Title
BEHAVIOR OF Tc OF HIGH TEMPERATURE SUPER-CONDUCTING FILMS AND A DETERMINATION OF THEIR PARAMETERS

Permalink
https://escholarship.org/uc/item/4k63573s

Author
Kresin, V.Z.

Publication Date
1984-09-01
Presented at the Applied Superconductivity Conference, San Diego, CA, September 9-13, 1984

BEHAVIOR OF Tc OF HIGH TEMPERATURE SUPERCONDUCTING FILMS AND A DETERMINATION OF THEIR PARAMETERS

V.Z. Kresin

September 1984
DISCLAIMER

This document was prepared as an account of work sponsored by the United States Government. While this document is believed to contain correct information, neither the United States Government nor any agency thereof, nor the Regents of the University of California, nor any of their employees, makes any warranty, express or implied, or assumes any legal responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by its trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof, or the Regents of the University of California. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof or the Regents of the University of California.
Existence of the proximity layer in Nb and NbN films leads to a peculiar dependence of the critical temperature upon the film thickness. Expressions describing T_c for S_a-S_b and S_a-M_b proximity systems are obtained. The theory allows to explain the dependence $T_c(L)$ which has been observed experimentally. Measurements of T_c can be used in order to determine the electronic density of states in the surface layer.

Introduction

Thin films of Nb and NbN are characterized by a specific behavior of T_c. A decrease of the thickness L results in a decrease of T_c, and this decrease is described by an exponential dependence: $T_c = \exp(-a/L)$. This dependence has been observed in Ref. 1; similar behavior was observed also in Ref. 2. According to Refs. 1 and 2, this decrease of T_c is due to the proximity effect, that is, to the existence of the surface layer, which is a normal metal or a superconductor with low T_c. This approach is supported by analysis of the Josephson current. According to Ref. 3, the behavior of the maximum d.c. Josephson current I_{th} is affected by the existence of the proximity system in Nb film. An analysis of the structure of the surface of Nb films also leads to the necessity of taking the proximity effect into account.

In connection with the aforesaid, it is of interest to evaluate the critical temperature for the S_a-M_b proximity system, where S_a is a superconductor, and M_b is a normal metal, or superconductor (we assume that $T_c < T_{c_b}$). This paper is concerned with this problem. An expression describing T_c for S_a-M_b (M_b is a normal metal) has been obtained in the author's paper. In this paper the general case of an S_a-S_b system will be considered. Moreover, the strong coupling effect will be taken into account, which is important, because both Nb and NbN films are superconductors with strong electron-phonon interaction (EPI). It will be shown also that measurements of T_c allow to obtain information about properties of the proximity layers in Nb and NbN films.

Critical Temperature

Consider the proximity system S_a-S_b ($T_{c_a} > T_{c_b}$; T_{c_a} and T_{c_b} are the critical temperatures of isolated films). Assume that $L_b \ll L_a$, where L_a is the thickness of the a film and L_b is the coherence length. The proximity effect can be described on the basis of the McMillan tunneling model. In order to evaluate T_c, it is convenient to use the method of thermodynamic Green's functions. If $T = T_c$, the equations describing the thermodynamic order parameters $\Delta_a(w_n)$ and $\Delta_b(w_n)$ can be written in the form:

$$\Delta_a = \Delta_a^{ph} + i \Delta_a^{ab} |w_n| T_a / T_c$$

$$\Delta_b = \Delta_b^{ph} + i \Delta_b^{ab} |w_n| T_b / T_c$$

Here Δ_a^{ph} describe pairing due to the usual electron-phonon coupling, that is

$$\Delta_a^{ph} = Z_a^{-1} \sum \int d\Omega g_a(\Omega) x D_a(w_n)|/|w_n| T_c$$

where $D = <\Omega^2/(\Omega^2 + (w - w_n)^2)^2$ is the phonon Green's function, $g_a(\Omega)$ describe the electron-phonon interaction, $w_n = (2n + 1)\pi T$. According to Ref. 6, the parameters Γ_a and Γ_b are equal to

$$\Gamma_a = x^2 d_b; \quad \Gamma_b = x^2 d_a.$$ (3)

T_c is the tunneling matrix element, and $d_a(w_n)$ is the densities of states, so that

$$d_a(w_n) = w_n S_a L_a.$$ (4)

(ν_0B_a) are the densities of states per unit volume, S is the film area, and L_a are the film thicknesses. The functions Z_aZ_b in (1) - (3) are the renormalization parameters.

Assume that the b film is a superconductor with weak EPI. Then one can put $D = D = \Omega^2/(\nu_0B_a + \Omega^2)$. In accordance with this, the solution of Eq. (2), one can determine b and express $\Delta_b(w_n)$ in terms of $\Delta_a(w_n)$. We do not limit the strength of EPI in the a film. Strong coupling effects can be treated on the basis of the theory. After some manipulations, we arrive at the equation allowing to evaluate T_c:
The critical temperature is described by Eq. (8) for the S_a--N_b system and by Eq. (6) for the S_b--S_b system. Consider the dependence of T_c upon the thickness L_a. Equation (8) can be rewritten in the form

$$\ln(T_c/T_c^b) = -\frac{1}{L_a}$$

or

$$T_c = T_c^b \exp(-1/L_a),$$

where

$$L = (v_b/v_a)L_a \ln (\Gamma/L_a^b).$$

We consider the case of small L_a.

The dependence (9) has been observed experimentally in Refs. 1 and 2 (see above). Hence, the analysis based on the theory of the proximity effect allows to describe the dependence T_c (L_a). Note that the dependence

$$\ln(T_c/T_c^b) = -\frac{1}{L_a}$$

can be also obtained for the S_a--S_b system (if $L_b \gg L_a$). Indeed, one can usually neglect unity in the denominator in Eq. (7). Then $F = 1 - L_a^{-1}$.

Based on Eq. (7), one can obtain the dependence $T_c(L_b)$ for the S_a--S_b system. Then $n = L_a^{-1}[1- (L_a/2L_0)]$. If $L_b \gg L_a$, the function $\ln(T_c/T_c^b)$ is proportional to L_a^{-1} with high accuracy. If L_b is small ($L_b \ll L_a$), there is a deviation from linear dependence; this deviation has been observed experimentally in Ref. 2.

Measurements of T_c allow to obtain information about the properties of the surface proximity layer. Namely, based on Eqs. (6), (7), or (8), one can evaluate the electronic density of states in the surface region. Consider, for example, a Nb film. In this case $T_a = 9.2^\circ$, $T_b = T_c = 1.4^\circ$ (see, e.g., Ref. 2). The thickness L_b is small ($=30\AA$) and hence $U_b = U_e = 110^\circ$. If $L_b = 2.10\AA$, the critical temperature is equal to $T_c = 8^\circ$. Based on Eqs. (6) and (7), one can obtain the following ratio of the densities of states: $d_g/d_a = (v_b/v_a)(L_b/L_a) = 0.14$. The density of states (per unit volume) in the surface layer is smaller than in bulk, i.e., $v_b/v_a = 0.8$.

Consider a NbN film. Assume that the a-layer is a normal metal. Then we can use Eq. (8). In this case $T_c = 15.5^\circ$, $T_b = 66.9^\circ$, $T_c(L) = 2.10^2\AA = 13.5^\circ$. Based on Eq. (8), we obtain $(d_g/d_a) = (v_b/v_a)(L_b/L_a) = 0.09$.

Discussion

The critical temperature is described by Eq. (8) for the S_a--N_b system and by Eq. (6) for the S_b--S_b system. Consider the dependence of T_c upon the thickness L_a.

Equation (8) can be rewritten in the form

$$\ln(T_c/T_c^b) = -\frac{1}{L_a}$$

or

$$T_c = T_c^b \exp(-1/L_a),$$

where

$$L = (v_b/v_a)L_a \ln (\Gamma/L_a^b).$$

We consider the case of small L_a.

The dependence (9) has been observed experimentally in Refs. 1 and 2 (see above). Hence, the analysis based on the theory of the proximity effect allows to describe the dependence T_c (L_a). Note that the dependence

$$\ln(T_c/T_c^b) = -\frac{1}{L_a}$$

can be also obtained for the S_a--S_b system (if $L_b \gg L_a$). Indeed, one can usually neglect unity in the denominator in Eq. (7). Then $F = 1 - L_a^{-1}$.

In the case $<\partial> = \Gamma$ in a weak coupling approximation Eq. (6) corresponds to the Cooper limit (one should also assume that $\langle\delta\rangle = \langle\delta\rangle^b$; see Ref. 10).

According to Eqs. (6), (8), T_c depends upon v_b.

ν_b is a function of the electron concentration and, hence, T_c can be affected by radiation (if a film is a semiconductor, see Ref. 11). Note also that the dependence $T_c(L Ge)$ observed in Ref. 12 for Nb-Ge multilayers, can be connected with the influence of Ge films, because of the proximity effects (cf. Ref. 13, see also Ref. 5). The authors also observed the dependence $T_c(L NO)$ for a single Nb film (see also Ref. 14). Note also that if a film is a size-quantizing film, it results in a non-monotonic behavior of $T_c(L_b)$ (see Ref. 5).

Summary

Equation (6) is a general expression describing T_c for the proximity system S_a--S_b containing two superconducting films. Equation (8) is valid for the S_a--N_b system. These equations allow to explain the dependence of T_c upon the film thickness which has been ob-
served experimentally. Moreover, measurements of T_c can be used in order to determine the electronic density of states in surface layers of such films as Nb, NbN, etc.

Acknowledgments

The author is grateful to Dr. M. Nisenoff and to Dr. S. Wolf for valuable discussions. The work was supported by the Office of Naval Research under Contract No. N00014-84-F-0095 and carried out at the Lawrence Berkeley Laboratory under Contract No. DE-AC03-76SF00098.

References

This report was done with support from the Department of Energy. Any conclusions or opinions expressed in this report represent solely those of the author(s) and not necessarily those of The Regents of the University of California, the Lawrence Berkeley Laboratory or the Department of Energy.

Reference to a company or product name does not imply approval or recommendation of the product by the University of California or the U.S. Department of Energy to the exclusion of others that may be suitable.
TECHNICAL INFORMATION DEPARTMENT
LAWRENCE BERKELEY LABORATORY
UNIVERSITY OF CALIFORNIA
BERKELEY, CALIFORNIA 94720