
</tr>
<tr>
<td><code>\</code> `</td>
<td>INSERT QUOTATION MARKS</td>
<td><code>\</code> ` Marked it proof</td>
</tr>
<tr>
<td><code>=/</code></td>
<td>INSERT HYPHEN</td>
<td><code>=/</code> A proofmark.</td>
</tr>
<tr>
<td><code>/</code></td>
<td>INSERT EXCLAMATION MARK</td>
<td><code>/</code> Prove it</td>
</tr>
<tr>
<td><code>?</code></td>
<td>INSERT QUESTION MARK</td>
<td><code>?</code> Is it right</td>
</tr>
<tr>
<td><code>?</code></td>
<td>QUERY FOR AUTHOR</td>
<td><code>?</code> Your proof read by</td>
</tr>
<tr>
<td><code>/</code></td>
<td>INSERT BRACKETS</td>
<td><code>/</code> The Smith girl</td>
</tr>
<tr>
<td><code>()</code></td>
<td>INSERT PARENTHESSES</td>
<td><code>()</code> Your proof.</td>
</tr>
<tr>
<td><code>\</code></td>
<td>INSERT 1-EM DASH</td>
<td><code>\</code> Your proof.</td>
</tr>
<tr>
<td><code>\</code></td>
<td>INDENT 1 EM</td>
<td><code>\</code> Your proof.</td>
</tr>
<tr>
<td><code>\</code></td>
<td>INDENT 2 EMS</td>
<td><code>\</code> Your proof.</td>
</tr>
<tr>
<td><code>\</code></td>
<td>INDENT 3 EMS</td>
<td><code>\</code> Your proof.</td>
</tr>
</tbody>
</table>