Title
REMARKS ON THE EXISTENCE OF TWO $u(166\alpha)$ RESONANCES

Permalink
https://escholarship.org/uc/item/4m79d825

Authors
Estes, Robert D.
Duboc, Jean
Eberhard, Philippe H.
et al.

Publication Date
1970-05-01
REMARKS ON THE EXISTENCE OF TWO \(\Sigma(1660) \) RESONANCES

Robert D. Estes, Jean Duboc, Philippe H. Eberhard, Jerome H. Friedman, Morris Pripstein, and Ronald R. Ross

May 1970

AEC Contract No. W-7405-eng-48
DISCLAIMER

This document was prepared as an account of work sponsored by the United States Government. While this document is believed to contain correct information, neither the United States Government nor any agency thereof, nor the Regents of the University of California, nor any of their employees, makes any warranty, express or implied, or assumes any legal responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by its trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof, or the Regents of the University of California. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof or the Regents of the University of California.
REMARKS ON THE EXISTENCE OF TWO Σ(1660) RESONANCES

Robert D. Estes, Jean Duboc†, Philippe H. Eberhard, Jerome H. Friedman, Morris Pripstein, and Ronald R. Ross
Lawrence Radiation Laboratory, University of California, Berkeley, California

We are in the process of analyzing the following reactions:

\[\Sigma^+ p \rightarrow \pi^+ \pi^- \pi^- \] \hspace{1cm} (1)
\[\Lambda^0 \pi^+ \pi^- \] \hspace{1cm} (2)
\[\Sigma^0 \pi^+ \pi^- \] \hspace{1cm} (3)
\[\Sigma^- \pi^+ \pi^- \] \hspace{1cm} (4)
\[\Lambda \pi^+ \pi^- \] \hspace{1cm} (5)

for the purpose of studying the quasi-two-body reaction

\[K^- p \rightarrow X^+ \pi^- \] \hspace{1cm} (6)

with special emphasis on the \(X^+ \) mass region near 1660 MeV.

The data were obtained from an exposure of the Berkeley 72-inch hydrogen bubble chamber to a \(K^- \) beam from the Bevatron at momenta of 2.1, 2.58, 2.61, and 2.70 GeV/c. The \(K^- \) pathlength equivalent at 2.1 GeV/c is 5.8 events/μb and for the combined upper three momenta it is 12.8 events/μb.

In a previous publication\(^1\) we discussed the data of reactions (1) through (4) at the upper three momenta for various center-of-mass production cosine (cos \(\theta^* \)) intervals, where \(\theta^* \) is the angle between the target proton and \(X^+ \). These intervals were: .95 < cos \(\theta^* \) < 1.0 (region I), .9 < cos \(\theta^* \) < .95 (region II), and .7 < cos \(\theta^* \) < .9 (region III).

\(^1\)Permanent address: Institut de Physique Nucleaire, 9 Quai St. Bernard, Paris V, France.
We measured the production differential cross section in each of these intervals for a $\Sigma(1660)$ resonance decaying via the modes $\Sigma^0\pi^+, \Sigma^+\pi^0, \Sigma^+\pi^0\pi^+$ under the assumption of no interference between resonance and background amplitudes. The measurements showed that the ratio $\Sigma^0\pi^+/\Sigma^+\pi^0$ is consistent with unity in all three intervals. However, the ratio of $(\Sigma\pi\pi)$ to $\Sigma\pi$ is different in interval I by more than 3 standard deviations from its value in interval III.

For this conference, we have performed a similar analysis at 2.1 GeV/c. These data exhibit the same general behavior, thus corroborating the results obtained at the upper momenta. As in reference 1, we interpret the above phenomenon to imply the existence of two $\Sigma(1660)$ resonances. The existence of two such resonances allows a variety of possibilities of which the following are three extreme cases:

1. There are two $\Sigma(1660)$ resonances, essentially degenerate in mass and width, but whose amounts are never affected by interference effects between them after integration over all decay angles.

2. There are two $\Sigma(1660)$ resonances, degenerate in mass and width, interfering after integration over decay angles. This of course can happen only if they have the same spin-parity.

3. There are two $\Sigma(1660)$'s of the same spin-parity, one of mass and width similar to that observed on the mass plot, and another one at a different mass and very broad, but overlapping the 1660 region. Both would have fixed branching ratios into $\Sigma\pi\pi$, $\Sigma\pi$, and $\Lambda\pi$ states and would be interfering.

Case 2 and 3 are considered in addition to case 1 because there exists in the literature separate spin-parity determinations of $3/2^-$ for a $\Sigma(1660)$ resonance in the $\Sigma\pi\pi$ (Reference 2) and $\Sigma\pi$ (Reference 3) modes of decay. However, for the production experiments, the analyses assumed the presence of one resonance only.

We plan to add information from reaction (5) and employ a new analysis based on three distinct channels of decay in order to further help distinguish between these three cases.

We intend to measure for various incident energy and production cosine intervals the following partial branching ratios of the 1660-MeV enhancement: $R_1=(\Sigma\pi)^+/T$, $R_2=\Lambda(1405)\pi^+/T$, and $R_3=\Lambda\pi^+/T$, where $T=(\Sigma\pi)^+ + \Lambda(1405)\pi^+ + \Lambda\pi^+$. Only two of the three ratios are independent since $R_1 + R_2 + R_3=1$ for any experiment.
The results of any experiment measuring the three rates can be recorded as a point in a plane with Cartesian axes for the variables R_1 and R_2. The physical domain for the case $R_1, R_2, R_3 > 0$ is a triangle as shown in Fig. 1.

![Diagram of branching ratios](image)

Fig. 1. Illustration of a partial branching ratio plot.

For a single resonance, all experiments must give answers consistent with a single point in the plane, such as point A in Fig. 1.

Two noninterfering resonances (case 1) having different branching ratios corresponding to points A and B on Fig. 1 would give rise to experimental results that could lie anywhere on the line joining points A and B.

If there exist two interfering resonances, it is possible to have different results, depending on the relation between the masses and widths. Cases 2 and 3 are the extreme possibilities. Case 2 (interfering resonances, degenerate in mass and width) would give rise to experimental results anywhere within an ellipse that is tangent to all three sides of the triangle, such as curve C. The other extreme case (case 3) could yield the same results as case 2. However, if the different decay amplitudes are relatively real, then the results would be constrained to lie on a line passing through the triangle. It is even possible in this case for experiments to show negative amounts in some of the channels, and therefore the corresponding points would lie outside the triangle, such as D of Fig. 1.
At this conference, a plot based on preliminary results was presented for purposes of illustrations. The points were such that no conclusion could be drawn about the relative likelihood of cases 1, 2, and 3. However, the results were only preliminary and are subject to future modifications. When definitive results are obtained, we hope to be able to differentiate between some of those cases.

We thank Werner Koelner for his help in fitting of experimental distributions and R. Bock, A. Sterling, and D. Siegel for help in the analysis of these data at a preliminary stage of the experiment.

References

This report was prepared as an account of Government sponsored work. Neither the United States, nor the Commission, nor any person acting on behalf of the Commission:

A. Makes any warranty or representation, expressed or implied, with respect to the accuracy, completeness, or usefulness of the information contained in this report, or that the use of any information, apparatus, method, or process disclosed in this report may not infringe privately owned rights; or

B. Assumes any liabilities with respect to the use of, or for damages resulting from the use of any information, apparatus, method, or process disclosed in this report.

As used in the above, "person acting on behalf of the Commission" includes any employee or contractor of the Commission, or employee of such contractor, to the extent that such employee or contractor of the Commission, or employee of such contractor prepares, disseminates, or provides access to, any information pursuant to his employment or contract with the Commission, or his employment with such contractor.