Lawrence Berkeley National Laboratory
Recent Work

Title
CORPUSCULAR PHYSICSuABSOLUTE MEASUREMENT OF THE a ENERGY OF 253EINSTEINIUM

Permalink
https://escholarship.org/uc/item/4kg7z5rt

Authors
Grennberg, Bertil
Rytz, Albrecht
Asaro, Frank. (presented by Louis de Broglie).

Publication Date
1971-12-01
CORPUSCULAR PHYSICS--ABSOLUTE MEASUREMENT OF THE \(\alpha \) ENERGY OF \(^{253}\text{Einsteinium} \)

Bertil Grennberg, Albrecht Rytz and Frank Asaro
(presented by Louis de Broglie)

December 1971

AEC Contract No. W-7405-eng-48
DISCLAIMER

This document was prepared as an account of work sponsored by the United States Government. While this document is believed to contain correct information, neither the United States Government nor any agency thereof, nor the Regents of the University of California, nor any of their employees, makes any warranty, express or implied, or assumes any legal responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by its trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof, or the Regents of the University of California. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof or the Regents of the University of California.
CORPUSCULAR PHYSICS -- ABSOLUTE MEASUREMENT OF THE α ENERGY OF 253EINSTENIUM

The energy determinations of the α groups of 253Es (half-life \sim 20 days) known up to now [(1), (2)] are all relative measurements with a rather moderate accuracy (see Table).

<table>
<thead>
<tr>
<th>Authors and Year</th>
<th>Ref.</th>
<th>Method</th>
<th>Radioactive standard</th>
<th>α Energy (KeV)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jones et al.</td>
<td>(1) Grid ionization</td>
<td>226Ra 218Po</td>
<td>Published value</td>
<td>6.636±5</td>
</tr>
<tr>
<td>(1956)</td>
<td>chamber</td>
<td>222Rn 214Po</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hummel (1956)</td>
<td>(2) Magnetic spectrograph</td>
<td>220Rn</td>
<td>(absolute)</td>
<td>6.633±5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>216Po</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Present study</td>
<td>--- Magnetic spectrograph</td>
<td>253Es</td>
<td></td>
<td>6.632.73</td>
</tr>
</tbody>
</table>

Although it is not a very common α-emitter, 253Es could possibly be used as a radioactive standard in an energy region that does not have very many suitable reference energies.

We measured the energy of α_0 with the absolute magnetic spectrograph in the International Bureau of Weights and Measures (3). Some details of this instrument were described in a previous note (4). The stabilization of the magnetic field was the subject of a separate publication (5). A complete description of the spectrograph and of all the results obtained is in preparation.
The 253Es specimen utilized in our experiments was prepared in the Lawrence Radiation Laboratory, Berkeley, California, by J. Harris and his heavy element separation group. On its arrival at the International Bureau of Weights and Measures, it had an activity of around 2mCi. It was dissolved in 3M $\text{NO}_3\ H$ and the sources were obtained by sublimation under vacuum. Each source was utilized several times. The figure represents the spectrum of α particles observed during one of the exposures. On the high energy of each group, the traces recorded on the photographic plate were counted by bands 10 μm wide. Therefore, the point corresponding to the highest energy could be determined with an error (typical deviation) quite smaller than this width (see figure).

Although α_{42} may appear well-determined in the figure, an analysis has shown that the background coming from the tail of the main beam is too considerable to make an accurate extrapolation possible.

![Spectrum of α particles](image)

Key: a = number of tracks per 100 X 100 μm; b = plate; c = extrapolated value.

For the main group, the six photographs analyzed give an average value of

$$E_{\alpha_0} = 6,632.73 \text{ KeV}$$

and a typical deviation of 0.05 KeV from the average. We evaluated the different systematic errors and formed their quadratic sum. In order to take this total systematic error of 0.05 KeV into account in an overall combined error, it must be considered on the same level of reliability as a typical error.
The numerical values of the constants utilized in computing the energy were:

Faraday constant:

\[F = 96,486.70 \text{ C.mol}^{-1} \]

Gyromagnetic coefficient of the proton:

\[\gamma_p' = 2.675127 \times 10^{-8} \text{ s}^{-1} \cdot \text{T}^{-1} \]

BIBLIOGRAPHY

This report was prepared as an account of work sponsored by the United States Government. Neither the United States nor the United States Atomic Energy Commission, nor any of their employees, nor any of their contractors, subcontractors, or their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness or usefulness of any information, apparatus, product or process disclosed, or represents that its use would not infringe privately owned rights.