Lawrence Berkeley National Laboratory
Recent Work

Title
PROPERTIES OP LORENTZ COVARIANT ANALYTIC FUNCTIONS

Permalink
https://escholarship.org/uc/item/4m40n7kz

Author
Stapp, Henry P.

Publication Date
1965-09-08
University of California

Ernest O. Lawrence Radiation Laboratory

PROPERTIES OF LORENTZ COVARIANT ANALYTIC FUNCTIONS

TWO-WEEK LOAN COPY

This is a Library Circulating Copy which may be borrowed for two weeks. For a personal retention copy, call Tech. Info. Division, Ext. 5545

Berkeley, California
DISCLAIMER

This document was prepared as an account of work sponsored by the United States Government. While this document is believed to contain correct information, neither the United States Government nor any agency thereof, nor the Regents of the University of California, nor any of their employees, makes any warranty, express or implied, or assumes any legal responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by its trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof, or the Regents of the University of California. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof or the Regents of the University of California.
PROPERTIES OF LORENTZ COVARIANT ANALYTIC FUNCTIONS

Henry P. Stapp

September 8, 1965
PROPERTIES OF LORENTZ COVARIANT ANALYTIC FUNCTIONS

Henry P. Stapp
Lawrence Radiation Laboratory
University of California
Berkeley, California
September 8, 1965

ABSTRACT

A theorem is proved that asserts, roughly, that a function that is real Lorentz covariant anywhere is complex Lorentz covariant everywhere in its domain of regularity. It is also shown that the analytic continuation of a scattering function from a regularity domain in the physical region of a given process along all paths generated by complex Lorentz transformations leads to a function that is single-valued in the neighborhood of all these paths. Applications are discussed. The results derived constitute necessary preliminaries to a discussion of the analytic structure of scattering functions to be given in subsequent papers.
PROPERTIES OF LORENTZ COVARIANT ANALYTIC FUNCTIONS

The requirement that transition probabilities be invariant under physical Lorentz transformations implies \(^1\) that the scattering functions \(M(K)\) satisfy the Lorentz covariance condition \(^2, 3\)

\[
M(K) = \Lambda_s M(\Lambda_s^{-1} K)
\]

for all real \(K\) corresponding to physical points and for \(\Lambda\) any element of the real proper orthochronous homogeneous Lorentz group. Here \(K\) is the set of variables

\[
K = \{k_i, m_i, t_i\}
\]

where \(k_i, m_i\) and \(t_i\) are the momentum-energy, spin quantum number, and particle type of particle \(i\), and \(\Lambda_s\) is an operator that applies to each spin index \(m_i\) a matrix transformation corresponding to \(\Lambda\). The specific form of \(\Lambda_s\) is given in Appendix A.

In this paper some consequences of assuming that \(M(K)\) is also regular analytic at some physical point will be examined. The main result to be established is that if an \(M\) function is regular at some physical point then the complete analytic extension of the function is defined over a multisheeted manifold each sheet of which maps onto itself under any proper complex Lorentz transformation. Furthermore, the function defined (single valuedly) and regular over any sheet is
invariant under proper complex Lorentz transformations. Finally, if
\(M \) is regular at each point of some real domain containing only
physical points then the sheets described above can be chosen so
that all the points of this domain lie in a single sheet. These results
have some important consequences, which will be mentioned at the end
of the paper.

The initial considerations will refer to a function \(F(K) \)
whose domain of definition is not restricted by the mass shell and
conservation-law constraints. Also the type variables \(T = \{ t_1 \} \)
will be considered fixed. Thus the argument of \(F(K) \) will be a set
of the type introduced above but with the mass constraints and type
variables removed.
Let the following definitions be made:

Definition: \(\mathbb{L} \) will denote the real proper orthochronous homogeneous Lorentz group. It is continuously connected to the identity.

Definition: \(\mathbb{L}_c \) will denote the complex proper homogeneous Lorentz group. It is continuously connected to the identity.

Definition: \(\Lambda \) will represent a Lorentz transformation and

\[
(\Lambda \mathbf{K}) = \left\{ \Lambda k_1, m_1 \right\},
\]

(The \(t_i \) are temporarily suppressed or eliminated.)

Definition: The point \(\mathbf{K} \) represents the set of momentum-energy vectors \(\{ k_1 \} \), but a function at a point means the set of functions having momentum-energy variables specified by the point \(\mathbf{K} \); all spin indices are allowed.

Definition: Points \(\mathbf{K}_1 \) and \(\mathbf{K}_2 \) related by \(\mathbf{K}_1 = \Lambda \mathbf{K}_2 \) will be said to be connected by \(\Lambda \).

Definition: The set of points connected to \(\mathbf{K} \) by some \(\Lambda \in \mathbb{L} \) (or \(\mathbb{L}_c \)) will be denoted by \(\mathcal{L} \mathbf{K} \) (or \(\mathcal{L}_c \mathbf{K} \)).

Definition: The set of points connected to some element of the set \(\mathcal{D} \) by some \(\Lambda \in \mathbb{L} \) (or \(\mathbb{L}_c \)) will be denoted by \(\mathcal{L} \mathcal{D} \) (or \(\mathcal{L}_c \mathcal{D} \)).

Definition: A point \(\mathbf{K} \) is real if and only if the four vectors \(\{ k_1 \} \) are real.
Definition: A real set is a set of real points.

Definition: A function $F(K)$ is a (single-valued) mapping to the complex numbers.

Definition: The spin indices of (K) will be presumed to have some spinor index type $\lambda :: \Lambda$, and $\Lambda \ F(K)$ will represent the result of the action upon $F(K)$ of the corresponding spinor transformations associated with Λ, as discussed in Appendix A.

Lemma 1. If $F(K)$ is defined (single valuedly) over a real set D and satisfies for all $\Lambda \in \mathcal{L}$ and $\Lambda \ K$ such that K and $\Lambda \ K$ are elements of D the covariance condition

$$F(K) = \Lambda_s \ F(\Lambda^{-1}_s K), \quad (6.2)$$

then (6.2) with $\Lambda^{-1}_s K \in D$ and $\Lambda \in \mathcal{L}$ defines a (single-valued) function over $\mathcal{L} \ D$, provided any two points of D connected by a real element of \mathcal{L} are also connected by an element of \mathcal{L}.

Proof: The prescription will uniquely define $F(K)$ at K' of $\mathcal{L} \ D$ if for any two points K_1 and K_2 of D for which $K' = \Lambda_1 \ K_1 = \Lambda_2 \ K_2$, with Λ_1 and $\Lambda_2 \in \mathcal{L}$, one has

$$\Lambda_1 \ F(K_1) = \Lambda_2 \ F(K_2). \quad (6.3)$$

But by the group property $K_2 = \Lambda_2^{-1}_s \Lambda_1 \ K_1 = \Lambda \ K_1$. Thus (6.2) gives

$$F(K_2) = \Lambda_2^{-1}_s \Lambda_1 \ F(K_1) \quad (6.4)$$
provided \(\Lambda = (\Lambda_2^{-1} \Lambda_1) \in L \). Hence it is sufficient to show that
\(\Lambda \) is an element of \(L \). If the rank \(r(K_1) \) of the Gram determinant
\(G \left(C_{i,j} = k_i \cdot k_j \right) \) at the point \(K_1 \) is four, or equivalently if there
are four linearly independent vectors among the vectors of \(K_1 \), then
the rank is also four at \(K_2 \), since inner products are unchanged,
and the same four vectors are also linearly independent at \(K_2 \). In
this case the linear transformation \(\Lambda \) is unique. Since \(K_1 \) and
\(K_2 \) are real, \(\Lambda \) is a real element of \(L \). By hypothesis it is then,
by virtue of its uniqueness, an element of \(L \). This completes the
proof for the case \(r(K_1) = 4 \). For \(r(K_1) = 3 \) the transformation
\(\Lambda \) is still unique and the same argument holds.

If \(r(K_1) < 3 \) then the transformation \(\Lambda \) is not always
uniquely defined by the equation \(K_2 = \Lambda K_1 \) and it may not be real,
as required for the above argument. There are several cases. If
the rank \(r(K_1) \) is equal to \(n(K_1) \), the number of linearly independent
vectors of \(K_1 \), then the space separates into a manifold \(M(K_1) \) of
dimension \(n(K_1) = r(K_1) \) spanned by the set \(K_1 \) and the orthogonal
manifold \(M^\perp(K_1) \). One can construct a set of real orthogonal basis
vectors \(e_p(K_1) \), each of length plus or minus one,
such that the first \(n \) span \(M(K_1) \) and the last \((4-n) \) span
\(M^\perp(K_1) \). To construct such a basis one first takes \(n(K_1) \) linearly
independent real vectors from the set \(K_1 \). This set is augmented
by \((4-n(K_1)) \) real vectors to give a complete set of real linearly
independent vectors. Because the rank \(r(K_1) \) equals \(n(K_1) \) the linear
equations arising in the construction of \(e_p(K_1) \) are soluble. The
details have been given by Hall and Wightman. Since the original vectors are, for us, real the coefficients in the linear equations are real and hence the solutions can be taken to be real. A similar real basis, $e_\sigma(K_2)$, can be constructed for K_2.

Our interest is in the various Lorentz transformations Λ' satisfying $K_2 = \Lambda' K_1$, the K_1 and K_2 being the fixed points of D connected by $\Lambda \in D$; $K_2 = \Lambda K_1$. The transformations Λ' can be represented by the matrices $\Lambda^\prime \sigma_{\rho}$ defined by

\[\Lambda' e_\rho(K_1) \equiv e^\sigma(K_2) \Lambda^\prime \sigma_{\rho} \equiv e_\sigma(K_2) g^{\sigma\tau}(K_2) \Lambda^\prime \tau_{\rho}, \tag{5.5} \]

where a summation convention is used. The labels ρ, σ, and τ specify the basis vectors, not components, and

\[g^{\sigma\rho}(K_j) \equiv e^\sigma(K_j) \cdot e^\rho(K_j) = \pm \delta_{\sigma\rho} \quad \text{for} \quad j = 1, 2. \tag{5.6} \]

For either value of j three of the vectors $e^\sigma(K_j)$ have length minus one and the other has length plus one. That all four have length minus one is impossible because any vector v can be expanded as

\[v = v_\sigma(K_j) e^\sigma(K_j) \tag{5.7} \]

with

\[v_\sigma(K_j) = e_\sigma(K_j) \cdot v = e_{\sigma}(K_j) v_\mu, \tag{5.8} \]

where μ labels the component of the vector. Then
\[\mathbf{v} \cdot \mathbf{v} = v_\mu G^{\mu \nu} v_\mu = v_\rho (K_j) G^{\rho \sigma}(K_j) v_\sigma (K_j) \quad (9) \]

If the negative sign were always to occur in (10), then all vectors represented by real \(v_\rho (K_j) \) would have negative length. But the vector \(\mathbf{v} \) with components \(v_\mu = \delta_{\mu 0} \) has real \(v_\rho \) and positive length \(\{ G^{\mu \nu} = (1, -1, -1, -1) \} \), which is a contradiction. On the other hand if there were two real orthogonal vectors \(\mathbf{v}^1 \) and \(\mathbf{v}^2 \) of length plus one then

\[(v_0^1)^2 - |\chi^1|^2 = 1, \quad (v_0^2)^2 - |\chi^2|^2 = 1, \quad (10) \]

and

\[v_0^1 v_0^2 = \chi^1 \cdot \chi^2. \quad (11) \]

From these it would follow that

\[(\chi^1 \cdot \chi^2)^2 = (1 + |\chi^1|^2)(1 + |\chi^2|^2), \quad (12) \]

and hence that

\[(\chi^1 \cdot \chi^2) > |\chi^1||\chi^2|, \quad (13) \]

which is not possible for real vectors. Thus there is, for each \(j \), precisely one vector \(e^\sigma (K_j) \) of length plus one. Because of this the vectors \(e^\sigma (K_j) \) can be generated from the original set of basis vectors by real Lorentz transformations. The transformation \(\Lambda_b \) connecting the two sets
\[\Lambda_b \mathbf{e}^\sigma(K_2) = \mathbf{e}^\sigma(K_1) \] \hspace{1cm} (\kappa.14)

will then also be a real Lorentz transformation.

The basis set \(\mathbf{e}^\sigma(K_2) \) is not completely specified by this construction. It is possible to take the first \(n \) vectors (which may or may not include the one of positive length) to be given by

\[\mathbf{e}^\sigma(K_2) = \Lambda \mathbf{e}^\sigma(K_1) \quad \sigma = \{1, 2, \ldots, n\} \] \hspace{1cm} (\kappa.15)

For, since \(K_2 = \Lambda K_1 \), these vectors span the space \(M(K_2) \). They are orthogonal, since the \(\mathbf{e}^\sigma(K_1) \) are and \(\Lambda \in \mathfrak{so}^q \). And they are real, since \(\Lambda \) takes all the real vectors of \(K_1 \) into the real vectors of \(K_2 \), and hence by linearity all real vectors of \(M(K_1) \) into real vectors of \(M(K_2) \). Because \(n(K_1) < 4 \), one can by proper choice of the sense of the vectors \(\mathbf{e}^\sigma(K_1) \) with \(\sigma > n(K_1) \) make \(\Lambda_b \) a real element of \(\mathfrak{so}^q \).

With the basis vectors fixed in this way it is clear that the basis vector of positive length occurs either in the first \(n \) vectors of both sets \(\mathbf{e}^\sigma(K_2) \) and \(\mathbf{e}^\sigma(K_1) \) or in the last \((4 - n) \) vectors of both sets. Also, with this choice the first \(n \)-by-\(n \) submatrix of \((\Lambda^n)^\sigma_\sigma \) is the \(n \)-by-\(n \) unit matrix. Since \(\Lambda \) takes all vectors of \(M(K_1) \) into vectors of \(M(K_2) \) the first \(n \) columns of \(\Lambda^n \) have zeros except in the diagonal positions. The same property holds also for the first \(n \) rows as a consequence of the relations \(\Lambda^{-1} K_2 = K_1 \) and...
which is the characteristic property of Lorentz transformations. That A'' is a Lorentz transformation follows from (K.5) and (K.14); one obtains

$$
A^{-1}_b A' e_{\rho}(K_1) = e_{\sigma}(K_1) A'' A_{\sigma} A_\rho e_{\rho}(K_1),
$$

which shows that $A'' = A^{-1}_b A'$. Since A_b is real, the transformation A'' will be real if A' is.

The conclusion from the above remarks is that for the case $n(K_1) = r(K_1)$ all Lorentz transformations $A' \in \mathcal{L}$ satisfying $K_2 = A' K_1$ with K_1 and $K_2 \in \mathcal{D}$, and with $K_2 = \Lambda K_1$ for some $\Lambda \in \mathcal{L}$, can be represented in the form

$$
A' = A_b A''
$$

with a fixed real $A_b \in \mathcal{L}$ and a $A'' \in \mathcal{L}$ differing from the identity only in the $(4 - n)$-by-$(4 - n)$ subspace corresponding to $K^4(K_1)$. And conversely, for all $A'' \in \mathcal{L}$ satisfying this property, which we call P, the transformation $A' = A_b A''$ is an element of \mathcal{L} satisfying $A' K_1 = K_2$.

This result is used in the following way: The transformations $A'' \in \mathcal{L}$ satisfying P can be parameterized in such a way that the matrix elements $(A')_{\sigma}^{\sigma} \rho$ are analytic functions of these parameters regular in a neighborhood N of the identity, and such that real parameters give there real $A'' \in \mathcal{L}$. Such a parameterization has been given by Jost, for the case with no constraint P. The restriction to a
submatrix is accomplished by setting some of his parameters to zero. Now suppose first that \(\Lambda_b \in L \). Then the hypothesis of the lemma gives

\[
P(K_2) = \Lambda_1' F(K_1) = \Lambda_{1b}^{-1} \Lambda'' F(K_1)
\]

for all \(\Lambda'' \in L \) satisfying \(P \). For then \(K_2 = \Lambda' K_1 \), with \(\Lambda' \in L \), the \(K_1 \) and \(K_2 \) being the fixed points of \(D \) connected by \(K_2 = \Lambda K_1 \), with \(\Lambda \in \mathcal{L} \). But the validity of this equation for real values of the parameters of \(\Lambda'' \), together with regularity in \(N \), implies its validity throughout \(N \). Thus (A19) is true for \(\Lambda'' \in \mathcal{L} \) satisfying \(P \), in a neighborhood of the identity. The restriction \(P \) does not destroy the group property, since products of matrices having this property will also have it, and inverses of matrices having this property must also have it. Using the fact that the subgroups of \(\mathcal{L} \) specified by the constraints \(P \) are connected, or more specifically, that any element of \(\mathcal{L} \) satisfying \(P \) can be expressed as a product of a finite number of elements of \(\mathcal{L} \) satisfying \(P \) from any fixed neighborhood of the origin, one obtains the result that (A19) is true for all \(\Lambda' \in \mathcal{L} \) satisfying \(\Lambda' K_1 = K_2 \). This ensures the validity of (A4), from which the lemma follows, for the case \(n(K_1) = r(K_1) \), provided \(\Lambda_b \) is an element of \(L \).

In the above argument it was supposed that \(\Lambda_b \) was an element of \(L \); then for \(\Lambda'' \in L \) it followed that \(\Lambda' \in L \), and (A2) was immediately applicable. Now \(\Lambda_b \) is by construction a real element of \(\mathcal{L} \) satisfying \(\Lambda_b K_1 = K_2 \). Thus, by virtue of the hypothesis of the lemma, there exists some \(\Lambda' \in L \) such that \(\Lambda' K_1 = K_2 \). For this
the transformation \(A'' = A'_0 A' \) must be a real element of \(\mathcal{L} \).

Thus it is either an element of \(L \) or it can be written in the form

\(A'' = A'_0 A'_1 \), where \(A'_1 \) is an element of \(L \) and \(A'_0 \) is the \(\Xi \cdot \text{CFT} \) transformation, which is a real element of \(\mathcal{L} \). Parameterizing \(A'_1 \in L \) instead of \(A'' \) one can develop the same argument as before and prove, from the validity of (5.14) for the \(A' \in L \) just introduced, its validity for all \(A' \in \mathcal{L} \) satisfying \(A'_1 K_1 = K_2 \). This again validates (5.4), and completes the proof of the lemma, for this case \(n(K_1) = r(K_1) \).

The remaining possibility is \(n(K_1) > r(K_1) < 3 \). For these cases the vectors of \(K_1 \) are linear combinations of \(r(K_1) \) orthogonal vectors of nonzero length and a single vector of zero length orthogonal to these. The \(r(K_1) \) vectors of nonzero length are obtained by first picking \(r(K_1) \) of the vectors of \(K_1 \) such that the Gram determinant of these \(r(K_1) \) vectors is nonvanishing. This is always possible. If any one of these vectors has nonzero length then normalize it to plus or minus one, by multiplying by a real scalar, and let it be the first vector of a real basis. If on the other hand all these vectors have zero length then some real multiple of a combination of the form \((k_1 + k_j) \) must have length plus or minus one, since the (Gram) determinant of the matrix \((g_{ij}) = (k_i \cdot k_j) \) is nonvanishing. Subtracting a real multiple of this normalized vector from the other vectors, in the usual way, one gets a set of \((r(K_1) - 1) \) vectors orthogonal to it. Since the Gram determinant is still nonvanishing
the process can be repeated to give a real orthonormalized (i.e. to plus or minus one) set of \(r(K_1) \) vectors \((e_1(K_1), \ldots, e_{r(K_1)}(K_1)) \). This same construction was used (though not described) in the case \(r(K_1) = n(K_1) \).

Since in the present case \(n(K_1) > r(K_1) \), there must be a vector of \(K_1 \) that is linearly independent of these first \(r(K_1) \) vectors. By subtracting from it multiples of the \(e_{\sigma}(K_1) \) \((\sigma = 1, \ldots, r(K_1)) \) a linearly independent vector \(w \) orthogonal to them can be obtained.

Since the value of the Gram determinant is unaltered by adding linear combinations of certain of the vectors to others the Gram determinant of the first \(r(K_1) \) vectors together with \(w \) must vanish. But then \(w \) must have zero length. The next step is to augment the set \(K_1 \) by adding \((4 - r(K_1)) \) real vectors that together with the first \(r(K_1) \) basis vectors give four linearly independent vectors. Since \(n = 4 \) implies \(r = 4 \) one can complete the construction of a complete set of real orthonormalized basis vectors \(e_{\sigma}(K_1) \), using the procedure just described.

The vector \(w \) is orthogonal to the first \(r(K_1) \) of the \(e_{\sigma}(K_1) \) and hence it is a linear combination of the remaining ones. Since it is real and of zero length it must, for the case \(r(K_1) = 2 \), be of the form

\[
 w = a (e_0(K_1) \pm e_2(K_1)) \quad (4.20)
\]

where \(a \neq 0 \) is real and \(e_0(K_1) \) is the basis vector having positive
length. That the coefficients of the \(e^0(K_1) \) are real for real \(w \) follows from the existence of the real inverse of the real Lorentz transformation generating the \(e^0(K_1) \) from the original basis vectors.

The sign of \(\mp e^2(K_1) \) in (20) depends on the sense of the vector \(e^2(K_1) \). However, only one sign is possible; if different vectors of \(K_1 \) were to give \(w \)'s having different signs in (20), then one would have \(n(K_1) = r(K_1) + 2 = 4 \), which is impossible since \(n(K_1) = 4 \) implies \(r(K_1) = 4 \).

For the case \(r(K_1) = 1 \) the vector \(w \) must be of the form

\[
w = a\left(e^0(K_1) + \sin \theta e^2(K_1) + \cos \theta e^3(K_1)\right),
\]

(21)

with \(a \) and \(\theta \) real and \(a \neq 0 \). Moreover, for this case all vectors of \(K_1 \) must, when the part along \(e^1(K_1) \) is removed, give multiples of this same vector \(w \). To see this, note that the Gram determinant of two vectors \(w \) and \(w' \) of the form (21) is

\[
G(w, w') = a a'\left(1 - \cos(\theta - \theta')\right)^2,
\]

(22)

which is different from zero unless \(w' \) is a multiple of \(w \). Thus if two vectors \(w \) and \(w' \) of the form (21) can be obtained as linear combinations of the vectors of \((K_1) \), then either \(w' \) is a multiple of \(w \) or \(r(K_1) \geq 2 \). The second possibility contradicts the assumption \(r(K_1) = 1 \). The form (21) can be brought to the form (20) by a redefinition of the basis vectors that leaves them real and orthonormalized.
In the case \(r(K_1) = 0 \) all the vectors of \(K_1 \) are of zero length and they are mutually orthogonal. Expanding them in terms of an arbitrary real orthonormalized basis \(e(\sigma(K_1)) \), each one has the form

\[
w = a \, e^0(K_1) + \alpha \, e^1(K_1) + \beta \, e^2(K_1) + \gamma \, e^3(K_1),
\]

where \(a, \alpha, \beta, \gamma \) are real and

\[
\alpha^2 + \beta^2 + \gamma^2 = 1.
\]

If \(w \neq 0 \), then any vector \(w' \) of the same form for which

\[
C(w, w') = 0
\]

is, as before, a multiple of \(w \). Thus for all the cases \(n(K_1) > r(K_1) \) one can construct a real orthonormalized basis \(e(\sigma(K_1)) \) such that the vectors of \(K_1 \) are real linear combinations of a zero-length vector

\[
w = e^0(K_1) + e^3(K_1)
\]

and the vectors

\[
e(\sigma(K_1)) : (\sigma = 1, \cdots, r(K_1) < 3).
\]

A similar basis can be constructed for \(K_2 \). The set \(K_2 \) is related to the set \(K_1 \) by the relation \(K_2 = \Lambda K_1 \), \(\Lambda \in \mathcal{L} \). Since \(\Lambda \) is not necessarily real the vectors \(\Lambda e(\sigma(K_1)) \) need not be real. However, for \(\sigma = 1, \cdots, r(K_1) \) these vectors must be real; the basis
vectors $e^\sigma(K_1)$ can be expressed as real linear combinations of vectors of K_1 and hence the $\Lambda e^\sigma(K_1)$ will be the same linear combination of the corresponding vectors ΛK_1 or ΛK_2, and hence also real. They have a Gram determinant of rank $r(K_2) = r(K_1)$ and are orthogonal and of length minus one and hence they can be chosen to be the corresponding $e^\sigma(K_2)$:

$$e^\sigma(K_2) = \Lambda e^\sigma(K_1) \quad (\sigma = 1, \cdots, r(K_1)) \quad (1.28)$$

The entire set of real vectors $e^\sigma(K_2)$, constructed in the same manner as the $e^\sigma(K_1)$, and using (1.28) for $\sigma = (1, \cdots, r(K_1))$, can be related to the set $e^\sigma(K_1)$ by the equation

$$e^\sigma(K_2) = \Lambda_0 e^\sigma(K_1) \quad (1.29)$$

where Λ_0 is a real Lorentz transformation uniquely defined by this equation, once $e^\sigma(K_1)$ and $e^\sigma(K_2)$ are picked.

All real vectors of zero length in $M(K_1)$, the manifold spanned by the vectors of K_1, are multiples of the single vector

$$v(K_1) = e^0(K_1) + e^3(K_1) \quad (1.30)$$

since any real linear combination of the vectors of (1.27) is orthogonal to $v(K_1)$ and of nonzero length unless zero. Similarly all real zero-length vectors of $M(K_2)$ are multiples of

$$v(K_2) = e^0(K_2) + e^3(K_2) \quad (1.31)$$
Since \(w(K_1) \) is a linear combination of the vectors of \(K_1 \), the vector \(\Lambda \cdot w(K_1) \) is in \(M(K_2) \), the manifold spanned by the vectors of \(K_2 \).

But then \(\Lambda \cdot w(K_1) \) is a real nonzero vector of zero length in \(M(K_2) \).

Hence it is a multiple \(w(K_2) \):

\[
 w(K_2) = c \Lambda \cdot w(K_1) \neq 0 .
\]

(6.32)

The factor \(c \) can be taken to be unity. This follows from the fact that a real Lorentz transformation in the \((0, 3)\) subspace gives simply a scale transformation of a vector of the form \((K, 31)\):

\[
\begin{pmatrix}
\cosh \alpha & \sinh \alpha \\
\sinh \alpha & \cosh \alpha
\end{pmatrix}
\begin{pmatrix}
1 \\
1
\end{pmatrix}
=
\begin{pmatrix}
\cosh \alpha + \sinh \alpha \\
\sinh \alpha + \cosh \alpha
\end{pmatrix} .
\]

(6.33)

This transformation preserves the reality and orthonormality properties of the \(e^\sigma(K_1) \). Thus it can, and will, be assumed that the basis \(e^\sigma(K_2) \) is chosen so that

\[
c = 1 ,
\]

(6.32a)

or equivalently, that

\[
e^0(K_2) + e^3(K_2) = \Lambda e^0(K_1) + \Lambda e^3(K_1) \ldots.
\]

(6.32b)

Using (6.29) one obtains, then,

\[
e^0(K_1) + e^3(K_1) = \Lambda^{-1} \Lambda \left(e^0(K_1) + e^3(K_1) \right).
\]

(6.34)

The general form of the Lorentz transformation \(\Lambda^{-1} \Lambda \in \mathcal{L} \)
satisfying \((\mathcal{K}, 34)\) is readily computed. If the rows and columns are placed in the order \((0, 3, 2, 1)\), the general transformation matrix \((\Lambda^\prime)^\sigma_3\) defined by

\[
\Lambda^\prime \epsilon^\sigma_3(K_1) = e^\sigma_3(K_1)(\Lambda^\prime)^\sigma_3,
\]

and consistent with \((6.34)\), with \(\Lambda^\prime \epsilon \mathcal{L}\) in place of the fixed \(\Lambda_0^{-1} \Lambda\), can be written

\[
\begin{array}{cccc}
1 + a & -a & c & f \\
a & 1 - a & c & f \\
(c \cos \theta + f \sin \theta) & -(c \cos \theta + f \sin \theta) & \cos \theta & \sin \theta \\
(f \cos \theta - c \sin \theta) & -(f \cos \theta - c \sin \theta) & -\sin \theta & \cos \theta \\
\end{array}
\]

\((\mathcal{K}, 36a)\)

where \(c\), \(f\), and \(\theta\) are arbitrary complex numbers and

\[
2a = c^2 + f^2.
\]

\((\mathcal{K}, 36b)\)

The condition \((\mathcal{K}, 34)\) imposes the constraint that the first two columns are the negatives of each other, aside from the unit contributions on the diagonal. This gives four conditions, only three of which are independent of Lorentz transformation condition \((\mathcal{K}, 16)\).

Since the relations \((\mathcal{K}, 28)\) and \((\mathcal{K}, 34)\) are maintained if \(\Lambda\) is replaced by any \(\Lambda'\) satisfying \(\Lambda'K_1 = K_2\), of which one is \(\Lambda_0\), the general form of \((\Lambda^\prime)^\sigma_3 \equiv (\Lambda_0^{-1} \Lambda')^\sigma_3\) defined by \((\mathcal{K}, 35)\), with \(\Lambda'K_1 = K_2\), is given by \((\mathcal{K}, 36)\) with the last \(r(K_1)\) rows and columns having unity in the diagonal position and zeros elsewhere, provided \(\Lambda^\prime \epsilon \mathcal{L}\).
It can be assumed that $\Lambda_b \in \mathcal{L}$. If $r(K_1) < 2$ then there is freedom in the sign of at least one $e^\sigma(K_2)$, and Λ_b can be made a proper transformation. Then Λ_b will be a real element of \mathcal{L}.

For the other case, $r(K_2) = 2$, the basis $e^\sigma(K_2)$ is uniquely specified by the conditions that have been imposed, and one cannot adjust Λ_b. However, in this case the conditions on $(\Lambda'')_{\sigma}$ require it to be unity even without the condition $\Lambda'' \in \mathcal{L}$, for one then has $c = f = \theta = 0$ from the conditions on $e^\sigma(K_1)$ for $\sigma = (1, 2)$, and condition (3.34) then gives the unique solution $\Lambda_b = \Lambda \in \mathcal{L}$.

To complete the argument for the case $n(K_1) > r(K_1)$ one first notes that Λ_b is a real element of \mathcal{L} satisfying $\Lambda_b K_1 = K_2$. Thus there must, by hypothesis, exist some $\Lambda \in L$ satisfying $\Lambda'K_1 = K_2$.

But then

$$F(K_2) = (\Lambda_b \Lambda'')_s F(K_1)$$

is valid when $\Lambda'' \equiv \Lambda_b^{-1}\Lambda'$ corresponds to this $\Lambda' \in L$. Since Λ_b is a real element of \mathcal{L} either Λ'' is an element of L or $\Lambda_0^{-1}\Lambda'' = \Lambda_1''$ is, where Λ_0 is the PT (or OPT) transformation. Then Λ'' for Λ_1'', whichever is in L, can be parameterized as in (3.36), with the appropriate constraints if $r(K_1) > 0$. For a neighborhood of real values of the parameters, subject to these constraints, one still has $\Lambda'K_1 = K_2$ with $\Lambda' \in L$. But the spinor transformation

$$\Lambda_s' = \Lambda_{bs} \Lambda''$$

or

$$\left(\Lambda_0^{-1}\Lambda_{1s}''\right)$$

(3.38)
is an analytic function of these parameters, regular in a neighborhood of the origin of the free variables of \((c, f, \theta)\). Since \((\kappa, 37)\) is true for real values of these variables it is also valid for complex values in this neighborhood. One sees by inspection of \((\kappa, 36)\) that the set of \(\lambda''\) satisfying the conditions corresponding to \(\Lambda'k_1 = k_2\), \(\Lambda' \in \mathcal{L}\), is a connected set of transformations in \(\mathcal{L}\). From this it follows that any element of the set can be expressed as a product of a finite number of elements of the set lying within any neighborhood of the identity, and hence that \((\kappa, 37)\) is valid for all \(\Lambda' \in \mathcal{L}\) satisfying \(\Lambda'k_1 = k_2\). This validates \((\kappa, 4)\) for this last case and completes the proof of Lemma 1.

Lemma 1A. Real points connected by a Lorentz transformation

\(\Lambda \in \mathcal{L}\) are connected by some real \(\Lambda' \in \mathcal{L}\).

Proof: The transformation \(\Lambda_0\) constructed in the course of the proof of Lemma 1 is the required real \(\Lambda \in \mathcal{L}\).

Lemma 2. Let \(K_0\) be a set of \(n\) linearly independent vectors. For any neighborhood \(N\) of the identity in \(\mathcal{L}\) there is a neighborhood \(D(N, K_0)\) of \(K_0\) such that any two points in \(D(N, K_0)\) connected by a Lorentz transformation are connected by a Lorentz transformation \(\Lambda \in N\).

Proof: Suppose the rank of the Gram determinant of the vectors of the set \(K_0 = \{k_1^0\}\) is \(r(K_0) = r\). One can arrange the vectors of \(K_0\)
such that the rank of the Gram determinant of the first r vectors of the set is r. Using the procedure discussed in Lemma 1, but without the reality condition, a set of r orthonormal basis vectors $e_1(K_0), \ldots, e_r(K_0)$ can be constructed as linear combinations of the first r vectors of W. Completing the set K_0 as a set of four linearly independent vectors by the addition of $(4 - n)$ more nonreal vectors one can construct $(4 - n)$ more vectors $e_{n+1}(K_0), \ldots, e_4(K_0)$ that are orthonormal, and orthogonal to the first r of the basis vectors. For the case $r = n$ this gives a complete set of basis vectors $e_0(K_0)$.

For the case $n = r + 1$ the subtraction from K_{r+1}^0 of its components along $e_1(K_0), \ldots, e_r(K_0)$ leaves a vector $w_0 = w \neq 0$, which must be of zero length, since otherwise the rank r would be n. For some $\sigma > n$ one must have $e_\sigma(K_0) \cdot w = 0$, since otherwise w_0 would be a zero-length vector orthogonal to three orthonormal vectors in a four-dimensional (nondegenerate) space and hence zero. Take this vector $e_\sigma(K_0)$ to be $e_4(K_0)$. Then $i\left[e_4(K_0) - w (e_4(K_0) \cdot w)^{-1}w\right]$ is a vector of unit length orthogonal to $e_4(K_0)$.

For the case $r = n - 2$ the subtraction of components along $e_1(K_0), \ldots, e_r(K_0)$ from the vectors k_{r+1}^0, k_{r+2}^0 must leave two linearly independent orthogonal vectors w_{r+1} and w_{r+2} having zero length. Otherwise there would be fewer than n linearly independent vectors, of the rank of the vectors of K_0 would be greater than r.

The vectors $w \equiv w_{r+1}$ and $\bar{w} \equiv w_{r+2}$ cannot both be orthogonal to $e_\sigma(K_0)$ for all $\sigma > n$, for then they would be orthogonal to two
orthonormal vectors. This would provide two linearly independent zero-
length vectors in a two-dimensional space, which is impossible. One
can order the vectors of \(K_0 \) and of the \(e_\sigma(K_0) \), \(\sigma > n \), so that
\(\omega \cdot e_4(K_0) \not\perp 0 \). Then the vector \(i \left[e_4(K_0) - \omega (e_4(K_0) \cdot \omega)^{-1} \right] \) is a
vector of unit length orthogonal to the vectors \(e_1(K_0), \ldots, e_r(K_0) \),
and to \(e_4(K_0) \). Let it be called \(e_{r+1}(K_0) \). The vectors\(e_\sigma(K_0) \),
\(4 > \sigma > n \), can then be reorthonormalized following the standard
procedure so that the \(e_\sigma(K_0) \) for \(\sigma \leq r + 1 \) and \(\sigma > n \) become an
orthonormal set. If the original \(e_\sigma(K_0) \), \(\sigma > n \), are appropriately
chosen the subtractions of the required vectors will not give any
zero-length vectors.

From the relation \(\overline{w} \cdot e_{r+1}(K_0) = i(\overline{w} \cdot e_4(K_0)) \) it follows
that \(\left[\overline{w} \cdot e_4(K_0)(e_4(K_0) \cdot \overline{w}) - e_{r+1}(K_0)(e_{r+1}(K_0) \cdot \overline{w}) \right] \equiv \overline{w} \) is a zero-length vector orthogonal to \(e_4(K_0), e_1(K_0), \ldots, e_{r+1}(K_0) \).
It cannot vanish since \(\overline{w} \) is linearly independent of \(w \) whereas
\(e_4(K_0)(e_4(K_0) \cdot \overline{w}) \) and \(e_{r+1}(e_{r+1}(K_0) \cdot \overline{w}) \) is proportional to \(w \).
For some vector \(e_\sigma(K_0) \), \(\sigma > n \), one must have \(e_\sigma(K_0) \cdot \overline{w} \not\perp 0 \).
Otherwise \(\overline{w} \) would be a zero-length vector orthogonal to the first
\(r + 1 \) basis vectors and the last \(4 - n \) basis vectors and hence
orthogonal to \(4 - n + r + 1 = 3 \) orthonormal basis vectors. Let this
\(e_\sigma(K_0) \) be \(e_3(K_0) \), since it is not \(e_4(K_0) \). Then the vector
\(i \left[e_3(K_0) - \overline{w}(e_3(K_0) \cdot \overline{w})^{-1} \right] \equiv e \) is a vector of unit length
orthogonal to all \(e_\sigma(K_0) \) with \(\sigma \leq r + 1 \) or \(\sigma \geq 3 \), where
these vectors are all orthonormal. This is impossible unless \(r = 0 \),
since a vector orthogonal to four orthonormal vectors is zero.
Thus one can set \(e_2(K_0) = e \). This completes the construction of the orthonormal basis \(e_\sigma(K_0) \) for the case \(n = r + 2 \). The case \(n > r + 2 \) is not possible.

For \(K \) in a sufficiently small neighborhood of \(K_0 \) one can construct a basis \(e_\sigma(K) \) following the procedure just described, except for the following changes: The \((\frac{1}{4} - n)\) vectors that are added to the set \(K \) to make the linearly independent set will, for all \(K \), be taken to be the fixed vectors \(e_\sigma(K_0) \) for \(\sigma > n \), constructed above. For \(K \) in a sufficiently small neighborhood \(D'(K_0) \) of \(K_0 \) the augmented set will continue to have four linearly independent vectors, and one can proceed with the construction; one constructs a set \(e_\sigma(K), \sigma > n \), by subtracting in the standard way the components along \(e_\sigma(K), \sigma \leq r \), etc. and normalizing. For \(K \in D''(K_0) \subset D'(K_0) \) the vectors arising in this procedure will have nonzero length, so that a uniform procedure can be followed for all \(K \in D''(K_0) \). At the next stage the vectors \(e_{r+1}(K) \) [and \(e_{r+2}(K) \)] can be defined in the same way as above except that additional normalization factors \(\eta \) (and \(\bar{\eta} \)) must be supplied. For \(K \) in a sufficiently small neighborhood \(D'''(K_1) \subset D''(K_1) \) the various factors that are required to be nonvanishing will continue to be nonvanishing, since they will depend continuously on the vectors of \(K \).

The only ambiguity in the procedure is in the choice of sign for the normalization factors. This sign can be fixed by requiring the normalization factors to be continuous functions of \(K \). Thus in a sufficiently small neighborhood \(D(K_0) \) of \(K_0 \) a basis \(e_\sigma(K) \) can be defined so that these basis vectors depend continuously on the vector \(K \). Also, for the case...
\(r = n - 1 \) the vector \(v \) obtained by subtracting its components along \(e_\sigma(K) \), \(\sigma = 1, \ldots, r \), will always have the standard form \(w = (e_4(K) + i\tau e_{r+1}(K)) (v \cdot e_4(K)) \). For the case \(r = n - 2 = 0 \) this vector will have the form \(w = (e_4(K) + i\tau e_1(K)) (v \cdot e_4(K)) \), and the other vector, \(\bar{w} \), will have the standard form \(\bar{w} = (e_3(K) + i\tau e_2(K)) (\bar{v} \cdot e_3(K)) \).

For any two vectors \(K_1 \) and \(K_2 \) in \(D(K_0) \) a Lorentz transformation \(\Lambda(K_1, K_2) \in \mathcal{L} \) is defined by the equation

\[
e_\sigma(K_1) = \Lambda(K_1, K_2) e_\sigma(K_2) \tag{8.34}
\]

If \(K_1 \) and \(K_2 \) are connected by a Lorentz transformation then

\(K_1^r = \Lambda(K_1, K_2) K_2^r \), where \(K^r \) is the set consisting of the first \(r \) vectors of \(K \). This is because the vectors \(e_\sigma(K) \) are constructed, following a standardized procedure, as a linear combination of the vectors of \(K^r \), and the coefficients are given as functions only of the inner products of the vectors of \(K^r \). For the case \(r = n \), \(K^r = K^0 \) and this transformation connects \(K_1 \) to \(K_2 \). Since the transformation \(\Lambda(K_1, K_2) \) is a continuous function of \((K_1, K_2) \) the inverse image of any open set in \(N \), containing the identity contains a neighborhood of the point \((K_0, K_0) \). This neighborhood must contain a neighborhood of the form \(K_1 \in D(N, K_0), K_2 \in D(N, K_0) \), with \(D(N, K_0) \subset D(K_0) \). This \(D(N, K_0) \) satisfies the requirements of the lemma for the case \(r = n \).

For the cases \(r < n \) any points \(K_1 \) and \(K_2 \in D(K_0) \) connected by a Lorentz transformation are connected by a Lorentz transformation of the form
\[K_1 = \Lambda^W \Lambda (K_1, K_2) K_2 \equiv \Lambda^W K_2', \]

where \(\Lambda^W K_1' = K_1' \). For the subcase \(r = n - 1 \) the \(K_1 \) and \(K_2' \) differ only in the value of the vector \(\nu \), and both values, \(\nu_1 \) and \(\nu_2' \), lie in the \((e^2(K_1); e_4(K_1)) \) subspace. But two vectors in a subspace connected by a Lorentz transformation are connected by a Lorentz transformation in the subspace. This is a consequence of Lemma 2 of Hall and Wightman.

The Lorentz transformations in a two-dimensional subspace can be expressed as a product of possible inversions about the space or time axis times a transformation

\[a_2' \rightarrow (\exp \frac{1}{2} \Gamma) \rho a_2' = \Lambda(\Gamma) a_2', \]

where \(\Gamma \) is a complex number and the \(a_\pm \) are components along two orthogonal light-cone vectors. If two points are connected by a transformation of the form \(\Lambda(\Gamma) \) then this transformation is unique.

If two points are in a neighborhood of the point \((a_\pm, a_\mp) = (1, 0) \) that contains no point with \(a_4' = 0 \) then if they are connected by any Lorentz transformation they are also connected by a \(\Lambda(\Gamma) \). This is because for the case \(a_\pm(0) \neq 0 \) one can transform--using a \(\Lambda(\Gamma) \)--to a point where \(a_+ = i a_- \). At such a point the reflections are equivalent either to the identity or to the particular \(\Lambda(\Gamma) \) given by \(\exp \Gamma = \exp (-\Gamma) = -1 \). As a consequence of this any sequence of
reflections and proper transformations can be reduced to a single trans-
formation \(\Lambda (\Gamma)\), for this case, by the elimination of reflections in pairs.

On the other hand if \(a_1 = 0\) any product of reflections and \(\Lambda (\Gamma)\)
takes the point to a point with \(a_+ = 0\), which can be reached by
\(\Lambda (\Gamma)\) alone, or to a point with \(a_+ = 0\), which by assumption is not
in the original domain. Thus with the neighborhood taken small enough
so that points \(a_+ = 0\) are not included all points in the neighborhood
connected by a Lorentz transformation are connected by a unique trans-
formation of the form \(\Lambda (\Gamma)\). One can therefore define a unique
\(A_1 (K_1, K_2) = \Lambda (\Gamma) A_1 (K_1, K_2)\) that satisfies

\[K_1 = A_1 (K_1, K_2) K_2 \]

This transformation is a uniquely defined and continuous function of the
\(K_1\) and \(K_2\), provided the \((K_1, K_2)\) is restricted to a sufficiently
small neighborhood of \((K_0, K_0)\).

In case \(K_1\) and \(K_2\) are not connected by a Lorentz transformation
Eq. (6.41) can be modified by the inclusion of a
scale factor \(\lambda\) defined by

\[a_1 \rightarrow \lambda (\exp \pm i \Gamma) a_1 \equiv \lambda A (\Gamma) a_1 \]

The \(A_1\) is still defined to be \(\Lambda (\Gamma) A (K_1, K_2)\). This \(A_1\) is again
continuous in \(K_1\) and \(K_2\).

Since \(A_1 (K_1, K_2)\) is continuous one can proceed just as before,
and \(D(N, K_0)\) can be taken to be any neighborhood of \(K_0\) such that
\(D(N, K_0) \otimes D(N, K_0)\) is in the inverse image of any neighborhood of
the identity contained in N. Such a $D(N, K_0)$ must exist since the inverse image contains a neighborhood of (K_0, K_0). The neighborhood $D(N, K_0)$ is to be restricted also by the condition that the vectors w do not have a zero component along the w^+ axis. This is possible since for K_0 this condition is satisfied (for this case $r = n - 1$).

For the remaining case $n = r + 2 = 2$ similar arguments apply. The vectors of K are specified by the two vectors w and \bar{w}. The vectors v_1 and w_1 both lie in the $(e_1(K_1); e_2(K_1))$ subspace and the vectors \bar{w}_1 and \bar{v}_1 both lie in the $(e_3(K_1); e_1(K_0))$ subspace. Thus the transformation Λ^W will be a product of transformations in two orthogonal subspaces. The problem separates then into two disconnected parts, each of which is treated in the same way as Λ^W for the $r = n - 1$ case.

Lemma 3. Let K_0 be an arbitrary set of vectors. Let the first n vectors of K_0 be linearly independent. For any neighborhood N of the identity in \mathcal{L} there is a neighborhood $D(N, K_0)$ of K_0 such that if any two points K_1 and K_2 in $D(N, K_0)$ are connected by a Lorentz transformation then $K_1^n = \Lambda K_2^n$ with $\Lambda \in N$, where K^n is the set consisting of the first n vectors of K.

Proof: This is a trivial extension of the preceding lemma. The neighborhood $D(N, K_0)$ can be the intersection of any (full) neighborhood of K_0 with $D^n(N, K_0^n)$, the neighborhood in the subspace associated with the K^n specified by Lemma 2.

Definition: A simple point K is a point for which the number of linearly independent vectors, n, is equal to three or four or to r, the rank of gram determinant.

Lemma 4. Let K_0 be any simple point and $D(K_0)$ be any neighborhood of K_0.
Then there is a neighborhood $D_0(K_0)$ of K_0, contained in $D(K_0)$, such that any two points K_1 and K_2 in $D_0(K_0)$ connected by $\Lambda \in \mathcal{L}$ are connected by a continuous path $K(t) = \Lambda(t)K_2$, with $K(0) = K_2$ and $K(1) = K_1$, such that $\Lambda(t) \in \mathcal{L}$ and $K(t) \in D(K_0)$ for $0 \leq t \leq 1$.

Proof: Let n be the number of linearly independent vectors of K_0 and r the rank of their Gram determinant. Arrange the vectors of K_0 so that the first n are linearly independent and the rank of the Gram determinant of the first r is r. Then, according to Lemma 3, there is, for any arbitrary neighborhood N of the identity in \mathcal{L}, a neighborhood $D(N, K_0)$ of K_0, small enough so that if K_1 and K_2 are in $D(N, K_0)$ and are connected by a Lorentz transformation $\Lambda \in \mathcal{L}$, then there is a $\Lambda_1 \in N$ such that $K_1 = \Lambda_1 K_2$, where K_1 and K_2 are the subsets of K_1 and K_2 consisting of their first n vectors. The neighborhood N can be taken to be a domain (i.e., connected), and hence a path $\Lambda(t)$ in N can be constructed with $\Lambda(0) = 1$,

$\Lambda(t) = \Lambda_1$, and $\Lambda(t) \in N$ for $0 \leq t \leq \frac{1}{2}$. The $D_0(K_0) \subset D(N, K_0)$ and N can evidently be chosen small enough so that all points $\Lambda' K_2$ with $\Lambda' \in N$ and $K_2 \in D_0(K_0)$ are in any preassigned neighborhood of K_0, say $D_1(K_0) \subset D(K_0)$.

Consider first the case $r = n$. The neighborhood $D_1(K_0)$ will be taken small enough so that for all $K \in D_1(K_0)$, the rank $r(K)$ of the Gram determinant of the first r vectors of K remains equal to r. Then any $K \in D_1(K_0)$ can be uniquely
decomposed into a sum of two terms, \(K = K^r + V \), where the vectors of \(K^r \) are in the subspace spanned by the first \(r \) vectors of \(K \), and the vectors of \(V \) lie in the subspace orthogonal to those \(r \) vectors. (Note that \(K^r \) is not the same as in Lemma 2.)

The neighborhood \(D_1(K_0) \) can be specified by conditions of the form \(\| K^r - K_0^r \| < \rho_r \) and \(\| V \| < \rho \), with \(\rho \) and \(\rho_r > 0 \), since this is an arbitrarily small open set containing \(K_0 = K_0^r \). One can use here for instance the Euclidean norms; e.g.,

\[
\| V \| = \sum_1^r | v_i |^2 = \sum_{1,\mu} | v_{1,\mu} |^2.
\]

The proof will be completed, for this case, if a continuous \(A(t) \) for \(\frac{1}{2} < t < 1 \), with \(A(\frac{1}{2}) = A_1 \) and \(A(1) K_2 = K_1 \), can be found that acts only in the space orthogonal to the space spanned by the set \(K_1^r \) and keeps \(\| V \| < \rho \).

The Lorentz transformation \(A = A(1) A_1^{-1} \in \mathcal{L} \), which takes the point \(A(\frac{1}{2}) K_2 = A_1 K_2 \) to \(A(1) K_2 = K_1 \), can, as any \(A \in \mathcal{L} \), be expressed in the form

\[
A = R \exp A,
\]

where \(R \) is a unimodular real orthogonal (hence unitary) transformation and \(A \) is Hermitian and imaginary:

\[
A = -A^* = A^+.
\]

(The metric tensor \(G \) has been converted to the unit matrix by the introduction of the appropriate imaginary units.) The required
transformation \(A(t) \) for \(\frac{1}{2} \leq t \leq 1 \) can be taken to be defined by

\[
\Lambda'(t) = \Lambda(t) \Lambda_1^{-1} = \begin{cases}
\exp \left[\frac{1}{4}(t - \frac{1}{2}) \hat{A} \right] & \text{for } \frac{1}{2} \leq t \leq \frac{3}{4} \\
R(t) \exp A & \text{for } \frac{3}{4} \leq t \leq 1
\end{cases}
\]

where \(R(t) \) for \(\frac{3}{4} \leq t \leq 1 \) is any continuous curve from the identity \(E \) to \(R \) in the connected space of real unimodular orthogonal matrices.

The Euclidean norm \(|| V(t) || \) of \(V(t) = \{ \Lambda(t) v_1 \} \) is the square root of

\[
D^2(t) = \sum_1 | \Lambda(t)v_1 |^2 = \sum_1 v_1^* A_1^+(t) A_1(t) v_1
\]

\[
= \left< A_1^+(t) A(t) \right>_v. \tag{X.47}
\]

In the interval \(\frac{3}{4} \leq t \leq 1 \) the \(|| V(t) || \) is constant, because of the unitarity of \(R(t) \):

\[
R_1^+(t) R(t) = R(t) R(t) = E. \tag{X.48}
\]

On the other hand, in the interval \(\frac{1}{2} < t < \frac{3}{4} \) one has, since \(A = A_1^+ \),

\[
\frac{d^2}{dt^2} D^2(t) = \frac{d^2}{dt^2} \left< A_1^+(t) A(t) \right>_v
\]

\[
= 64 \left< A_1^+(t) A_1^+ A_1 A(t) \right>_v \geq 0. \tag{X.49}
\]

Because the second derivative of \(|| V(t) ||^2 \) is non-negative its maximum end value must be assumed at an end point. As the points are in \(D_1(K_0) \)
they satisfy $|V(t)| < \rho$. Thus for all $0 \leq t \leq 1$ this condition is satisfied. Consequently all points $K(t) = \Lambda(t) K_2$ are in $D_1(K_0) \subseteq D(K_0)$. This completes the proof for the case that r, the rank of the Gram determinant of K_0, is equal to n, the number of linearly independent vectors of K_0.

In the case $r < n$ the first part of the transformation, $0 \leq t \leq \frac{1}{2}$, can be performed as before. For $n \geq 3$ this already completes the proof, since the coincidence of three linearly independent vectors ensures the coincidence of all vectors. The special form of $D_1(K_0)$ is not needed for this case.
Definition: A function $F(K)$ will be said to be regular at a point K if and only if the various functions of K corresponding to the various combinations of the spin indices are all regular analytic functions of the components of the four vectors $\{k_i\}$ at the point K.

Lemma 5. Let Λ be a fixed Lorentz transformation. Let $F_\Lambda(K)$ be defined by

$$F_\Lambda(K') = \Lambda_k F(\Lambda^{-1} K') \tag{50}$$

If $F(K)$ is regular at the point $K = \Lambda^{-1} K'$ then $F_\Lambda(K)$ is
regular at the point \(K = K' \).

Proof: This is an immediate consequence of the theorem in several complex variables that an analytic function of an analytic function is analytic. This well-known theorem is easily proved using the Cauchy-Riemann equations.

Corollary A. Let \(F_A(K) \) be defined by \((8.50)\), where \(A \) is fixed. Then \(F_A(K) \) is regular at \(K = K' \) if and only if \(F(A^{-1}K') \) is regular at \(K = A^{-1}K' \).

Proof: The first part of the corollary is just the lemma. To prove the converse apply the lemma to the function

\[
F''(K) \equiv A_s^{-1} F_A(A K)
\]

to show that \(F''(K) \) is regular at \(K \) if \(F_A(A K) \) is regular at \(A K \). But \(F''(K) \) is just \(F(K) \). The substitution \(K = A^{-1}K' \) gives the desired result. The fact that the inverses \(A^{-1} \) and \(A_s^{-1} \) exist is essential to the proof.

Corollary B. The property of being regular at a point does not depend on the choice of coordinate system relative to which the components of the vectors \(x \) are measured, provided components in the two systems are related by a Lorentz transformation.

Proof: The proof is the same as for the lemma.
Definition: A domain in an arcwise connected open set.

Definition: A real domain is an arcwise connected real set open with respect to the set of real points.

Lemma 6. Let $F(K)$ satisfy the invariance condition

$$F(K) = \Lambda_s F(\Lambda^{-1} K),$$

for $\Lambda \in L$, and K and $\Lambda^{-1} K$ in a real domain D containing the point K_0. Suppose $F(K)$ is defined (single valuedly) in a domain $D(K_0)$ containing K_0 and is regular at all points of $D(K_0)$.

Then for each point K in $D(K_0)$ Eq. (53) is satisfied for $\Lambda \in N_r(K)$, where $N_r(K)$ is some neighborhood of the identity in L.

Proof: Let K_1 be a fixed arbitrary point of $D(K_0)$. Since $D(K_0)$ is a domain there exists a continuous curve $K(t), 0 \leq t \leq 1$, from K_0 to K_1, all points of which are in $D(K_0)$. Let the distance between two points be defined as maximum of the absolute values of the differences of the components of the vectors $\{k_i\}$. Then the distance of a point K in $D(K_0)$ to the boundary of $D(K_0)$ will be defined as the maximum (real) number $\Delta(K)$ such that every point whose distance from K is less than $\Delta(K)$ is inside $D(K_0)$. Since $D(K_0)$ is a domain $\Delta(K) > 0$ for all $K \in D(K_0)$. Moreover, $\Delta(K(t)) > a > 0$, for $0 \leq t \leq 1$. For if there were no positive lower bound $a > 0$ of $\Delta(K(t))$ one could find a sequence
\[t_n, \ 0 \leq t_n \leq 1 \] with \[\Delta(K(t_n)) < 2^{-n} \]. These \(t_n \) would have to have an accumulation point \(\bar{t}, \) \(0 \leq t \leq 1 \). But \(\Delta(K(\bar{t})) \equiv b > 0 \). Hence for all \(t \) such that the distance between \(K(t) \) and \(K(\bar{t}) \) is less than \(b/2 \) one would have \(\Delta(K(t)) \geq b/2 \), by the triangle inequality. Since \(K(t) \) is a continuous curve the inverse map of the open set \[||K(t) - K(\bar{t})|| < b/2 \] contains an open interval \(\Delta t \) about \(\bar{t} \). But since \(\Delta(K(t)) > b/2 \) for \(t \in \Delta t \) only a finite number of the \(t_n \) can be in \(\Delta t \). Hence \(\bar{t} \) cannot be an accumulation point. This is a contradiction. Thus there is a positive lower bound \(a \).

Let the maximum value of \(||K(t)|| \) for \(0 \leq t \leq 1 \) be \(A \). Let \(N(K_1) \) be a neighborhood of the identity in \(L \) such that if \(A^{-1} \in N(K_1) \), then \[\| (A^{-1}W - \delta W) \| < a/4A \). Then, for \(A^{-1} \in N(K_1) \), it follows that \[||A^{-1}K(t) - K(t)|| < a, \] and the (continuous) curve \(K_A(t) = A^{-1}K(t) \) remains inside of \(D(K_0) \) for all \(0 \leq t \leq 1 \).

Let \(N_r \) be a neighborhood of the identity in \(L \) such that \(A^{-1}K_0 \in D \) for \(A^{-1} \in N_r \). The existence of such a neighborhood follows immediately from the continuity of \(A^{-1}K_0 \) in \(A \) at the identity. For any fixed \(A^{-1} \in N_r \cap N(K_1) = N_r(K_1) \) there is a real domain \(D(A, K_1) \subset D \), with \(K_0 \in D(A, K_1) \), such that for all \(K \in D(A, K_1) \) the points \(K \) and \(A^{-1}K \) are in \(D \cap D(K_0) \). The existence of such a \(D(A, K_1) \) follows from the fact that \(K_0 \) and \(A^{-1}K_0 \) are in \(D \cap D(K_0) \), in conjunction with the continuity of \(A^{-1}K \) as a function of \(K \). Thus (A.53) is valid for any fixed \(A^{-1} \in N_r \cap N(K_1) \) for all \(K \in D(A, K_1) \). The validity of (A.53), for fixed \(A^{-1} \in N_r \cap N(K_1) \), for all \(K \) in the real domain \(D(A, K_1) \),
together with the analyticity of both sides of the equation, as functions of \(K \), (Lemma 5), implies the validity also at the point \(K_1 \), since one can analytically continue along \(K(t) \) with the argument of the function on the right tracing simultaneously the curve \(K_A(t) \), which remains inside the domain of regularity \(D(K_0) \).

Lemma 6A. Lemma 6 modified by the substitution of \(\mathcal{L} \) for \(L \) and of a (full complex) domain \(D_c \) for the real domain \(D \) is also valid.

Proof: Makes these substitutions throughout the proof of Lemma 6.

Lemma 7. Let \(F(K) \) satisfy the \(\frac{\partial \phi}{\partial K} \) invariance condition (6.53) for \(\lambda \in \mathcal{L} \) and \(K \) and \(\lambda^{-1} K \) in a real domain \(D \) containing the point \(K_0 \).

Suppose \(F(K) \) is defined (single valuedly) in a domain \(D(K_0) \) containing \(K_0 \) and is regular at all points of \(D(K_0) \). Then (6.53) is also valid for all \(K \in D(K_0) \) and \(\lambda \in \mathcal{L} \) such that there is a continuous path \(\lambda(t) \in \mathcal{L}, \ 0 \leq t \leq 1 \), with \(\lambda(0) = E \) and \(\lambda(1) = \lambda \), such that \(K(t) \equiv \lambda^{-1}(t) K \in D(K_0) \) for \(0 \leq t \leq 1 \).

Proof: The assumptions of the lemma are the same as those of Lemma 6. Thus the conclusions of Lemma 6 may be used; (6.53) is valid for every point \(K \in D(K_0) \) for \(\lambda^{-1} \in N_r(K) \), a neighborhood of the
identity in \(L \). Following Hall and Wightman,\(^4\) and Jost,\(^7\) the Lorentz transformations \(\Lambda \) in a neighborhood \(N \) of the identity in \(L \) can be parameterized by a continuous one-to-one mapping \(\Lambda(\lambda_j) \) in such a way that the representations of \(\Lambda^{-1} \) and \(\Lambda \) are regular analytic functions of the \(\lambda_j \) for \(\Lambda^{-1} \in N \); and such that for \(\Lambda^{-1} \in N \cap L \) the \(\lambda_j \) are real; and such that the origin in \(\lambda_j \) maps into the identity in \(\Lambda \). Such a parameterization has been given by Jost.\(^7\)

Considered as a function of the \(\lambda_j \) the right-hand side of (A.53) is an analytic function regular at all points for which \(\Lambda^{-1} \in N \) and \(\Lambda^{-1} K \in D(K_0) \). But for \(\Lambda^{-1} \) in the real neighborhood of the origin \(N_r(K) \) the right-hand side of the equation is, by Lemma 6, equal to the left-hand side, which is independent of \(\lambda_1 \). Thus the right side must be equal to the left for all \(\Lambda = \Lambda(t) \) such that \(\Lambda^{-1}(t') \in N \) and \(\Lambda(t') K \in D(K_0) \) for \(0 \leq t' \leq t \), since one can analytically continue to this point, the right-hand side remaining regular. If for all \(0 \leq t \leq 1 \) the \(\Lambda^{-1}(t) \) are not contained in \(N \) then the continuation can be carried out stepwise by expanding \(\Lambda^{-1}(t) \), in the manner specified above, about a finite sequence of intermediate points, \(t_n \), and by using the group properties. The invariance equation is in this way validated for all points \(K, \Lambda^{-1}K \) connected by a continuous path \(\Lambda(t)K \) that remains always inside the domain of regularity \(D(K_0) \). That only a finite number of \(t_n \) are required follows from the Heine-Borel Covering Theorem.
Lemma 7A. Lemma 7 is also true if the real D and L are replaced by complex D' and L.

Proof: Make these substitutions throughout the proof of Lemma 7.

Lemma 8. Let $F(K)$ be defined (single valuedly) and regular for points in a domain $D(K_0)$ containing K_0. And suppose

$$F(K) = L_s F(A^{-1} K) \quad (K54)$$

for $A \in L$ and A and $A^{-1} K$ in a real domain D containing K_0. Then for every point $K_1 \in D(K_0)$ there is a domain $D_0(K_1)$ containing K_1 such that the equation

$$F(K; D_0(K_1)) = L_s F(A^{-1} K) \quad (K55)$$

with $A^{-1} K \in D_0(K_1)$ defines a (single valued) function $F(K; D_0(K))$ over the points $K \in L D_0(K_1)$. This function is regular throughout its domain of definition and coincides with $F(K)$ in the domain $D_0(K_1) \subset D(K_0)$.

Proof: The assumptions are the same as those of Lemma 7. Thus the invariance equation $(K54)$ holds for all K and $A^{-1} K$ connected by a path $A(t) K$, $0 \leq t \leq 1$, that is everywhere in $D(K_0)$.

Consider an arbitrary point $K_1 \in D(K_0)$. According to Lemma 4, there is a domain $D_0(K_1)$ containing K_1 such that the points of every pair points in $D_0(K_1)$ connected by a Lorentz transformation are connected.
by a continuous path \(A(t) K, \quad 0 \leq t \leq 1 \), that is everywhere in \(D(K_0) \). Lemma 7 then ensures that the invariance equation (\(K54 \)) is valid for all \(K, A^{-1}K \in D_0(K_1) \). This in turn ensures that (\(K55 \)) defines a (single valued) function \(F(K; D_0(K_1)) \). To show this suppose for some \(K \in \tilde{D}_0(K_1) \) the points \(A^{-1}K \) and \(A^{-1}K \) are both in \(D_0(K_1) \). Then one can write

\[
F_1(K; D_0(K_1)) = A_1 F(A^{-1}_1 K) \tag{\(K56 \)}
\]

and

\[
F_2(K; D_0(K_1)) = A_2 F(A^{-1}_2 K) \tag{\(K57 \)}
\]

That these are equal follows from Eq. (\(K54 \)) expressed in the form

\[
F(A^{-1}_1 K) = A_1 A_2 F(A_2^{-1} A_1^{-1} K) \tag{\(K58 \)}
\]

which is true because both arguments are in \(D_0(K_1) \).

Since \(F(K; D_0(K_1)) \) is independent of the particular \(A \) used on the right of (\(K55 \)), so long as \(A^{-1}K \in D_0(K_1) \), the values of \(F(K; D_0(K_1)) \) in some neighborhood of any \(K \in \tilde{D}_0(K_1) \) can be generated from a fixed \(A^{-1} \), as a consequence of the continuity of \(A^{-1}K \) as a function of \(K \), for fixed \(A \). That is, the inverse map of the open set \(D_0(K_1) \) of \(A^{-1}K \)'s is an open set \(D_A(K_1) \) of \(K \)'s. But for fixed \(A \) the regularity of the left-hand side of (\(K55 \)) is ensured by Lemma 5, since \(A^{-1} K \in D_0(K_1) \subset D(K_0) \). Finally, that \(F(K; D_0(K_1)) \) coincides with \(F(K) \) for \(K \in D_0(K_1) \) is true by virtue of (\(K55 \)) with \(A = I \).
Remark: P. Minkowski and D. Williams have shown that Lemma 8 can be proved without the restriction to simple points. This restriction will therefore be henceforth omitted. Lemma 4, on the other hand, is not true for nonsimple points, as shown by a counterexample of Jost generalized by R. Seiler.

Lemma 8A. The lemma remains valid if the real D and L are replaced by a complex D and L.

Some concepts from the theory of functions of several complex variables will now be introduced.

Definition: A regular function element \(e \) is a triple \([K_e; D_e; F_e(K)]\) consisting of a base point \(K_e \), a domain \(D_e \) containing \(K_e \), and an associated function \(F_e(K) \) defined (single valuedly) and regular in \(D_e \).

Definition: Two regular function elements will be called equivalent if and only if they have the same base point and their functions coincide in some neighborhood of this point.

Definition: A germ is a set of regular function elements such that
(1) any two elements of the set are equivalent,
and
(2) any regular function element equivalent to an element of the set is also in the set.

Definition: A germ neighborhood \(N(D_N, F_N(K)) \) is the set of all germs containing a regular functions element \([K; D_N; F_N(K)]\). The domain \(D_N \) and the function \(F_N(K) \) are called the base domain and the characteristic function of the germ neighborhood, respectively.

Definition: The topological (Hausdorff) space with germs as points and
germ neighborhoods as neighborhoods will be called the **germ space**.

Definition: The **domain of regularity** of a function $F(K)$ defined (single valuedly) and regular in a domain D is the set of all germs connected to any germ of $N(D, F(K))$ by a continuous curve in the germ space.

Definition: The unique germ $g [e]$ containing e is called the germ specified by e. (Uniqueness is easily proved)

Definition: The **base point** $K(g)$ of a germ g is the common base point of the $e \in g$.

Definition: $F(g) = F_e(K(g))$, with $e \in g$. ($F(g)$ is independent of the choice of $e \in g$.)

Definition: Let $N = N(D_N, F_N(K))$ be a germ neighborhood. Then, for $K \in D_N$, define $g_N(K) \equiv g[e]$, where $e = [K; D_N; F_N(K)]$.

Remark: $g_N(K)$ is the unique $g \in N$ such that $K(g'(K')) = K'$. Restated, $g_N(K)$ is the unique inverse of $K(g)$, subject to the condition that $g \in N$.

Lemma 9. If the characteristic functions of two germ neighborhoods N and N' coincide in a domain $D \subseteq (D_N \cap D_N')$, then $g_N(K) = g_{N'}(K)$, for $K \in D$.
Proof: The associated function of any element e of $g_N(K)$ coincides with $F_N(K)$ for K in some neighborhood $N(K)$ of $K \in D$. Thus it must coincide with $F_N(K)$ in $N(K) \cap D$ and hence in some neighborhood of K. Thus e is in $g_N(K)$. Conversely every $e \in g_N(K)$ is in $g_N(K)$.

Some terminology associated with Lorentz invariant analytic functions will now be introduced.

Definition: A function will be called \mathcal{L}- or \mathcal{L}-\mathcal{L}-invariant over a set of points S if and only if it satisfies

$$F(K) = \Lambda S F(\Lambda^{-1} K)$$

for any K and Λ such that Λ is in \mathcal{L} (or \mathcal{L}) and both K and $\Lambda^{-1} K$ are in S.

Definition: An orbit is a set of points K all connected to a single point by a Lorentz transformation $\Lambda \in \mathcal{L}$.

Definition: A regular orbit is a set of germs whose base points cover exactly once the points of an orbit, and such that the image in the germ space of any continuous curve in the orbit is a continuous curve in the germ space.

Definition: Let $g(K)$ for $K \in \mathcal{L}, K_0, K(g(K')) = K'$, be the germs of a regular orbit. This regular orbit will be called \mathcal{L}-invariant if and only if the function $F(K) = F(g(K))$ is
Definition: A domain of regularity will be called \(L \)-\(\ominus \)variant if and only if it is a union of \(L \)-\(\ominus \)variant regular orbits.

Theorem 1. A function defined (single valuedly) and regular in a domain containing a point and \(L \)-\(\ominus \)variant over a real domain containing the point has an \(L \)-\(\ominus \)variant domain of regularity.

Proof: Let \(K_0 \) be the point in the real domain and let the function be called \(F(K) \). There is a domain \(D(K_0) \) containing \(K_0 \) on which \(F(K) \) is defined and regular. Thus the set \(e_0 = \{ K_0; D(K_0); F(K) \} \) constitutes a regular function element. Let \(g_0 \) be the germ specified by \(e_0 \). This \(g_0 \) is in \(N = N(D(K_0), F(K)) \). Let \(g_1 \) and \(g_2 \) be any two germs in \(N \). Then there is a continuous curve in the germ space connecting \(g_1 \) and \(g_2 \). In particular, if \(K(t) \) is a continuous curve in \(D(K_0) \) connecting \(K(g_1) \) and \(K(g_2) \), then \(g_N(K(t)) \) will be a continuous curve in the germ space connecting \(g_1 \) and \(g_2 \). For consider any germ neighborhood \(N' = N(D', F'(K)) \) that contains a germ \(g_N(K(t_0)) \), where \(t_0 \) is some fixed value of \(t \), \(0 \leq t \leq 1 \). Let \(D'' \) be a domain in \(D' \cap D(K_0) \) containing \(K(t_0) \). Any germ of \(N' \) with base point in \(D'' \) is identical to the germ of \(N \) with the same base point. For \(D'' \) is a domain and hence
the function $F'(K)$ must be identical with $F(K)$ for $K \in D''$. This is true because $F(K)$ and $F'(K)$ are both regular over the domain D'' and they coincide over some neighborhood of $K(t_0) \in D''$, since $g(K(t_0))$ contains both $[K(t_0); D; F]$ and $[K(t_0); D'; F']$. Since the functions $F'(K)$ and $F(K)$ are identical for $K \in D''$ the germs of N' and N with base points in D'' must be identical, by virtue of Lemma 9.

Because $K(t_0)$ is in the domain D'', and $K(t)$ is a continuous curve, the inverse image of the points $K(t) \in D''$ contains an interval Δt that contains t_0 and is open with respect to the set $0 \leq t \leq 1$.

The germs $g_{N'}(K(t))$ with t in the interval Δt are all in the arbitrary neighborhood N' containing $g_{N'}(K(t_0))$. Thus, this curve $g_{N'}(K(t)) = g(t)$ is continuous. Hence any two germs in N can be connected by a continuous curve. This means that the word "any" in the definition of domain of regularity can be replaced by "every" with no change in the meaning. (That two continuous curves joined at their end points give a continuous curve follows easily.)

Consider now an arbitrary germ g in the domain of regularity of $F(K)$. It is connected to g_0 by a continuous curve $g(t)$ in the germ space. Since $g(t)$ is continuous the inverse image of any germ neighborhood containing a germ $g(t_0)$ contains an interval Δt containing t_0 that is open with respect to the set $0 \leq t \leq 1$. By the Heine-Borel theorem, the closed bounded set $0 \leq t \leq 1$ is covered by a finite number of these intervals, Δ_1, with $i = 1, 2, \ldots, n$. Associated with these intervals are corresponding germ neighborhoods N_i, with $i = 1, 2, \ldots, n$,
such that for $t \in \Delta_1$, $g(t) \in N_1$. And there is then a sequence $\{t_i\}$ so that $g(t_i)$ is in both N_i and N_{i+1}.

The assumptions of the theorem are a paraphrasing of the assumptions of Lemma 8. Thus for each point K_1 of $D(K_0)$ there is a domain $D_0(K_1) \subset D(K_0)$ containing K_1 such that $F(K)$ is \mathcal{L}-invariant in $D_0(K_1)$. The first N_1 can be taken to be $N_1 = N$.

Take $K_1 = K(t_1)$. Then K_1 will also lie in the domain D_2, in which lie the base points of the germs of N_2. The germ neighborhood N_2 is characterized by the requirement that each of its germs has an element having the domain D_2 and the function $F_2(K)$. Also, N_2 contains the germ $g(t_1)$, which is also in $N_1 = N$, and which therefore has the element $\left[K(t_1); D(K_0); F(K) \right]$. But then $F_2(K)$ and $F(K) = F_1(K)$ must coincide with each other in some neighborhood of K_1. But since $F(K)$ is \mathcal{L}-invariant in $D_0(K_1)$ the function $F_2(K)$ is \mathcal{L}-invariant in some domain containing K_1. Thus the conditions for Lemma 8 are satisfied for $F_2(K)$. Hence for any point K_2 in D_2 there is a domain containing K_2 such that $F_2(K)$ is \mathcal{L}-invariant in this domain. Take $K_2 = K(t_2)$. The argument may then be repeated to give \mathcal{L}-invariance in a domain about $K_i = K(t_i)$ for $i = 3$, and by iteration, for $i = n - 1$. In particular, there is a point K_{n-1} of the domain D_n, in which lie the base points of N_n, such that $F_n(K)$ is \mathcal{L}-invariant in some domain containing K_{n-1}. Lemma 8A now shows that there is a domain $D_n(K_g)$ containing K_g, the base point of the germ g, such that there is a function $F_g(K)$ defined (single
valuedly) over $\mathcal{L}D_n(K)$, where it is regular and \mathcal{L}-\ξ-variant, and which coincides with $F_n(K)$ in $D_n \cap \mathcal{L}D_n(K)$, which contains K_g. The germ neighborhood $N_g = N(\mathcal{L}D_n(K), F_g(K))$ contains g, by virtue of Lemma 9, since $F_g(K)$ coincides with $F_n(K)$ in a neighborhood of K_g.

The set of germs $g' \in N_g$ with $K(g') \in \mathcal{L}K_g$ constitute an \mathcal{L}-\ξ-variant regular orbit containing g. Let $g(K(g')) = g'$ for $g' \in N_g$. That any continuous $K(t) \in \mathcal{L}K_g$ has a continuous image $g(K(t))$ follows from the argument given earlier, since $g(K(t)) \in N_g$. (See Lemma 10.) The \mathcal{L}-\ξ-variance of the set $g \in N_g$ with $K(g) \in \mathcal{L}K_g$ follows from the \mathcal{L}-\ξ-variance of $F_g(K)$ over $\mathcal{L}D_n(K) \supset \mathcal{L}K_g$.

Thus each germ g in the domain of regularity of $F(K)$ is on an \mathcal{L}-\ξ-variant regular orbit. Since all points of this orbit are connected to g by a continuous path they are also contained in the domain of regularity of $F(K)$. Thus each germ g in the domain of regularity of $F(K)$ is a member of an \mathcal{L}-\ξ-variant regular orbit each of whose members is also in the domain of regularity of $F(K)$. This is what was to be proved.

Theorem 1A: Theorem 1 is also true if "\mathcal{L}-\ξ-variant" is replaced by "\mathcal{L}-\ξ-variant", and the real domain is replaced by a (complex) domain.

Definition: A germ neighborhood will be said to be \mathcal{L}-\ξ-variant if and only if its base domain is of the form $\mathcal{L}D$ and its characteristic function is \mathcal{L}-\ξ-variant over $\mathcal{L}D$.
Theorem 1': The domain of regularity of a function satisfying the conditions of Theorem 1 is a union of L-invariant germ neighborhoods.

Proof: In the course of proving Theorem 1 it was shown that each g in the domain of regularity of such a function is in an L-invariant germ neighborhood N_g. All the points of this neighborhood are in the domain of regularity since one is, by virtue of the following lemma, which was also proved in the course of proving Theorem 1.

Lemma 10: The image in a germ neighborhood of a continuous curve in its base domain is a continuous curve in the germ space.

The converse of this lemma is:

Lemma 10': The image $K(g(t))$ of a continuous curve $g(t)$ in the germ space is continuous.

Proof: A continuous function of a continuous function is continuous.

But $K(g)$ is continuous, since given any domain D containing $K(g)$ one can take a germ neighborhood N_g containing g specified by a function element whose domain D', which contains $K(g)$, is contained in D. Then for all $g' \in N_g$, $K(g) \in D$.

Lemma 11: Let D be a real domain satisfying the condition of Lemma 1 that points of D connected by a real $\Lambda \in \mathcal{L}$ are connected by a $\Lambda \in \mathcal{L}$. Let there be two converging sequences $K_i \rightarrow K_0$ and
\(\overline{K}_1 \to \overline{K}_0 \) whose limit points \(K_0 \) and \(\overline{K}_0 \) are in \(D \). And suppose \(\overline{K}_1 \in \mathcal{L} K_1 \). Then \(\overline{K}_0 \in \mathcal{L} K_0 \).

Proof: The scalar and pseudoscalar invariants formed from corresponding vectors of \(K_1 \) and \(\overline{K}_1 = \overline{\Lambda}_1 K_1 \) are equal. Thus these points map into the same points in the space of scalar and pseudoscalar invariants. As the mapping from \(K \) to the space of invariants is continuous, the converging sequences \(K_1 \to K_0 \) and \(\overline{K}_1 \to \overline{K}_0 \) map into converging sequences in the space of the invariants. Thus, \(K_0 \) and \(\overline{K}_0 \) have the same scalar and pseudoscalar invariants.

In case \(r \), the rank of the Grass determinant of \(K_0 \) or \(\overline{K}_0 \), is greater than two it follows from a trivial generalization of Lemma 2 of Hall and Wightman that \(K_0 \) and \(\overline{K}_0 \) are connected by a Lorentz transformation \(\Lambda \in \mathcal{L} \); that the transformation is proper in the case \(r = 4 \) follows from the invariance of the pseudoscalar invariants, and for \(r = 3 \) there is sufficient freedom to allow \(\Lambda \) to be made proper. Thus the lemma is proved for the case \(r > 2 \).

Let \(n(K) \) be the number of linearly independent vectors in the set \(K \). And let \(n = \max(n(K_0), n(\overline{K}_0)) \). The above argument works equally well for all the cases \(r = n \). One constructs the orthonormalized basis vectors \(e_\sigma(K_0) \) and \(e_\sigma(\overline{K}_0) \) in the manner specified in Lemma 1 above and obtains \(\overline{K}_0 = \overline{\Lambda}_0 K_0 \), where \(\overline{\Lambda}_0 \) is the real \(\Lambda \in \mathcal{L} \) defined by \(e_\sigma(\overline{K}_0) = \overline{\Lambda}_0 e_\sigma(K_0) \).

Thus, \(\overline{K}_0 \) and \(K_0 \) are connected by an element of \(\mathcal{L} \). This completes the proof for the case \(r = n \).
Because K_0 and \overline{K}_0 are real, the only other cases are $n = r + 1 < 4$. Suppose $n(K_0) = r + 1 < 4$. Then, as in Lemma 1, one can construct a set $e_1(K_0), \ldots, e_r(K_0), e_0(K_0) + e_3(K_0)$, which spans the space of the vectors of K_0. The combination $e_0(K_0) + e_3(K_0)$ is chosen to be equal to some vector ω of zero length formed as a linear combination of vectors of K_0. Such a vector must exist in this case. If $\overline{\omega}$, the same linear combination of the corresponding vectors of \overline{K}_0, is not zero then one can construct a set $e_1(\overline{K}_0), \ldots, e_r(\overline{K}_0), \pm e_0(\overline{K}_0) \pm e_3(\overline{K}_0)$, by means of the same operations as before, but with the corresponding vectors of \overline{K}_0. The two \pm signs are independent and will be specified by the condition that the Λ_0 defined by $e_0(\overline{K}_0) = \Lambda_0 e_0(K_0)$ is in L. For $r(K_0) < 2$ the sign of $e_3(\overline{K}_0)$ is not determined by this condition and it can, and will, be taken positive.

The points \overline{K}_0, \overline{K}_1, and $\overline{\omega}$ can be represented by the transformed quantities $K_0' = \Lambda_0^{-1} \overline{K}_0$, $K_1' = \Lambda_0^{-1} \overline{K}_1$, and $\omega' = \Lambda_0^{-1} \overline{\omega}$. This, in effect, refers the barred points to the same coordinate system, $e_0(K_0)$, used for the unbarred points K_0, K_1, and ω. In particular $\omega' = \pm e_0(K_0) \pm e_3(K_0)$, where the \pm signs are the same as the corresponding ones in $\overline{\omega}$. The vectors ω (or ω') are what is left after removing from some vector of K_0 (or the corresponding vector of K_0') the parts along $e_1(K_0), \ldots, e_r(K_0)$. In this same way one constructs from the sets $K_0 = \{k_{0\alpha}\}$ and $K_0' = \{k_{0\alpha}'\}$ the sets of light-zone vectors $\{\omega_\alpha\} = \{e_\alpha, \omega\}$ and $\{\omega'_\alpha\} = \{e_\alpha', \omega'\}$ by removing the parts along $e_1(K_0), \ldots, e_r(K_0)$.
That the vectors of these sets are collinear follows from the condition $n = r + 1 < 4$. In the special case that $\omega' = \omega$ and $a_\alpha = a'_\alpha$ one has again $\overline{K_0} = \Lambda_0 K_0$ with $\Lambda_0 \in L$. But if $\omega' \neq \omega$ or $a_\alpha \neq a'_\alpha$, for some α, then $\overline{K_0}$ and K_0 are not connected by a $\Lambda \in L$. However these cases cannot occur. This will now be shown by an examination of points in D near K_0 and $\overline{K_0}$. In the real $0 - 3$ plane consider a set of small circles $\{C(\omega_\alpha')\}$ drawn around the points $\{\omega_\alpha\}$, and a set of small circles $\{C(\omega_\alpha')\}$ drawn around the points $\{\omega_\alpha'\}$. A set of points with one in each $C(\omega_\alpha')$ corresponds to a real point near K_0. And a set of points with one in each $C(\omega_\alpha')$ corresponds to a real point near $\overline{K_0}$. By taking the circles sufficiently small these two points near K_0 and $\overline{K_0}$ respectively will be constrained to lie in arbitrarily small real neighborhoods about K_0 and $\overline{K_0}$, and hence in D.

The plan is to show that there is a real point arbitrarily close to K_0 connected to a point arbitrarily close to $\overline{K_0}$ by a real $\Lambda \in L$, but not by a $\Lambda \in L$. The sets of points in the real $0 - 3$, plane connected by $\Lambda \in L$ lie on the various hyperbolas having the light-cone lines as asymptotes. The circles are centered on these light-cone lines, the $C(\omega_\alpha')$ lying on the line with positive slope and the $C(\omega_\alpha')$ lying either on this line or on the other one, depending on the signs in $\omega' = \pm e_0(K_0) \pm e_3(K_0)$.

If $C(\omega_\alpha')$ and $C(\omega_\alpha')$ lie on the positively and negatively sloped light-cone lines, respectively, then there is always a $\Lambda \in L$ connecting some point of $C(\omega_\alpha)$ to some points of $C(\omega_\alpha')$. Moreover,
there are then also points in these circles connected by any still "larger" \(\Lambda \in \mathcal{L} \). The magnitude of the Lorentz transformation is measured by the quotient of the initial over the final (Euclidean) distances of the point from the negatively sloped light-cone line. From these facts it follows that some set of points, one in each of a given set of circles along the positively-sloped light-cone line, can be taken into some set of points, one in each of any given set of corresponding circles along the negatively-sloped light-cone line, by a single Lorentz transformation \(\Lambda \in \mathcal{L} \). Thus for the cases \(\omega' = \pm (e_0(K_0) - e_3(K_0)) \) one can find a \(\Lambda \in \mathcal{L} \) connecting some real point in any real neighborhood of \(K_0 \) to some real point in any neighborhood of \(\overline{K}_0 \), even though the points themselves cannot be so connected.

The same conclusion holds if one uses instead of \(\Lambda \in \mathcal{L} \) the real \(\Lambda \in \mathcal{L} \) obtained by multiplying the \(\Lambda \in \mathcal{L} \) by a reflection through the origin in the \(0 - 3 \) plane. However, as will soon be shown, the points connected in this way cannot be connected by any \(\Lambda \in \mathcal{L} \). Since by taking the neighborhoods of \(K_0 \) and \(\overline{K}_0 \) small enough the points will be in \(D \), one obtains a contradiction with the assumed property of \(D \). Thus this case \(\omega' = \pm (e_0(K_0) - e_3(K_0)) \) can, in fact, not occur.

To see that there would be points in \(D \) connected by real \(\Lambda \in \mathcal{L} \) but not by \(\Lambda \in \mathcal{L} \), consider first the case \(\omega' = -e_0(K_0) + e_3(K_0) \). A time-like point in the circle \(C(\omega) \) will be carried to a time-like point in the corresponding circle \(C(\omega') \) by the real \(\Lambda \in \mathcal{L} \). Since these two points are in the forward and backward light-cones respectively
they cannot be connected by an \(\Lambda \in L \). The other case,
\[\omega' = e_0(K_0') - e_2(K_0') \], occurs only if \(r = 2 \), as previously mentioned. But now a space-like point in \(C(\omega) \) is taken to a space-like point in \(C(\omega') \) by the real \(\Lambda \in L \). However, transformations involving the first two vectors, \(e_1(K_0) \) and \(e_2(K_0) \), are not allowed, because the components of vectors of \(K_0 \) and \(K_0' \) in these subspaces are fixed and equal, and hence these two space-like vectors, which lie in the right and left space cones, respectively, cannot be connected by a \(\Lambda \in L \).

The remaining cases are \(\omega' = \pm \omega \), or zero. If \(\omega' = \pm \omega \) and \(r < 2 \) then the construction used above again allows certain points near \(K_0 \) to be connected to corresponding points near \(K_0' \). One first uses a \(\Lambda \in L \) in the \(0-3 \) plane to take the points of the \(C(\omega_\alpha) \) to points near the negatively sloped light-cone line, and then uses a rotation through \(\pi \) in the \(2-3 \) plane to bring the points to the desired positions in the \(0-3 \) plane. In particular if \(\omega_\alpha \) and \(\omega_\alpha' \) have the same sense, certain time-like vectors near \(\omega_\alpha \) can be taken to time-like vectors near \(\omega_\alpha' \). If \(\omega_\alpha \) and \(\omega_\alpha' \) have opposite senses then space-like vectors can be connected. However, if \(\omega_\alpha \) and \(\omega_\alpha' \) have the same (opposite) sense a space-like (time-like) point near \(\omega_\alpha \) can be carried to a space-like (time-like) point near \(\omega_\alpha' \) by a real \(\Lambda \in L \).

But these points cannot be connected by a \(\Lambda \in L \) unless \(\omega = \omega' \) and \(a_\alpha = a_\alpha' \). In that case \(K_0' = K_0 \) and \(K_0 = K_0' \), as asserted by the lemma.

The next case is \(\omega' = \omega \) and \(r = 2 \). If \(\omega' = \omega \) and \(a_\alpha = a_\alpha' \) for all \(\alpha \) then \(K_0' = K_0 \) and \(K_0 = K_0' \), which proves
the lemma. If \(a_\alpha \neq a'_\alpha \) for some \(\alpha \) then \(K_0 \) and \(K'_0 \) are, in fact, not connected by a \(\Lambda \in L \). In any event it is sufficient to show that \(\omega' = \omega \) and \(r = 2 \) imply \(a_\alpha = a'_\alpha \) for all \(\alpha \).

The conditions \(K_1 \rightarrow K_0 \) and \(K'_1 = \Lambda_1 K_1 \rightarrow K'_0 \) are now involved, for the first time. Let \(e_1(K) \), \(e_2(K) \), and \(\omega(K) \) be the linear combinations of the vectors of \(K \) that become \(e_1(K_0) \), \(e_2(K_0) \), and \(\omega(K_0) \equiv \omega \) when \(K \) becomes \(K_0 \). The \(e_i(K) \) are then generally not orthonormalized, and \(\omega(K) \) is not a null vector. The \(\Lambda_i \) are specified by the conditions \(\Lambda_i \in \mathcal{L} \) and by the quantities \(e_1(K_1) = e_1', \ e_2(K_1) = e_2', \) and \(\omega(K_1) = \omega_1' \); and

\[
e_{1i}' \equiv e_1(K_1') \equiv e_1(\Lambda_1 K_1) = \Lambda_1 e_1(K_1) = \Lambda_1 e_1', \ e_{12}' = \Lambda_1 e_{12}',
\]

and \(\omega_1' = \Lambda_1 \omega_1 \), at least for sufficiently large \(i \), where the \(e_{1i}', e_{12}', \) and \(\omega_1' \) are linearly independent. For these quantities give the effect of \(\Lambda_i \) on three linearly independent vectors. But since \(e_{1i}' \rightarrow e_{1i}, \ e_{12}' \rightarrow e_{12}, \) and \(\omega_1' \rightarrow \omega_1 \); it follows from Lemma 3 that \(\Lambda_i \rightarrow 1 \). For Lemma 3 says that given any neighborhood \(N \) of the identity in \(\mathcal{L} \) one can find a neighborhood \(N' \) of \((e_1(K_0), e_2(K_0), \omega) \) such that any points in \(N' \) connected by a \(\Lambda \in \mathcal{L} \) are connected by a \(\Lambda \in N \). Since for the case of three linearly independent vectors the \(\Lambda \in \mathcal{L} \) is uniquely defined by these points one concluded that since the sets \((e_{1i}, e_{12}, \omega_1) \) and \((e_{1i}', e_{12}', \omega_1') \) both converge to \((e_1(K_0), e_2(K_0), \omega) \), the \(\Lambda_i \in \mathcal{L} \) connecting them must approach the identity. But if \(\Lambda_i \rightarrow 1 \) and \(K_1 \rightarrow K_0 \) then \(\Lambda_i K_1 \rightarrow K_0 \). Thus \(K_0 = \Lambda_b K_0 \), which proves the lemma for this case.
If \(\omega' = -\omega \) a reflection through the origin in the \(0-3 \) plane takes one to the previous case \(\omega' = \omega \). Because of the condition on \(D \) this case is then ruled out, since \(K_0 \) is connected to \(K_0 \) by a real \(\Lambda \in \mathbb{L} \) but not by a \(\Lambda \in \mathbb{L} \).

Next, there is the case \(\omega' = 0 \). If all of the \(\omega_\alpha = 0 \), \([i.e., \text{if } n(K_0) = r]\), then this case is ruled out by the same argument that was used in the case \(\omega' = -e_0(K_0) + e_3(K_0) \); there are points of \(D \) connected by real \(\Lambda \in \mathbb{L} \) but not by \(\Lambda \in \mathbb{L} \). (The possibility \(n(K_0) = n(K_0) = r \) with \(e_1(K_0), \ldots, e_r(K_0) \) all space-like is also ruled out in this way, it might be added.) If \(\omega' = 0 \) but some \(\omega_\alpha' \) is a nonzero vector lying along the negatively-sloped light-cone line one may again use the same argument as was used for the case \(\omega' = -e_0(K_0) + e_3(K_0) \) case; the \(C(\omega') \) is simply centered at the origin instead of at its former position.

For the case \(r < 2, \omega' = 0 \), and \(\omega_\alpha' = a_\alpha' \omega \neq 0 \) for some \(\alpha \), the argument used in the case \(r < 2, \omega' = \pm \omega \), goes through without any change.

Finally there is the same case but with \(r = 2 \). Every \(\omega_\alpha \) and \(\omega_\alpha' \) is either zero or on the positively-sloped light-cone line. For every \(\alpha \) either \(\omega_\alpha \) or \(\omega_\alpha' \) is zero; otherwise it can be made into the case \(\omega' = \pm \omega \). And not every \(\omega_\alpha' \) is zero; otherwise it is the previously considered case \(n(K_0) = r \). This means that the \(\Lambda_\perp \) are such that the following conditions can be satisfied:
Here the double-primed quantities are a particular set of primed quantities, the ω'_1 being an $\omega'(K'_1)$ whose limit is $\omega_1 \neq 0$.

These two conditions on the set Λ_1 are incompatible. The first two equations imply that, for sufficiently large i, the points $\Lambda_1 \omega$ must lie in a narrow cone-like region about the negatively-sloped light-cone line, whereas the second two imply that $\Lambda_1 \omega$ must lie far from the origin in some narrow cone-like region about the positively-sloped light-cone line. The incompatibility of these conditions rules out this last possibility.

The consequences for the $\Lambda_1 \omega$ asserted above follow from a detailed examination of the converging sequences. A general description of the argument should be sufficient. Since $(e_{11}', e_{12}') \rightarrow (e_1(K_0), e_2(K_0))$ one can choose basis vectors e_{01} and e_{31} in the subspace orthogonal to the one spanned by the (e_{11}, e_{12}) in such a way that $(e_{01}', e_{31}') \rightarrow (e_0(K_0), e_3(K_0))$. The (e_{01}, e_{31}), unlike the (e_{11}', e_{12}') are to be parts of an orthonormal basis. A set $(e_{01}' e_{31}')$ similarly related to the (e_{11}', e_{12}'), is constructed. Then Λ_1^r is defined by the conditions $\Lambda_1^r(e_{11}', e_{12}') = \Lambda_1(e_{11}, e_{12})$ and $\Lambda_1^r(e_{01}', e_{31}') = (e_{01}', e_{31}')$.
Since \((e_{11}', e_{12}', e_{31}', e_{01}')\) and \((e_{11}', e_{12}', e_{31}', e_{01}')\) both converge to \((e_1(K_0), e_2(K_0), e_3(K_0), e_0(K_0))\) it follows that \(\Lambda_1^x \to 1\), by Lemma 3.

Since \(\Lambda_1^x(e_{11}', e_{12}') = \Lambda_1(e_{11}', e_{12}')\) it follows that \(\Lambda_1^\omega = (\Lambda_1^x)^{-1} \Lambda_1\) acts only in the \((e_{01}', e_{31}')\) subspace. Also since \((e_{01}', e_{31}', \omega_1') \to (e_0(K_0), e_3(K_0), \omega), with \(\omega = e_0(K_0) + e_3(K_0)\), one has \(\omega_1 \to (e_{01} + e_{31})\).

Since \(\Lambda_1^x \to 1\) and \(\Lambda_1 = \Lambda_1^x \Lambda_1^\omega\) the condition \(\Lambda_1 \omega_1 \to 0\) implies \(\Lambda_1^\omega \omega_1 \to 0\). Since \(\Lambda_1^\omega\) acts only in the \((e_{01}', e_{31}')\) subspace the problem is reduced now to a problem in this two-dimensional space. The two conditions \(\Lambda_1^\omega \omega_1 \to 0\) and \(\omega_1 \to e_{01} + e_{31}\) imply that \(\Lambda_1^\omega(e_{01} + e_{31}) \to 0\); the general Lorentz transformation in this two-dimensional space is represented by

\[
(e_{01} + e_{31}) \to (\exp \Gamma_1)(e_{01} + e_{31})
\]

and

\[
(e_{01} - e_{31}) \to \left[\exp \left(\Gamma_1\right)\right](e_{01} - e_{31})
\]

and hence one cannot transform a point near \((e_{01} + e_{31})\) to a point near the origin unless \(\text{Re } \Gamma_1 << 0\). But in this case the point \((e_{01} + e_{31})\) is also brought close to the origin. Moreover any point is brought closer to the line \(\lambda(e_{01} - e_{31})\). Thus the point \(\omega\) will be brought closer to the line \(\lambda(e_{01} - e_{31})\). As \(i\) increases, the lines \(\lambda(e_{01} - e_{31})\) are constrained to lie in smaller and smaller cones about the line \(\lambda(e_0(K_0) - e_3(K_0))\). Thus for sufficiently large \(i\) the point \(\omega\) must be taken by \(\Lambda_1\) closer to a point near some small cone about \(\lambda(e_0(K_0) - e_3(K_0))\), the cone becoming narrower with increasing \(i\). Thus for sufficiently large \(i\) the
\(\Lambda_i \) are constrained to lie in a cone-like region about the
\(e_0(K_0) - e_3(K_0) \) axis.

If, on the other hand, \(\Lambda_i^{-1} \) takes a point near the \((e_{01}'' + e_{31}'')\) axis to a point near the origin then \(\text{Re} \, \Gamma_i >> 0 \). But then under \(\Lambda_i \) all points are moved further from the line \(\lambda(e_{01}' - e_{31}) \) and closer to the line \(\lambda(e_{01}' + e_{31}) \). Thus \(\Lambda_i \) must for sufficiently large \(i \) be far from the origin in a narrow cone-like region about the line \(\lambda(e_0(E_0) + e_3(K_0)) \). By taking \(i \) large enough these two cones can be made arbitrarily narrow. Hence the allowed regions will not overlap. This gives the contradiction.

Theorem 2. Let \(D \) be a real domain satisfying the conditions of Lemma 1.

Let \(F(K) \) be defined (single valuedly) and \(L \)-variant over \(D \), and be regular at points of \(D \), in the (weak) sense that for any point \(K' \in D \) there is a domain \(D(K') \) containing \(K' \), and a function \(F(K, K') \) that is regular at points \(K \in D(K') \) and which coincides with \(F(K) \) at points \(D_r(K') \), some real domain contained in \(D \cap D(K') \) and containing \(K' \). Let \(C \) be any closed, bounded subset of \(D \). Then there is an \(L \)-variant germ neighborhood whose base domain \(B \) contains \(C \) and whose characteristic function coincides with \(F(K) \) for \(K \in C \).

Remark: Global properties of \(D \) would permit the weak form of analyticity used above to be replaced by a stronger form, and the proof correspondingly simplified. It is aesthetically more neat, and it slightly simplifies the proof of theorem 1, to continue to use only local topological considerations.

Proof: Let \(K_0 \) be any point of \(C \). Let \(C(K_0, \rho) \) be a polysphere of radius \(\rho \) centered at \(K_0 \). Let \(\rho_1 \to 0 \) be a monotonically decreasing set of radii converging to zero. And let the first \(\rho_1 \) be small.
enough so that $C(K_0, \rho_i) \subseteq D(K_0)$, for all i. Suppose K_i is an infinite sequence of points in $\mathcal{L}C$ such that $K_i \in C(K_0, \rho_i)$ and such that $F(K_i, K_0) \approx F'(K_i)$, where $F'(K_i)$ is the (single-valued) L-equivariant extension of $F(K)$ to $L D$, which according to Lemma 1 exists. For each point $K_i \in \mathcal{L}C$ there is a point $\bar{K}_i \in C \cap \mathcal{L}K_i$. Since C is closed and bounded the \bar{K}_i have a limit point $\bar{K}_0 \in C$. And one can find a subsequence $\bar{K}_i \rightarrow \bar{K}_0 \in C$.

The point \bar{K}_0 cannot be on $\mathcal{L}K_0$. If it were there would, according to Lemma 1A, and the property of D, be a $\Lambda \in L$ such that $\bar{K}_0 \in \Lambda K_0$. This Λ would map the real domain $D_r(K_0)$ containing K_0 into some real domain containing $\bar{K}_0 \in C$. The intersection of this domain $\Lambda D_r(K_0)$ with D contains a real domain $D'_r(K_0)$ containing \bar{K}_0. At points of $D'_r(K_0)$ the value of $F(K)$ is given in terms of $F(K)$ at points of $D_r(K_0)$ by the L-equivariance condition. Now according to Lemma 8 there is an L-equivariant germ neighborhood, with a base domain $L D_0(K_0)$, having a characteristic function that coincides with $F(K; K_0)$ for $K \in D_0(K_0) \subseteq D(K_0)$. The value of $F(K)$ at points of $D'_r(K_0)$ must coincide with the value of the characteristic function at these points, since both are given in terms of $F(K)$ at $K \in D_r(K_0)$ by the L-equivariance condition. But then $F'(K)$ must coincide with this characteristic function for all points of $L D'_r(K_0) \cap L D_0(K_0)$. Therefore $F'(K_i) = F(K_i, K_0)$ for all $K_i \in L D'_r(K_0) \cap D_0(K_0)$. This precludes the possibility that a subsequence of the $\bar{K}_i \in C$ converge to \bar{K}_0. Thus the limit point \bar{K}_0 cannot lie on $\mathcal{L}K_0$.
But according to Lemma 11 the point K_0 must lie on $\mathcal{L}K_0$, since $K_1 \Rightarrow K_0$, $\bar{K}_1 \Rightarrow \bar{K}_0$, K_0 and \bar{K}_0 are in D, and $\bar{K}_1 \in \mathcal{L}K_1$. Thus there can be no infinite sequence of K_i with the specified properties. In particular for some $\rho_0 > 0$ there can be no points $K_i \in (C(K_0, \rho_0) \cap \mathcal{L}C)$ with $F'(K_i) \neq F(K_i, K_0)$.

Take some ρ'_0 with $\rho_0 > \rho'_0 > 0$ such that $C(K_0, \rho'_0) \subset D_0(K_0)$. Then the restriction of the \mathcal{L}-invariant germ neighborhood over $\mathcal{L}D_0(K_0)$ to the \mathcal{L}-invariant germ neighborhood over $\mathcal{L}C(K_0, \rho'_0)$ is an \mathcal{L}-invariant germ neighborhood whose characteristic function coincides with $F'(K)$ for $K \in (\mathcal{L}C \cap \mathcal{L}C(K_0, \rho'_0))$.

The point K_0 was an arbitrary point of C. This construction can be carried through for every point $K' \in C$. Let the radius corresponding to ρ'_0, but for the general $K' \in C$, be denoted by $\rho(K')$. One can take $\rho(K') < A$, some positive upper bound.

Let $r_i \rightarrow 0$ be an infinite sequence of positive numbers that decrease monotonically to zero. Let K_0 be an arbitrary point of C and let $C(K_0, r(K_0))$ be a polysphere of radius $r(K_0)$ about the point K_0. Let $r_i(K_0) > 0$ be less than $r(K_0)$ and less than r_i. Let K_i be a new set of points such that for each K_i there is a $K'_i \in C$ such that $K_i \in C(K_0, r_i(K_0)) \cap \mathcal{L}C(K'_i, r_i(K'_i))$ and such that the characteristic functions constructed above for K_0 and K'_i fail to coincide at $K = K'_i$. Either an infinite sequence of K_i can be found or there is some $a(K_0)$ such that for $r_i < a(K_0)$ no such K_i exists.
Suppose there is an infinite sequence of \(K_1 \). For each \(K_1 \) there is a \(K_1 \in \mathbb{L} K_1 \) that is in \(C(K_1', r_1(K'_1)) \). Since the union of the \(C(K', \rho(K')) \), \(K' \in C \), is a bounded set the \(K_1 \) must have an accumulation point \(K_0 \). This point must be in \(C \), since the \(r_1(K'_1) \to 0 \). This point \(K_0 \) is a limit point for a subsequence of the \(K_1 \). The other \(K_1 \) can be omitted. This limit point must, according to Lemma 11, lie on \(\mathbb{L} K_0 \). By virtue of the property of \(D \) there must then be a \(\Lambda \in \mathbb{L} \) such that \(K_0 = \Lambda K_0 \). Thus \(K_0 \) is in \(\mathbb{L} C(K_0, \rho(K_0)) \). But since \(K_1 \to K_0 \) and \(K_1' \to K_1 \), also \(K_1' \to K_0 \), and the \(K_1' \in C \) must be in \(\mathbb{L} C(K_0, \rho(K_0)) \), except for a finite few which can be omitted. Then also the \(C(K_1', r_1(K'_1)) \) will be completely inside \(\mathbb{L} C(K_0, \rho(K_0)) \), except for a finite few which can be omitted. But then the characteristic functions over \(\mathbb{L} C(K_0, \rho(K_0)) \) and \(\mathbb{L} C(K_1', \rho(K'_1)) \) must coincide at the points in \(C(K_1', r_1(K'_1)) \) since they coincide over points of \(C \) contained in this polysphere, whose intersection with \(\mathbb{L} C(K_0, \rho(K_0)) \) is a domain, \(C(K_1', r_1(K'_1)) \). But then the two characteristic functions must coincide at \(K_1 \), and hence also at points of \(\mathbb{L} K_1 \), and hence at \(K_1 \). This contradicts the assumption concerning the \(K_1 \). Thus there cannot be an infinite sequence of \(K_1 \) satisfying those conditions, and hence there is an \(a(K_0) \) such that for \(r_1 < a(K_0) \) the characteristic function over \(\mathbb{L} C(K_0, \rho(K_0)) \) coincides with the characteristic function over \(\mathbb{L} C(K', \rho(K')) \) for all \(K' \in C \), at all points \(K \in C(K_0, r_1(K_0)) \cap \mathbb{L} C(K', r_1(K')) \) and hence at all points \(K \in \mathbb{L} C(K_0, r_1(K_0)) \cap \mathbb{L} C(K', r_1(K')) \), where \(r_1(K) < \min(r_1, \rho(K')) \).

The point \(K_0 \) was an arbitrary point of \(C \). Thus there is for every \(K' \in C \) a characteristic radius \(a(K') > 0 \). If there is no
lower bound \(\bar{a} > 0 \) such that \(a(K') \geq \bar{a} > 0 \) for all \(K' \in C \) then one can find a sequence of \(K_i \in C \) such that \(a(K_i) \to 0 \). These \(K_i \) must have an accumulation point \(\overline{K} \in C \), though \(\overline{a} > 0 \). But such an abrupt jump in \(a(K) \) at \(K = \overline{K} \) is not possible, for if

\[
b(\overline{K}) = \min \{ \overline{a}(\overline{K}), \rho(\overline{K}) \}
\]

then certainly \(\overline{a}(K) \geq \frac{1}{2} \overline{b}(\overline{K}) > 0 \). For \(K \in C(\overline{K}, \frac{1}{2} \overline{b}(\overline{K})) \cap C \), since for these \(K \) all points of \(C(\overline{K}, \frac{1}{2} \overline{b}(\overline{K})) \) are in \(C(\overline{K}, \overline{b}(\overline{K})) \), where the various characteristic functions coincide even with the weaker limit \(\overline{a}(\overline{K}) \) on the \(r_4 \), and hence certainly for

\[
r_4 < \frac{1}{2} \overline{b}(\overline{K}).
\]

Thus there must be an \(\bar{a} > 0 \) such that \(a(K') > \bar{a} \) for all \(K' \in C \). Thus the union of the \(\mathcal{L}_{\overline{a}} \)-invariant germ neighborhoods over the base domains \(\mathcal{L}C(K', b'(K')) \), with \(K' \in C \) and

\[
b'(K') = \min \{ \bar{a}, \rho(K') \},
\]

satisfies the required conditions; its base domain contains all points \(K' \in C \), it has an \(\mathcal{L}_{\rho} \)-invariant characteristic function defined (single valuedly) over its base domain \(B = \mathcal{L}B \), and this characteristic function coincides with \(F'(K) \) for \(K \in B \cap \mathcal{L}C \).

Definition: An enlargement of a germ neighborhood \(N \) is a germ neighborhood containing \(N \) but not contained in \(N \).

Definition: A germ neighborhood \(N \) will be called maximal if and only if no enlargement of \(N \) exists.

Lemma 12. Every germ neighborhood is contained in a maximal germ neighborhood.
Proof: Let \(N \) be an arbitrary germ neighborhood. A maximal germ neighborhood \(N_M \supset N \) can be constructed as follows: Let \(\{ K_i \} \) be a denumerable sequence of points that is everywhere dense in the space in which lie the base points of the germs of the germ space. Let the \(K_i \) be enumerated. If a point \(K_i \) is reached that is in the base domain of an enlargement of \(N \) then replace \(N \) by this enlargement (probably one of many possible enlargements) and proceed iteratively with the enumeration of the points of the sequence \(\{ K_i \} \). Because the union of a (finite or infinite) set of open sets is an open set the result of this denumerable sequence of operations is a germ neighborhood \(N_a \), since the base domain \(D_a \) is certainly connected and the function \(F_a(K) \) is defined (single valuedly) over \(D_a \) and is regular at any point in \(D_a \).

Let \(D_a \) be the set of accumulation points of the points \(K_i \in D_a \). No enlargement of \(N_a \) can contain a point whose base point \(K \) is not in \(D_a \). For any such point \(K \) must be an accumulation point of points \(K_i \) not in \(D_a \). Hence any enlargement containing a point with such a base point \(K \) would also contain a point with base point \(K_i \) not in \(D_a \). This is impossible; for if there were such a \(K_i \) then when this \(K_i \) was reached in the enumeration it could have been included in the base domain of an enlargement of the then current germ neighborhood, since enlargements of enlargements are themselves also enlargements. But the construction was such that
if any K_i can be included in the base domain of any enlargement of the then-current germ neighborhood then it is in fact included in the enlargement associated with this K_i. Thus this K_i would be in D_a. Thus no K_i not in D_a, and no accumulation point \bar{K} of these K_i, can be the base point of a point in any enlargement of N_a; the base points of all points of every enlargement of N_a are in $\overline{D_a}$.

If a point with base point $\bar{K} \in \overline{D_a}$ is in an enlargement of N_a then the value of the characteristic function of the enlargement at $K = \bar{K}$ is unique; it is the same for any enlargement. For in order that a point with base point $\bar{K} \in \overline{D_a}$ be in an enlargement of N_a the corresponding characteristic function must be defined (single valuedly) and regular in a neighborhood $N(\bar{K})$ of \bar{K}, and it must coincide with $F_a(K)$ for $K \in D_a \cap N(\bar{K})$. Thus it must coincide with $F_a(K)$ at the points $K_i \in D_a \cap N(\bar{K})$, which are dense in a neighborhood of \bar{K}. But the value of $F_a(K)$ at these points then determines the function at $K = \bar{K}$ by virtue of the continuity requirement implied by the regularity at \bar{K} of the characteristic function of the enlargement.

Let D_M be the subset of $\overline{D_a}$ consisting of all the points of $D_a \subset \overline{D_a}$ and of all the base points of the points of any enlargement of N_a. Since the D_M is a union of domains each of which has a point in common with D_a the set D_M is a domain. Since the value of the characteristic function of any enlargement of N_a is uniquely defined for every $K \in D_M$, one may denote it by $F_M(K)$. This function is regular at every $K \in D_M$ because it is defined for $K \in D_M$ by an enlargement of N_a. Thus one may define a germ neighborhood
This germ neighborhood contains N_a and hence N. Moreover, this germ neighborhood N_M is maximal. For any enlargement of N_M would also be an enlargement of N_a. But no enlargement of N_a exists that is also an enlargement of N_M because N_M contains every point of every enlargement of N_a.

Lemma 12A. Every \mathcal{L}-invariant germ neighborhood is contained in a maximal germ neighborhood that is \mathcal{L}-invariant.

Proof. Let $N = N(D, F)$ be an \mathcal{L}-invariant germ neighborhood. If an enlargement of N exists then an \mathcal{L}-invariant enlargement also exists. To prove this, note first that any enlargement of N is a domain containing a point of N and some point not in N. By connecting these with a continuous curve one can, by a simple construction, find in the enlargement, a point P_0 not in N such that any neighborhood of P_0 contains a point of N. Let the base point of P_0 be K_0. According to the Corollary to Lemma 8 there is a domain $D_0(K_0)$ containing K_0 such that the function defined in $D_0(K_0)$ as the characteristic function of the enlargement of N can be extended to a function $F_1(K)$ that is \mathcal{L}-invariant throughout $\mathcal{L}D_0(K_0)$ and regular there. It must coincide with the characteristic function of the original \mathcal{L}-invariant germ neighborhood, wherever both are defined, since both functions are \mathcal{L}-invariant over their domains of definition and they coincide in $D_0(K_0) \cap D$, which contains a point of every orbit common to both domains. Thus the union of the original
\[L \] - \(\mathcal{E} \)-variant given neighborhood \(N \) with the \(L \) - \(\mathcal{E} \)-variant germ neighborhood. \(N' = N(D_a, F') \) constitutes an enlargement of the original one, and this enlargement is \(L \) - \(\mathcal{E} \)-variant. Thus if an \(L \) - \(\mathcal{E} \)-variant germ neighborhood has an enlargement it has an \(L \) - \(\mathcal{E} \)-variant enlargement.

By virtue of this, one may proceed just as in Lemma 12, using however only \(L \) - \(\mathcal{E} \)-variant enlargements. After running through the denumerable set \(K_i \) one has an \(L \) - \(\mathcal{E} \)-variant germ neighborhood \(N_a = N(D_a', F_a') \).

Now, no point not in \(D_a \) can be the base point of an \(L \) - \(\mathcal{E} \)-variant enlargement. The set \(D_M \subset D_a \) is defined by using only \(L \) - \(\mathcal{E} \)-variant enlargements. Thus \(N_M = N(D_M, F_M) \) is a germ domain that is maximal with respect to \(L \) - \(\mathcal{E} \)-variant enlargements. But then according to the first paragraph \(N_M \) is also maximal. Thus it is a maximal germ neighborhood that is \(L \) - \(\mathcal{E} \)-variant.

Definition: The base domain of a maximal germ neighborhood will be called a sheet.

Theorems 1A and 2, in conjunction with Lemma 12A, are summarized in Theorem 3. Let \(F(K) \) be a function defined (single-valuedly) over a real domain \(D \). For every \(A \) in the real proper orthochronous homogeneous Lorentz group \(L \) and every \(K \) such that \(K \) and \(A K \) are in \(D \) let \(F(K) \) satisfy the Lorentz \(\mathcal{E} \)-variance condition

\[F(K) = A^{-1} F(A K). \]
If $F(K)$ is regular at some point $K \in D$ then the analytic continuation of $F(K)$ from the neighborhood of this point is defined over a manifold covered by a set of sheets each of which maps onto itself under any element of the proper homogeneous complex Lorentz group \mathcal{L}. And for any sheet the associated function defined (single valuedly) and regular at all points of this sheet satisfies the Lorentz invariance condition for all $\Lambda \in \mathcal{L}$.

Moreover, if every point of D is a regular point of $F(K)$ and D has the property, specified in Lemma 1, that any points of D connected by a real $\Lambda \in \mathcal{L}$ are connected by a $\Lambda \in \mathcal{L}$, then any closed bounded subset C of D can be completely contained in a single \mathcal{L}-invariant sheet, with $F(K)$ coinciding with the function defined over that sheet for $K \in C$.

Definition: The **restricted mass shell** is the subset W in the space of points $K = \{k_1^\mu, \ldots, k_n^\mu\}$ that satisfy the n mass constraints

\[
\sum_{\mu} (k_1^\mu)^2 = m_1^2 \quad (i = 1, \ldots, n),
\]

the four conservation laws

\[
\sum_{\mu} k_1^\mu = 0, \quad (\mu = 0, 1, 2, 3),
\]

and the condition that the set $K \in W$ have more than one linearly independent vector. The m_1 are fixed positive numbers and $n > 4$.
Lemma 13. The restricted mass shell \(W \) is a \((3n - 4) \) complex-dimensional manifold.

Proof: Consider any point \(\overline{K} \in W \). Let the \(K_i \) be ordered so that the last two are linearly independent. Let \(\Lambda(\overline{K}) \) be a Lorentz transformation that is such that the energy components of the vectors of \(\overline{K}'(\overline{K}) = \Lambda(\overline{K}) \overline{K} \) are all nonzero. Such a \(\Lambda(\overline{K}) \) surely exists since the \(\overline{K} \) are a finite set of nonzero vectors. Let the components 1, 2, 3, be numbered so that \(\overline{K}_{n-1}^0, \overline{K}_n^0 \neq \overline{K}_{n-1}^3, \overline{K}_n^3 \). This is possible because \(\overline{K}_{n-1} \) and \(\overline{K}_n \) are linearly independent. By a small change in \(\Lambda(\overline{K}) \) that does not upset the above inequalities, one can also ensure that \((\overline{K}_{n-1}^0 + \overline{K}_n^0)^2 \neq (\overline{K}_{n-1}^1 + \overline{K}_n^1)^2 \), since \(\overline{K}_{n-1} + \overline{K}_n \neq 0 \).

With \(\Lambda(\overline{K}) \) fixed in this way the set of vectors \(\overline{K}'(\overline{K}, \overline{K}) \) is defined by \(\overline{K}'(\overline{K}, \overline{K}) = \Lambda(\overline{K}) \overline{K} \). The set \(Z(\overline{K}, \overline{K}) \) is then defined as the set of \((3n - 4) \) complex variables consisting of the three space components of the first \((n - 2) \) vectors of \(\overline{K}'(\overline{K}, \overline{K}) \) and the first two components of the \((n - 1) \)st vector of \(\overline{K}'(\overline{K}, \overline{K}) \). The set of functions \(Z(\overline{K}, \overline{K}) \) are analytic functions (in fact linear functions) of the vectors of \(\overline{K} \). They define a set of mappings of \(\overline{K} \) space onto \(Z \) space.

By virtue of the conditions that have been imposed on the vectors of \(\overline{K}' \) the inverse transformation, \(\overline{K}'(\overline{K}, Z) \), that maps \(Z \) back into \(\overline{K}' \) \(\in W \) is uniquely defined for \(Z \in U(\overline{K}) \), a domain containing \(Z = Z(\overline{K}, \overline{K}) \), and is an analytic function of \(Z \) there.
This follows from simple algebra or from the implicit function theorem, the conditions of which are easily verified.

The set W can be made into a topological (Hausdorff) space by defining the open sets in W to be the restriction of open sets in K space to W. The topology in K space and Z space will be taken as the usual one induced by the Euclidian norm. With the topology of W defined in this way the continuity of the functions $K(K; Z)$ and $Z(K; K)$, considered as mappings between K space and Z space, which follows from their analyticity, implies that these mappings are continuous mappings between $U(K)$ and its image $U_W(K) \subset W$. For if a neighborhood of a point $Z \in U(K)$ maps into a K-space neighborhood of its image $K = K(K; Z)$ then it must also map into a W-space neighborhood of $K = K(K; Z)$, since it maps into W. And conversely, if a neighborhood of $K \in W$ in K-space maps into a neighborhood in Z-space, then its restriction to W also maps into this neighborhood. Thus the transformation $K(K; Z)$ defines a one-to-one continuous mapping of neighborhoods of $\bar{K} \in W$ contained in $U_W(K)$ onto neighborhoods of \bar{Z} contained in $U(K)$. Since the inverse is also continuous the transformation is, by definition, a homeomorphism and the open sets in $U_W(K)$ and $U(K)$ are homeomorphic images of each other. Since \bar{K} was an arbitrary point of W the set W has an open covering by sets homeomorphic with open sets of $C^{(3n-4)}$, and hence W is a $(3n-4)$ (complex)-dimensional manifold.
Definition: The functions $K(K; z)$ and $Z(K; K)$ will denote the functions introduced in the proof of Lemma 1. The function $Z(K; K)$ is defined for $K \in W$ and for all K, and for each $K \in W$ it is an analytic function of K. The function $K(K; z)$ is defined for $K \in W$ and $z \in U(K)$, a domain containing $Z = Z(K, K)$, and for each $K \in W$ it is an analytic function of Z for $z \in U(K)$. The function $K(K; z)$ maps points $z \in U(K)$ into $U_w(K) \subset W$. Its reciprocal is $Z(K, K)$ in the sense that $Z(K; K(K; z)) = z'$ for $z' \in U(K)$ and $K(K; Z(K; K')) = K'$ for $K', z' \in U_w(K) \subset W$.

Remark: The set $U_w(K)$, as a homeomorphic image of the domain $U(K)$, is a domain.

Definition: The mapping $\phi(K)$ is a mapping of $K \in U_w(K)$ to $Z \in U(K)$ defined by $\phi(K) K = Z(K; K)$ for $K \in W$ and $K \in U_w(K)$.

Definition: The restricted mass shell W together with the complex structure induced by the collection $\{ U_w(K), \phi(K) \}$, $K \in W$, is called the complex analytic manifold \tilde{W} of W.

Definition A: A function $M(K)$ defined on a restricted mass shell W will be called regular at $K \in W$ if and only if $M(\phi^{-1}(K) Z) = (M \circ \phi^{-1}(K)) Z$ is a regular function of Z at $Z = \phi(K) K$.

Definition A': A function $M(K)$ defined on a restricted mass shell W will be called regular at $K \in W$ if and only if $M \circ \phi^{-1}$ is regular.
at \(Z = \phi \overline{K} \) for every one-to-one mapping \(\phi \), such that \(\phi^{-1} Z = K(Z) \in W \) is an analytic function at \(Z = \phi \overline{K} \).

Lemma 14. Definitions A and A' are equivalent.

Proof: If \(M(K) \) is regular (A') at \(K \in W \) it is certainly regular (A) at \(K \in W \) since \(\phi(K) \) is a particular \(\phi \). If \(M(K) \) is regular (A) at \(K \in W \) and \(\phi \) is a one-to-one mapping such that \(\phi^{-1} Z = K(Z) \in W \) is an analytic function at \(Z = \phi \overline{K} \), then \((M \circ \phi^{-1})Z = M(K(Z)) = M(\phi^{-1}(\overline{K}) Z(\overline{K}; K(Z))) \). But \(M \circ \phi^{-1}(\overline{K}) \) is an analytic function of its argument \(Z \) for \(Z = Z(\overline{K}; \overline{K}) \), and \(Z(\overline{K}; \overline{K}) \) is an analytic function of \(K \) for \(K = \overline{K} \), and \(K(Z) \) is an analytic function at \(Z = \phi \overline{K} \). Thus \(M \circ \phi^{-1} \) is an analytic function of \(Z \) at \(\phi \overline{K} \), since it is an analytic function of an analytic function of an analytic function.

Theorem 4. The preceding theorems and lemmas remain valid if \(F(K) \) is replaced by \(M(K) \) defined on a restricted mass shell \(W \), and all domains are taken to be domains relative to \(W \).

Proof: The mass shell contains all points having the same scalar invariants as any point on it, and in particular all points on any orbit intersecting it. This is the only global property of the K space that was used in any of the above proofs. For local properties one replaces the topology of K space by the topology of W space. Some of the proofs become vastly simplified because for real \(K \in W \) one has \(n = r \).
Remark 1. Any real domain of W satisfies the condition of Lemma 1; two real points of W connected by a real $\Lambda \in \mathcal{L}$ that is not a $\Lambda \in L$ must have opposite energy components and hence they cannot both be in a real domain in W. The Λ functions have been shown to satisfy the L-invariance condition at regular physical points. Thus if D_r is a real (physical) domain of regularity of M_c (defined over W) then, by Theorem 3, any closed bounded set $C \subset D_r$ is contained in a sheet S that maps onto itself under any $\Lambda \in \mathcal{L}$, and the function M_c has a single-valued analytic continuation throughout S, and is L-invariant there.

Remark 2. One consequence of the above remark is a slight weakening of the assumptions needed for the S-matrix proof of CPT invariance. In the original proof the postulate of minimal analyticity required the existence of a physical sheet that was bounded by cuts defined by equations involving only scalar invariants. This condition on the boundary was imposed specifically to eliminate problems associated with a possible multivaluedness in the continuation to the CPT image point. However, a consequence of Theorem 3 drawn in the above remark is the existence of the single-valued L-invariant continuation to the CPT-image point. The proof of CPT invariance in this way is similar to the field-theoretic proof of Jost; that proof rested heavily on Lemma 1 of Hall and Wightman, which is rather analogous to Theorem 3.

Remark 3. In the construction of the decomposition of the analytic M_c functions into analytic functions of scalar invariants time standard
(polynomial) invariants, the L^{-}-invariance of the domains of regularity is a basic ingredient. A fundamental result that can be drawn from this paper (Theorems 1 and 3, and the L^{-}-invariance at physical points established in previous sections) is that any domain of regularity of M_{p} containing a physical point is L^{-}-invariant. Since M_{p} is defined by analytic continuation from physical points, any domain of regularity of M_{p} is L^{-}-invariant.
ACKNOWLEDGMENT

I am greatly indebted to Professor R. Jost for informing me of an earlier counterexample to my original version of Lemma 4, which was not restricted to simple points, and to Dr. David Williams and Mr. P. Minkowski, and Mr. R. Seiler for further communications on this point.

This work was performed under the auspices of the U. S. Atomic Energy Commission.
APPENDIX A. GENERALIZED SPINOR CALCULUS

The Lorentz transformations $\Lambda^\mu_\nu(A, B)$ are defined by the equation

$$A \sigma_{\nu} B = \sigma_{\mu} \Lambda^\mu_\nu(A, B), \quad (A.1)$$

where $\sigma_{\mu} = (\sigma_0, \sigma)$ are the usual Pauli matrices, and A and B are unimodular two-by-two matrices. The unimodular two-by-two matrices form a group. The canonical irreducible representations of this group of dimension $(2a + 1)$ are generated by the recursion relation

$$A^{(a)}_{\alpha} \beta' = C_{bc}(a; \beta, \gamma) C_{bc}(a, \alpha'; \beta', \gamma') A^{(b)}_{\beta} \sigma A^{(c)}_{\gamma}, \quad (A.2)$$

where the coefficients C are the usual Clebsch-Gordan coefficients. The $A^{(1/2)}$ is identified with A.

Generalized spinor indices of order $(2a + 1)$ are introduced. They can be either upper or lower and either dotted or undotted. The distinction between indices of these various types is with respect to the effect upon them of the operator Λ_s. The action of this operator is defined as follows:

$$\Lambda^a_{\alpha} \xi_{\alpha'} = \Lambda^{(a)}_{\alpha} \xi_{\alpha'},$$

$$\Lambda^a_{\alpha} \xi_{\alpha'} = \xi_{\alpha'} B^{(a)}_{\alpha} \xi_{\alpha'},$$

$$\Lambda^a_{\alpha} \xi_{\alpha'} = \xi_{\alpha'} (A^{(a)})^{-1} \xi_{\alpha'},$$

$$\Lambda^a_{\alpha} \xi_{\alpha'} = (B^{(a)})^{-1} \xi_{\alpha'} \xi_{\alpha'}. \quad (A.3)$$
Here $B^{(a)}$ is defined by the analog of (A.2) with B's in place of A's. If a function has several spinor indices then A_s acts individually on each in the manner given by (A.3). For real Lorentz transformations $B = \mathbb{1}$.

Let $f(V)$ be a function of a set $V = \{v_1, \ldots, v_n\}$ of four-vectors. Let $\Lambda V = \{\Lambda v_1, \ldots, \Lambda v_n\}$ where

$$(\Lambda v) \mu = \Lambda^\mu_v (A, B) v^\nu .$$

If $f(V)$ carries spinor indices and satisfies the equation

$$A_s f(V) = f(\Lambda V) .$$

(A.3)

Then f will be called an invariant spinor function. The Pauli matrices σ_{μ} will be considered to have matrix elements $\sigma_{\mu 0} = 1$. Thus the function

$$g(v) \equiv \sigma \cdot v$$

is, by virtue of the conventions adopted, an invariant spinor function.
FOOTNOTES AND REFERENCES

* This work done under the auspices of the U. S. Atomic Energy Commission.

1. H. P. Stapp in Seminar on High-Energy Physics and Elementary
 Particles (Trieste, 1965). Published by the International Atomic
 Energy Agency, Vienna, Austria.

2. I use the notation of reference 3. See also Appendix A and A. O.

 31, No. 5 (1957).

5. A detailed discussion is given below for the case of \(n(K_1) > r(K_1) \).

6. This has also been proved by E. Wigner, Ann. of Math. 40, 149 (1939).

7. R. Jost, Theoretical Physics in the Twentieth Century, Edited by
 M. Fierz and V. F. Weisskopf (Interscience Publishers, Inc., New York,
 1960).

9. P. Minkowski, D. Williams, and R. Seiler, Proceedings of the
 Symposium on the Lorentz Group, Seventh Annual Summer Institute
 for Theoretical Physics, University of Colorado, Boulder, Colorado,
 June 1964.

10. H. J. Bremmermann, Complex Analysis in Several Variables, Mathematics
 Department, University of California, Berkeley, California (unpublished
 notes).

11. S. Bochner and W. Martin, Several Complex Variables (Princeton

13. For a proof that the continuation generated by a complex Lorentz transformation takes one to the point that corresponds to the CPT inverse physical process see reference 1. In reference 2 this fact was a direct consequence of the stronger assumptions made there.

This report was prepared as an account of Government sponsored work. Neither the United States, nor the Commission, nor any person acting on behalf of the Commission:

A. Makes any warranty or representation, expressed or implied, with respect to the accuracy, completeness, or usefulness of the information contained in this report, or that the use of any information, apparatus, method, or process disclosed in this report may not infringe privately owned rights; or

B. Assumes any liabilities with respect to the use of, or for damages resulting from the use of any information, apparatus, method, or process disclosed in this report.

As used in the above, "person acting on behalf of the Commission" includes any employee or contractor of the Commission, or employee of such contractor, to the extent that such employee or contractor of the Commission, or employee of such contractor prepares, disseminates, or provides access to, any information pursuant to his employment or contract with the Commission, or his employment with such contractor.