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Abstract Varicella zoster virus (VZV) causes varicella dur-
ing acute infection and establishes latency in the sensory gan-
glia. Reactivation of VZV results in herpes zoster, a debilitat-
ing and painful disease. It is believed that VZVreactivates due
to a decline in cell-mediated immunity; however, the roles that
CD4 versus CD8 T cells play in the prevention of herpes
zoster remain poorly understood. To address this question,
we used a well-characterized model of VZV infection where
rhesus macaques are intrabronchially infected with the homol-
ogous simian varicella virus (SVV). Latently infected rhesus
macaques were thymectomized and depleted of either CD4 or
CD8 T cells to induce selective senescence of each T cell
subset. After T cell depletion, the animals were transferred to
a new housing room to induce stress. SVV reactivation (vire-
mia in the absence of rash) was detected in three out of six
CD8-depleted and two out of six CD4-depleted animals sug-
gesting that both CD4 and CD8 T cells play a critical role in
preventing SVV reactivation. Viral loads in multiple ganglia
were higher in reactivated animals compared to non-
reactivated animals. In addition, reactivation results in
sustained transcriptional changes in the ganglia that enriched

to gene ontology and diseases terms associated with neuronal
function and inflammation indicative of potential damage as a
result of viral reactivation. These studies support the critical
role of cellular immunity in preventing varicella virus reacti-
vation and indicate that reactivation results in long-lasting
remodeling of the ganglia transcriptome.

Keywords Latency . Herpesvirus . Herpes zoster . Sensory
ganglia . RNA-Seq

Introduction

Varicella zoster virus (VZV) is a human neurotropic alpha
herpesvirus that causes varicella (chicken pox) during primary
infection. VZV establishes latency in the sensory ganglia
where it can reactivate to cause herpes zoster (HZ, shingles).
The risk of getting HZ significantly increases with age, from
an average of 3 cases per 1000 adults 40–50 years old to 10
cases of HZ per 1000 adults aged ≥80 years (Keating 2013). In
addition, the incidence of HZ in individuals receiving immu-
nosuppressive drugs such as those with autoimmune diseases,
cancer and organ transplant recipients is higher (Arvin 2000;
Rusthoven et al. 1988; Wilson et al. 1972; Yawn et al. 2011).
VZV has also been shown to reactivate following stressful
situations (Schmader et al. 1990), such as during and after
spaceflight (Cohrs et al. 2008) and in medical students
(Uchakin et al. 2011).

It is generally believed that VZV reactivation is due to the
loss of VZV-specific cell-mediated immunity (Terada et al.
1994), since antibody titers remain relatively stable with in-
creasing age (Levin et al. 2008; Oxman 2009; Weinberg et al.
2009). Similarly, VZV reactivation in hematopoietic stem cell
transplants was associated with low CD4 T cell counts in the
absence of significant changes in antibody titers (Vermont
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et al. 2014). Finally, T cell responses, but not antibody titers,
negatively correlate with HZ disease severity (Onozawa et al.
2006; Park et al. 2004). However, the role of CD4 versus CD8
T cell immunity in preventing VZV reactivation is not well
understood. Previous studies showed that the frequency of
VZV-specific CD4 T cells declines more dramatically with
age compared to VZV-specific CD8 T cells, suggesting a
greater role for CD4 Tcells in reactivation, but this hypothesis
has yet to be formally tested (Asanuma et al. 2000; Weinberg
et al. 2009).

In this study, we investigated the role of CD4 and CD8 T
cell immunity in preventing herpes zoster using a non-human
primate model of VZV infection. In this model, rhesus ma-
caques are inoculated intrabronchially with simian varicella
virus (SVV), a homologue of VZV. We previously showed
that this model recapitulates the essential features of VZV
infection in humans including varicella and establishment of
latency in sensory ganglia (Messaoudi et al. 2009). Moreover,
as described for VZV, SVV reactivates under conditions of
immune suppression (Mahalingam et al. 2010; Mahalingam
et al. 2007b; Ouwendijk et al. 2013; Traina-Dorge et al. 2015).
To investigate the role that T cell senescence plays in SVV
reactivation, rhesus macaques latently infected with SVV
were first thymectomized and then depleted of either CD4 or
CD8 T cells. This method leads to a profound loss of circulat-
ing T cells, which coupled with the absence of naïve T cell
output (due to the thymectomy) results in robust homeostatic
proliferation of the few T cells that have escaped depletion.
This extensive proliferative burst accelerates Tcell senescence
in the depleted T cell population (Cho et al. 2000; Goldrath
et al. 2000; Murali-Krishna and Ahmed 2000; Neujahr et al.
2006; Sheu et al. 2014). Finally, the animals were moved to a
new room to induce stress.

SVV reactivation was detected in 42% of depleted
animals (two CD4-depleted and three CD8-depleted
animals). Moreover, average viral loads in the sensory
ganglia from the animals that experienced a reactivation
event were significantly higher. Finally, large gene
expression changes were detected in ganglia collected
from animals that underwent reactivation. Collectively,
these data support the hypothesis that both CD4 and
CD8 T cells play a critical role in preventing SVV reac-
tivation and that SVV reactivation remodels the ganglia
transcriptome.

Results

T cell depletion after thymectomy results in permanent
loss of naïve T cells

Analysis of SVV replication kinetics and host responses in the
16 animals used in this study were previously published

(Haberthur et al. 2014). All animals generated robust T and
B cell responses as evidenced by the detection of antigen-
specific T cells and antibodies (Haberthur et al. 2014). At
148 days post-infection (DPI), all 16 animals we
thymectomized, and 29 days post-thymectomy (DPT), 12 an-
imals were depleted of either CD4 or CD8 T cells (n = 6/
group) while the remaining 4 animals served as
thymectomized non-depleted controls. At 364 DPT, all ani-
mals were moved to a different room to induce environmental
stress (Fig. 1a).

Thymectomy alone (control animals) had minimal impact
on the frequency of circulating white blood cells (WBC) in-
cluding lymphocytes and neutrophils (Fig. 1b–d). Similarly,
thymectomy alone did not impact the frequency of circulating
CD4 T, CD8 T, and CD20 B cells (Fig. 2a). Furthermore, very
few changes were noted in the frequency of naïve and mem-
ory CD4 T, CD8 T, and B cell subsets (Fig. 2d, g, j). In
contrast, CD4 depletion resulted in a significant decrease in
the number of circulating lymphocytes (Fig. 1c) due to the loss
of CD4 T cells (Fig. 2b) and, more specifically, naïve CD4 T
cells (Fig. 2e), which remained significantly decreased for the
remainder of the study. This change was accompanied by an
increase in the frequency of terminally differentiated CD4 EM
T cells (Fig. 2e). Frequency of CD8 T cells initially increased
at 153 DPT in CD4-depleted animals but then decreased as
CD4 numbers partially recovered (Fig. 2b). Interestingly, we
also saw a significant increase in CD8 EM T cells and a de-
crease in naïve and TEM CD8 T cells in the CD4-depleted
animals (Fig. 2h). No changes in B cell subsets were noted in
the CD4-depleted animals (Fig. 2k).

As described for CD4 T cells, CD8 depletion resulted in a
profound and sustained loss of CD8 T cells while the frequen-
cy of CD4 Tcells and CD20 B cells remained relatively stable
(Fig. 2c). This loss was also primarily driven by a significant
reduction in the number of naïve CD8 T cells (Fig. 2i), which
was accompanied by a transient increase in TEM CD8 T cells
followed by an increase in the EM frequency (Fig. 2i).
Intriguingly, the frequency of CD4 EMTcells increased while
that of naïve and CM CD4 T cells decreased following CD8
depletion (Fig. 2f). The CD8-depleted animals had a signifi-
cant increase in their switched memory B cell population after
depletion (Fig. 2l).

Tcells undergo robust homeostatic proliferation following
depletion

The changes in frequency of naïve and memory T cells in the
depleted animals prompted us to investigate the role of ho-
meostatic proliferation. In the thymectomized non-depleted
group, we observed a transient increase in proliferation in
CD4 T cells and B cells, but not CD8 T cells 55–83 DPT
(Fig. 3a–g). Following CD4 and CD8 T cell depletion, we
observed robust proliferation in CD4 T, CD8 T, and B cells
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as early as 29 DPT (Fig. 3). In the CD4-depleted animals, the
magnitude of CD4 T cell proliferation was much more robust
than that of CD8 T cells and B cells (Fig. 3b–h). Interestingly,
in the CD8-depleted animals, CD4 T cell proliferation oc-
curred earlier than CD8 T cell proliferation and reached sim-
ilar magnitude (Fig. 3c, f). Although proliferation of naïve T
cells was observed in both CD4-depleted and CD8-depleted
groups, the naïve T cell numbers remained significantly re-
duced due to their rapid conversion to memory phenotype
cells in the absence of thymic output.

T cell depletion followed by environmental stress results
in subclinical reactivations

SVV reactivation was monitored by measuring SVV viral
loads in the whole blood using quantitative real-time PCR
(qPCR) as well as visual inspection for zoster lesions. After
almost a year with no signs of reactivation, all of the animals
were moved to a different room in the facility to induce stress
(Fig. 1a). No obvious rash was detected in the animals; how-
ever, SVV DNAwas detected in whole blood (WB) from five
animals (two CD4 depleted (one male and one female) and
three CD8 depleted (two male and one female)) approximate-
ly 20–48 days after the move (383–412 DPT) (Fig. 4a). To
characterize the immune response during SVV reactivation,
we measured changes in SVV-specific IgG titers and frequen-
cy of antigen-specific T cells. We observed no significant in-
creases in IgG titers or CD4 T cell responses in the animals
that experienced SVVreactivation (Fig. 4b–e). Increased CD8
Tcell responses were detected in some of the depleted animals
412–454 DPT regardless of whether they experienced
renewed viremia (Fig. 4f).

SVV reactivation results in increased viral loads
and long-lasting transcriptional changes in the ganglia

No additional reactivation events were detected during the
next several months. We therefore elected to euthanize the
animals at 646 DPT and investigate changes in SVV viral
loads and transcriptional profiles in the sensory ganglia fol-
lowing SVVreactivation. Significantly higher viral loads were
observed in the trigeminal (TG) and dorsal root ganglia tho-
racic (DRG-T) of animals that showed signs of SVV reactiva-
tion compared to the animals that did not (Fig. 5a). No viral
loads were detected in lumbar/sacral dorsal root ganglia (data
not shown).

In order to determine the host transcriptome changes
that occur following reactivation, we performed RNA-
Seq on the DRG-T collected from three animals that expe-
rienced a reactivation event (two CD4 depleted, one CD8
depleted) and four animals that showed no signs of reacti-
vation (two controls, one CD4 depleted and one CD8 de-
pleted) (Table 1). A principle component analysis (PCA)
showed a clear distinction between the reactivated and the
control groups (Fig. 5b). Overall, we observed 1202 dif-
ferentially expressed genes (DEGs) defined as having a
fold change (FC) ≥2, a false discovery rate (FDR) of
≤0.05, and a median RPKM value of ≥5 (199 upregulated,
1003 downregulated) (Fig. 5c). To understand the biolog-
ical implication of these transcriptional changes, we car-
ried out a functional enrichment using Metacore™, which
requires the use of human homologues. Of the 1202 DEGs,
641 had human homologues (120 upregulated and 521
downregulated) (Supplemental Dataset). Changes in ex-
pression of four DEGs were confirmed by RT-PCR
(Fig. 6).

Fig. 1 Animal treatments and whole blood cell counts. a Experimental
timeline. Absolute numbers of b white blood cells (WBC), c
lymphocytes, and d neutrophils were measured in control (n = 4), CD4-

depleted (n = 6), and CD8-depleted (n = 6) animals using a Hemavet.
Asterisk P < 0.05 for CD4-depleted animals compared to day −6 post-
thymectomy
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Genes upregulated in ganglia of animals that experienced
SVV reactivation play a role in regulating cell cycle
and gene expression

Only 120 characterized DEGs were found to be upregulated in
ganglia of animals that experienced SVV reactivation. Several
of the 30 most upregulated genes regulate cell cycle

progression (Fig. 7a) such as AMD1 (FC 4) which regulates
Myc expression (Zhang et al. 2012), POC1B (FC 3) involved
with centriole assembly (Keller et al. 2009), and the transcrip-
tional regulator TAF1D (FC 4, confirmed by RT-PCR, Fig. 6a)
(Wieczorek et al. 1998). Additional genes were involved with
apoptosis such as HIF1A (FC 3) (Rapino et al. 2005) and
MAP4K5 (FC 3) (Iacobas et al. 2003), and protein degradation

Fig. 2 Thymectomy followed by depletion results in the loss of naïve T
cells. The frequencies of aCD4 T, bCD8 T, and cCD20 B cells (means ±
SEM) were determined in the PBMC by flow cytometry (three plus signs
P < 0.001 for CD4 Tcells; two number signs P < 0.01; three number signs
P < 0.001 for CD8 Tcells). The frequencies of CM, EM, TEM, and naïve
CD4 T cells in d control, e CD4-depleted, and f CD8-depleted animals
and CD8 T cells in the g control, h CD4-depleted, and i CD8-depleted
animals determined by flow cytometry (one plus sign P < 0.05, two plus
signs P < 0.01, three plus signs P < 0.001 for CM; one number sign

P < 0.05, two number signs P < 0.01, three number signs P < 0.001 for
EM; one dollar sign P < 0.05, two dollar signs P < 0.01 for TEM; one
asterisk P < 0.05, two asterisks P < 0.01, three asterisks P < 0.001 for
naïve). The frequency (mean ± SEM) of class-switched memory, IgM
memory, exhausted memory, and naïve B cells in the j control, k CD4-
depleted, l CD8-depleted animals were determined by flow cytometry in
PBMC (one plus sign P < 0.05, two plus signs P < 0.01, for switched
memory) (controls, n = 4; CD4 depleted, n = 6; CD8 depleted, n = 6)

J. Neurovirol.



such asUFD1L (FC 3) (Johnson et al. 1995) andCLPX (FC 3)
(Flynn et al. 2003). Other highly upregulated genes play a role
in neuronal development such as SNAPC3 (FC 3) (Wang et al.
2004), OLIG3 (FC 3) (Liu et al. 2008), and ACVR2A (FC 3)
(O'Keeffe et al. 2016) (Fig.7a). Two antiviral genes were also
amongst the 30 most upregulated DEGs: TRIM23 (FC 3),
which enhances antiviral innate responses through the RIG-
I/MDA5-mediated pathway (Arimoto et al. 2010), and UFL1
(FC 4), which inhibits NF-kappaB signaling pathway (Kwon
et al. 2010).

Functional enrichment showed that most of the upregulated
DEGsmapped to Bcellular metabolic process^ (Table 2), some
of which also enriched to GO term Bresponse to glucose.^
Examples of genes that mapped to these two GO processes
include those involved with double-stranded DNA damage
repair (BAZ1A, FC 3) (Lan et al. 2010), transcriptional regu-
lation (MIER1, FC 3) (Blackmore et al. 2008), mRNA degra-
dation (CNOT7, FC 2) (Aslam et al. 2009), and regulation of
circadian calcium rhythms in neurons (ARNT, FC 2) (Ikeda
and Ikeda 2014). An additional 17 genes that mapped to

Bmulticellular organismal reproductive process^ played a role
in microtubule stabilization (Emanuele and Stukenberg 2007)
(CEP57, FC3, confirmed by RT-PCR, Fig. 6b), anion trans-
port (SLC26A8, FC 3 (Lohi et al. 2002)), and neuron devel-
opment (RARB FC 2 (Maden 2007)) (Fig. 7b).

Genes downregulated in ganglia of animals that
experienced SVV reactivation may contribute to neuronal
damage

Several of the downregulated genes play a role in neuronal
development. The most downregulated gene in our data set
was GPR137 (FC 400, confirmed by RT-PCR, Fig. 6c), a G
protein-coupled receptor essential for controlling pain trans-
mission in the trigeminal ganglia (Manteniotis et al. 2013)
(Fig. 8a). Several of the downregulated DEGs were involved
with axon regeneration such as NDEL1 (FC 123) (Toth et al.
2008), AMIGO3 (FC 200) (Kuja-Panula et al. 2003), THY-1
(FC 110) (confirmed by RT-PCR, Fig. 6d) (Rege and Hagood
2006), and INA (FC 89) (Baum and Garriga 1997). Additional

Fig. 3 Depletion results in robust homeostatic proliferation. Magnitude
and kinetics of proliferation (means ± SEM) of CD4 T cell subsets were
measured in a control, b CD4-depleted, and c CD8-depleted animals;
CD8 T cell subsets in d control, e CD4-depleted, and f CD8-depleted
animals; and B cell subsets in g control, h CD4-depleted, and i CD8-
depleted animals were determined by measuring Ki67 expression within
specific lymphocyte subsets by flow cytometry (one plus sign P < 0.05,
two plus signs P < 0.01, three plus signs P < 0.001 for CM; one
ampersand P < 0.05, two ampersands P < 0.01, three ampersands

P < 0.001 for EM; one dollar sign P < 0.05, two dollar signs P < 0.01,
three dollar signs P < 0.001 for TEM; one number sign P < 0.05, two
number signs P < 0.01, three number signs P < 0.001 for naïve T cells;
one plus sign P < 0.05, two plus signs P < 0.01, three plus signs P < 0.001
for switched memory; two ampersands P < 0.01, three ampersands
P < 0.001 for IgM memory; one dollar sign P < 0.05, two dollar signs
P < 0.01, three dollar signs P < 0.001 for exhaustedmemory; one number
sign P < 0.05, two number signs P < 0.01, three number signs P < 0.001
for naïve B cells)
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downregulated genes were involved in neuron differentiation
and stabilization such as FERD3L (FC 104) (Ono et al. 2010),
BASP1 (FC 200) (Goodfellow et al. 2011), andHSPA12B (FC
119) (Ono et al. 2010). Finally, other highly downregulated
genes played a role in cell proliferation (MZF1, FC 124)
(Gaboli et al. 2001), DNA damage repair (XRCC3, FC 121)
(Kurumizaka et al. 2001), and protein transport (SSR4, FC
183) (Nagasawa et al. 2007) (Fig. 8a).

Functional enrichment showed that the most statistically
significant GO process to which downregulated DEGs
mapped is Baxo-dendritic-transport^ which includes genes
encoding neurofilaments NEFL (FC 7) and NEFM (FC 4),
and the neurodevelopment protein NDEL1 (FC 123)
(Table 2). Several of the 215 downregulated genes that
mapped to Bcellular component organization^ (Table 2) regu-
late neuronal gene expression including several histone genes
(HIST1H2AC (FC 28), HIST2H2AA4 (FC 70), HIST2H3D
(FC 47), and HIST3H2BB (FC22) (Maze et al. 2015), as well
as transcription factors such as ATF5 (FC 158) (Angelastro
et al. 2005) and BAIAP2 (FC 155) (Oda et al. 1999). In addi-
tion, several highly downregulated genes mapped to Bmeta-
bolic process^ (Table 2) such as PGAM2 (FC 149, glycolysis)
(Kondoh et al. 2005), CBR3 (FC 130, prostaglandin metabo-
lism) (Miura et al. 2008), and HEXIM2 (FC 54, transcription
regulation) (Yik et al. 2005). Of the 177 genes that mapped to

the GO process Bresponse to stress,^ 43 directly interact with
each other (Fig. 8b) including several that interact with the
transcription factor APP (FC 7), which regulates neurite out-
growth (Bekris et al. 2011), and histone deacetylase class II
(HDAC, FC 5).

Additional bioinformatics analysis of the downregulated
DEGs revealed enrichment to process networks associated
with the cell cycle (Table 2) including DNA repair such as
RAD9 (FC 44) (Lieberman et al. 1996); microtubule assem-
bly, e.g., TUBA1B (FC 7) (Kumar et al. 2010); and cell cycle
progression, e.g., ANAPC13 (FC 9) (Yamaguchi et al. 2015).
Several downregulated genes also enriched to the process
network Bimmune response-antigen presentation^ (Table 2)
such as ICAM (FC 37), NFKBIB (FC 12), and several heat
shock proteins (HSPA1L (FC 95),HSPA8 (FC 8),HSPCA (FC
5), and HSP90 (FC 2)) (Fig. 8c). Finally, analysis of the
downregulated genes using a diseases biomarker database re-
vealed enrichment to several diseases related to the neuronal
damage and mental health diseases (Table 2). The DEGs that
enriched to Bbasal ganglia diseases^ played a role in axon
regeneration such as NGF (FC10) (Lindsay 1988) and
SNCG (FC 59) (Buckingham et al. 2008); neuron differentia-
tion, e.g., SUZ12 (FC6 ) (Mazzoni et al. 2013); and CNS
inflammation such as CCR7 (FC 8) (Buonamici et al. 2009)
(Fig. 8d).

Fig. 4 SVV reactivation is detected in depleted animals in the absence of
robust changes in immunity. a SVV DNA viral loads were assessed in
PBMC (200 ng/sample). SVV-specific IgG titers were determined in b
control, c CD4-depleted, and d CD8-depleted animals. Frequencies of

PBMC SVV-specific e CD4 and f CD8 T cells producing IFNγ in
animals that experienced SVV reactivation (red), depleted animals that
did not experience a reactivation (black), and controls (blue). The dashed
line represents the reactivation period
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SVV reactivation leads to greater changes in gene
expression relative to latent SVV infection

We also compared changes in gene expression in ganglia col-
lected from animals that experienced a reactivation event and
those that did not relative to ganglia collected from naïve
animals (Arnold et al. 2016). Overall, we detected 967
DEGs (403 upregulated, 325 downregulated) in ganglia from

animals that did not have a reactivation and 1200 DEGs (641
upregulated, 559 downregulated) in the ganglia from animals
that did. A comparison of these two data sets showed 728
genes were differentially expressed in ganglia obtained from
either reactivated or non-reactivated animals relative to naïve
ganglia, while 239 DEGs were only detected in ganglia of
non-reactivated animals and 427 DEGs in ganglia from
reactivated animals (Fig. 9a).

Functional enrichment was then performed on all three sets
of DEGs to better understand the biological implications of
these gene expression changes (Table 3). Genes that were
differentially expressed in both sets of ganglia relative to
naïve enriched to biological and disease processes related to
metabolism, cell death, neurogenesis, and infections (Table 3).
Most of the common genes mapped to Bmetabolic process^
directly interacted with one another (Fig. 9a) and were regu-
lated by the transcription factor NRF2, which regulates oxida-
tive stress (Li et al. 2005) (Fig. 9b). In addition, all of the
common genes that mapped to the disease process Binfection^
had the same directional change; however, DEGs detected in
ganglia from animals that experienced a reactivation had a

Fig. 5 SVV reactivation results in substantial host transcriptional
changes in the ganglia. a SVV DNA viral loads were assessed in
sensory ganglia (1 μg/sample) by quantitative real-time PCR using
primers and probes specific for SVV ORF21 (TG trigeminal, DRG-C
dorsal root ganglia cervical, DRG-T thoracic) (TG; n = 6 for animals
that did not experience reactivation (NR), n = 3 for those that experienced

reactivation (R); DRG-T; n = 6 for NR, n = 5 for R; DRG-C;
n = 6 for NR and n = 5 for R). b PCA plot of the ganglia transcriptomes
(n = 3 for R and n = 4 NR). c Volcano plot representing overall gene
expression changes observed in animals that experienced renewed SVV
viremia

Table 1 DRG-T viral loads of the samples used for RNA-Seq analysis

Sample Reactivated Viral load

CD4 depleted #3 Y 555

CD4 depleted #5 Y 189

CD8 depleted #6 Y 2091

Control #2 N 64

Control #3 N 236

CD4 depleted #6 N 152

CD8 depleted #5 N 21

J. Neurovirol.



higher FC (Fig. 9c). The upregulated immune genes includ-
ed antiviral genes such as IFI16 and DDX58, T cell genes
such as IL-7 and CD274, and costimulatory molecules such

as CD80 and CD46. Downregulated immune genes includ-
ed phagocytic markers CD68 and CD63, as well as regula-
tory T cell transcription factor FOXP3 (Fig. 9c). DEGs

Fig. 7 Gene enrichment analysis
of the upregulated genes in
reactivated animals. Heat map
analysis of the a 30 most
upregulated and b upregulated
genes mapping to Bmulticellular
organismal reproductive
process.^ NR non-reactivated, R
reactivated

Fig. 6 Gene validation. Taqman
assays were done on a TAF1D
(upregulated), b GPR137
(downregulated), c THY1
(downregulated), and d CEP57
(upregulated). n = 3 for
reactivated (R) and n = 4 for non-
reactivation (NR). One asterisk
P < 0.05, two asterisks P < 0.01
compared to NR

J. Neurovirol.



detected only in ganglia from non-reactivated animals also
enriched to biological and disease processes related to me-
tabolism, cell adhesion, central nervous diseases, and viral
infections. Genes that enriched to Bcentral nervous system
diseases^ and Bviral infection^ were primarily upregulated
and played a role in neuron growth such as NGF (FC 7,
regulates neuron growth) (Indo et al. 1996), DSC1 (FC
95, neural circuit regulation (Zhang et al. 2013)), and
CYR61 (FC 6, dendrite growth (Malik et al. 2013))
(Fig. 9d). Interestingly, DEGs detected only in ganglia from
reactivated animals enriched to biological and disease pro-
cesses related to cell cycle and neurodegenerative diseases.
Genes that mapped to Bneurodegenerative diseases^ played
a role in neuro-transmission such as intermediate filaments
(e.g., NEFL, FC 11 and GFAP, FC 293), neurotransmitters

(e.g., TAC1, FC 14) and synaptic vesicle exocytosis (e.g.,
CLPX2, FC 80) (Fig. 9e).

Discussion

Age and immune status are the primary risk factors for getting
herpes zoster. The goal of this study was to investigate the
role of CD4 and CD8 T cell immunity in preventing herpes
zoster. Using the rhesus macaque animal model of SVV in-
fection, we were able to artificially age either the CD4 or
CD8 T cell population in latently infected animals by
performing a thymectomy followed by CD4 or CD8 T cell
depletion. The profound loss of T cells coupled with the ab-
sence of naïve T cell output from the thymus results in robust

Table 2 Gene enrichment
analysis of upregulated and
downregulated genes

GO process # genes FDR

Upregulated

cAMP catabolic process 2 4.951E−03
Multicellular organismal reproductive process 17 5.523E−03
Response to glucose 8 1.360E−02
Cellular metabolic process 72 1.819E−02

Downregulated

Axo-dendritic transport 14 4.396E−07
Cellular component organization 244 4.396E−07
Metabolic process 378 7.202E−07
Chaperone-mediated autophagy 6 1.740E−06
Cytoskeleton-dependent intracellular transport 21 1.818E−06
Regulation of intracellular transport 51 2.803E−06
Response to stress 177 9.804E−06
Regulation of protein complex stability 6 1.114E−05

Process networks

Protein folding_response to unfolded proteins 11 1.305E−03
Cytoskeleton_intermediate filaments 10 1.890E−02
Cell cycle_meiosis 10 8.081E−02
Cytoskeleton_regulation of cytoskeleton rearrangement 14 8.081E−02
Transcription_chromatin modification 11 8.081E−02
Immune response_antigen presentation 11 5.694E−01

Diseases

Amyloid neuropathies 9 1.700E−10
Alzheimer disease, early onset 11 2.220E−06
Parkinsonian disorders 32 4.676E−06
Spinal cord diseases 28 1.109E−05
Movement disorders 49 1.109E−05
Polyneuropathies 18 1.646E−05
Gliosis 9 2.181E−05
Memory disorders 9 2.181E−05
Basal ganglia diseases 45 2.343E−05
Motor neuron disease 22 3.493E−05
Cerebral arterial diseases 10 5.023E−05
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homeostatic proliferation in order to repopulate the T cell
compartment, which in turn leads to accelerated T cell senes-
cence (Cho et al. 2000; Goldrath et al. 2000; Murali-Krishna
and Ahmed 2000; Neujahr et al. 2006; Sheu et al. 2014). Our
data showed that T cell numbers of the depleted subset do not
recover to baseline levels no matter how robust the homeo-
static proliferation. Similar findings have been reported in
mice depleted of their lymphocytes (Neujahr et al. 2006).
Interestingly, we observed increased proliferation in the
non-depleted T cell subset and B cells, suggesting all lym-
phocytes are able to sense and respond to the available space
created by the depletion.

Thymectomy and accelerated aging of the T cell compart-
ment alone were not sufficient to cause reactivation. This ob-
servation explains the relatively low rates of reactivation in
older individuals ≥80 years of age where the reactivation rate
is 10 per 1000 persons/year despite the uniform presence of
immune senescence. Similarly, the rate of VZV reactivation in
HIV+ subjects is 9.3 per 1000 persons/year (Blank et al. 2012;
Pergam et al. 2011). We therefore induced stress by moving
the animals to a different room in the facility. Although we
were not able to measure cortisol levels, previous studies in
non-human primates have shown that room changes increase
cortisol levels in the feces and hair in rhesus macaques for up
to 1 year (Davenport et al. 2008). Also, fecal cortisol increases
have also been observed in chimpanzees moved to a new
facility (Reimers et al. 2007). In addition, temporary moves
of 2 days or less have also been shown to increase cortisol
levels in rhesus, bonnet, and cynomolgus macaques as well
(Novak et al. 2013).

SVV reactivation was observed in two (33%) CD4-
depleted and three (50%) CD8-depleted animals as evidenced
by the presence of SVV DNA in blood and increased viral
loads in the ganglia. This is in line with the incidence rate of
HZ in bone marrow transplant patients, which had been re-
ported to reach 43% (Chen et al. 2014; Koc et al. 2000; Novak
et al. 2013). However, our reactivation rates are lower than
those observed in macaques that have undergone whole body
irradiation coupled with immune-suppressive treatments
(Mahalingam et al. 2010), in line with the reduced severity
of immune suppression due to accelerated senescence of only
one T cell compartment. In this study, we did not detect a
zoster rash. VZV reactivation in the absence of rash is referred
to as zoster sine herpete (Blumenthal et al. 2011) and has been
reported in HIV-positive patients, bone marrow transplant re-
cipients, patients with leukemia, astronauts, and cynomolgus

macaques subjected to stress from travel and isolation (Birlea
et al. 2011; Ljungman et al. 1986; Mahalingam et al. 2007a).

SVV reactivation was observed in both CD4- and CD8-
depleted animals, which suggests a role for both CD4 and
CD8 T cells in the prevention of reactivation. Viral loads in
the blood seemed to be slightly higher in the CD4-depleted
animals; however, since only two CD4-depleted animals ex-
perienced reactivations, we could not determine whether this
increase was significant. These observations are in line with
clinical studies that have indicated a critical role for CD4 T
cells in prevention of VZV reactivation. Specifically, HZ is
mo re p r eva l en t i n HIV+ pa t i en t s (Onunu and
Uhunmwangho 2004). Furthermore, rapid recovery of CD4
T cells, but not CD8 T cells, after stem cell transplants is
associated with reduced rates of cytomegalovirus reactivation
(Drylewicz et al. 2016). Previous studies from our lab have
also shown a greater role for CD4 T cells in the resolution of
acute SVV infection where CD4-depleted animals had higher
viral loads and prolonged disease and are unable to establish
latency in the ganglia (Haberthur et al. 2011; Meyer et al.
2013). On the other hand, CD8+ cells in the trigeminal ganglia
play a critical role in the prevention of HSV-1 reactivation in
mice (St Leger and Hendricks 2011), which indicates that
immunological control of reactivation may differ between
these two closely related viruses.

In contrast to what has been previously reported for VZV,
no significant changes in antibody titers were detected during
SVV reactivation. Similarly, no increase in SVV-specific CD4
T cell responses was detected in animals that experienced a
reactivation event. On the other hand, CD8 T cell responses
were increased in several depleted animals regardless of
renewed SVV viremia, but in none of the non-depleted con-
trols. This observation suggests that depleted animals were
more susceptible to the stress induced by the room change,
but only some of the animals experienced a reactivation. Our
data differs from previous reports where increased T cell re-
sponses have been observed in transplant recipients following
subclinical reactivations (Ljungman et al. 1986). Although we
were unable to detect a robust immune response in the periph-
eral blood, SVV reactivations could have triggered a local
immune response within the ganglia. Unfortunately, we were
unable to address this question since the ganglia tissue was
collected nearly 1 year after viremia was detected.

Viral loads were higher in the ganglia collected from ani-
mals that experienced a reactivation compared to those col-
lected from animals that did not. The increased SVV viral
loads could have been due to viral replication during reactiva-
tion as previously reported for VZV and SVV (Ouwendijk
et al. 2013; Reichelt et al. 2008) and/or additional seeding of
the ganglia after renewed SVV viremia. However, it is also
possible that the viral loads in the ganglia of the reactivated
animals were higher to begin with, which made them more
susceptible to reactivation. In addition to increased viral loads,

Fig. 8 Gene enrichment analysis of the downregulated genes in
reactivated animals. a Heatmap analysis of the 30 most downregulated
genes. b Network image showing the genes that directly interact in the
downregulated genes found in the GO process Bresponse to stress.^ c
Heat map analysis of the downregulated immune genes. d Heat map
analysis of the genes that mapped to GO process Bbasal ganglia
diseases.^ NR non-reactivated, R reactivated

R
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RNA-Seq analysis revealed distinct transcriptional profiles
between the DRG-Tof animals that experienced a reactivation
event and those that did not despite the fact that our analysis
was carried out 1 year after SVV viremia was detected. This
suggests that SVV reactivations can cause long-lasting gene
expression changes in the ganglia. Genes that were downreg-
ulated after reactivation play a critical role in neuron differen-
tiation and axon regeneration as well as DNA repair indicative
of significant damage to the ganglia, while genes that were
upregulated after SVV reactivation play a role in cell prolifer-
ation and neuronal development, suggesting tissue repair.
Although we were not able to examine the ganglia tissue at
the time of reactivation, our gene expression data are support-
ive of previous studies that reported severe necrosis and in-
flammation of the ganglia recovered from patients with HZ at
the time of death (Gowrishankar et al. 2010; Lungu et al.
1995).

Recent studies from our lab have shown a downregulation
of neuronal genes during acute infection (Arnold et al. 2016);
therefore, we compared the DEGs detected after acute SVV
infection (100 dpi) and those detected after SVV reactivation.
Only 48 common DEGs were identified, most of which were
downregulated after both acute infection and reactivation.
Several of these DEGs play a role in synaptic plasticity
(THRA, KIRREL, and IGFS8) (Martin et al. 2015; Ray and
Treloar 2012; Vallortigara et al. 2009), neuronal growth (MBP,
STMN2, PRPH, and RHOG) (Eriksson et al. 2008; Franke
et al. 2012; Westerlund et al. 2011), and cell cycle such as
ARF1, HDLBP, and BOP1 (Molyneux et al. 2014; Strezoska
et al. 2000; Yorimitsu et al. 2014). Although a limited number
of DEGs were shared between these studies, both revealed a
robust number of downregulated genes that were involved in
neuronal function, which suggests that both viral entry and
viral reactivation cause neuronal damage but may affect dif-
ferent neuronal functions.

We also compared the transcriptome of ganglia from
animals that experienced a reactivation and those that did
not to ganglia from naïve animals. This analysis showed
larger transcriptional changes in ganglia from animals that
experienced a reactivation, further supporting the hypoth-
esis that reactivation leads to additional remodeling of the
ganglia transcriptome compared to latent SVV infection. A

significant number of common DEGs were detected in
ganglia from animals that experienced or did not experi-
ence a reactivation event, indicating that SVV infection
exerts the largest transcriptional impact. In addition, sever-
al common genes enriched to infectious diseases; however,
the reactivated ganglia showed larger gene expression
changes in line with renewed viral replication such as that
seen during reactivation. Additionally, we detected addi-
tional DEGs that were unique to ganglia from animals that
experienced a reactivation. Genes that were differentially
expressed only in ganglia from animals that experienced a
reactivation event enriched to neurodegenerative diseases
in line with the known complications of neuralgia and gan-
glia necrosis often observed after VZV reactivation
(Gabutti et al. 2016).

In summary, data described in this study provides addition-
al evidence that supports a critical role of T cells in the pre-
vention of varicella virus reactivation. This study is also the
first to characterize the gene expression changes that occur
after SVV reactivation. Remarkably, significant changes in
expression of genes important for neuronal function were al-
tered nearly a year after reactivation, suggesting sustained
remodeling of the ganglia transcriptome. These results pro-
vide additional insight into the development of post-herpetic
neuralgia caused by neuronal damage that can last for years
(Schmader 1998).

Methods

Animals and sample collection

Sixteen colony-bred Rhesus macaques (Macaca mulatta,
RM) 3–4 years of age and of Indian origin were used in
these studies. All the animals were housed and handled in
accordance with the Oregon National Primate Research
Center Institutional Animal Care and Use Committee
(protocol #0779). The 16 RM were intrabronchially inoc-
ulated with 4 × 105 PFU SVV as previously described
(Haberthur et al. 2014). At 148 days post-infection, all
the animals were thymectomized. At 29, 32, and 37
DPT, six animals (two male and four female) were deplet-
ed of CD4 T cells using the humanized monoclonal anti-
body OKT4-HulgG at a dose of 50 mg/kg. Another six
animals (two male and four female) were depleted of CD8
T cells using a mouse-human chimeric monoclonal anti-
body cM-T807 at a dose of 5 mg/kg on days 29, 32, and
37 post-thymectomy. The remaining four animals (all
males) served as controls. All the animals were moved
to a different room 364 DPT and were then euthanized
~646 DPT. All procedures were done under ketamine an-
esthesia to minimize pain. Necropsy was carried out in
accordance with the recommendation of the American

Fig. 9 Gene enrichment analysis on common and unique genes found in
non-reactivated and reactivated animals compared to naïve animals. a
Venn diagram of the DEGs from non-reactivated and reactivated animals.
b Network image showing the common genes with a fold of at least five
found in the GO process Bmetabolic process^ that directly interact. c
Heatmap of the common genes that mapped to Binfection.^ d Heat map
of the genes found only in the non-reactivated animals that mapped to
disease process Bcentral nervous system (CNS) diseases^ and Bvirus
diseases^ with a fold change of at least four. e Heat map of the genes
found only in the reactivated animals that mapped to disease process
Bneurodegenerative diseases^ with a fold change of at least nine. NR
non-reactivated, R reactivated

R
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Veterinary Association guidelines for euthanasia. Sensory
ganglia tissue (trigeminal, dorsal root ganglia (DRG)-cer-
vical, DRG-thoracic, and DRG-lumbar sacral) was col-
lected at necropsy. Tissues were then flash frozen or

stored in trizol at −80°. Peripheral blood mononuclear
cells (PBMC) were isolated over a density gradient cell
separation medium (Corning, Manassas, VA) and resus-
pended in RPMI with 10% FBS and PSG.

Table 3 Gene enrichment
analysis of non-reactivated and
reactivated ganglia compared to
naïve ganglia

GO process # genes FDR

DEGs detected in naïve verus ganglia from reactivated and non-reactivated animals

Metabolic process 432 1.221E−09
Positive regulation of biological process 255 5.265E−06
Regulation of cell death 111 2.139E−05
Regulation of cellular component organization 107 8.362E−05

Process networks

Muscle contraction 19 2.758E−02
Development neurogenesis axon guidance 21 7.962E−02

Diseases

Infection 61 3.331E−04
Bacterial infections and mycoses 67 8.560E−04
Connective tissue diseases 123 1.65E−03
RNA virus infections 53 1.684E−03

DEGs detected only in naïve verus ganglia from non-reactivated animals

Cell-cell adhesion 34 1.671E−03
Wnt signaling pathway, planar cell polarity pathway 9 6.722E−03
Regulation of type I interferon production 9 8.779E−03
Metabolic process 159 1.21E−02
Viral process 29 1.169E−02

Process networks

Cytoskeleton_regulation of cytoskeleton rearrangement 12 1.80E−03
Cell adhesion_cell junctions 10 6.359E−03
Protein folding nucleus

Cell cycle_meiosis 6 6.913E−03
Diseases

Central nervous system diseases 53 3.314E−04
Virus diseases 38 4.470E−04
DNA virus infections 24 1.011E−03
Herpesviridae infections 15 2.827E−03

DEGs detected only in naïve verus ganglia from reactivated animals

Metabolic process 323 7.163E−08
Cell cycle 79 2.076E−07
Organelle organization 146 3.141E−07
Regulation of synaptic plasticity 21 2.93E−05

Process networks

Signal transduction_ESR1-nuclear pathway 13 1.579E−02
Protein folding_folding in normal condition 10 6.954E−02
Neurophysiological process_long-term potentiation 8 6.954E−02

Diseases

Basal ganglia diseases 39 3.423E−08
Gliosis 5 3.603E−08
Cerebral arterial diseases 5 1.193E−07
Neurodegenerative diseases 77 5.964E−04
Trigeminal neuralgia 5 3.881E−06
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DNA extraction and viral loads

DNAwas extracted from whole blood using the Qiagen geno-
mic DNA extraction kit (Qiagen, Valencia, CA). Ganglia tissue
was digested in proteinase K solution (20 mg/ml) overnight,
and DNA was extracted using the Qiagen genomic DNA ex-
traction kit (Qiagen, Valencia, CA). Viral loads were deter-
mined as previously described by real-time PCR using primers
and probes specific for ORF21 and measured on the ABI
StepOne instrument (Applied Biosystems, Foster City, CA).

Identification of immune cell populations

PBMC cells were stained with antibodies against CD8β
(Beckman Coulter), CD4 (eBioscience, San Diego, CA),
CD28 (BioLegend), CD95 (BioLegend), and CCR7 (BD
Pharmingen), which allowed the delineation of central mem-
ory (CM; CD28+ CD95+ CCR7+), transitional effector mem-
ory (TEM; CD28+ CD95+ CCR7−), and effector memory
(EM; CD28− CD95+ CCR7−) CD4 and CD8 T cells. PBMC
cells were also surface stained with antibodies against CD20,
IgD (Southern Biotech, Birmingham, AL) and CD27
(Biolegend) to delineate IgM (IgD+ CD27+), class-switched
memory (IgD− CD27+), exhausted memory (IgD− CD27−),
and naïve (igD= CD27−) B cell subsets. Cells were fixed and
permeabilized according to manufacturer recommendations
(BioLegend) before the addition of a Ki67-specific antibody
(BD Pharmingen). The samples were analyzed using the
LSRII instrument (Becton, Dickinson and Company, San
Jose, CA) and FlowJo software (TreeStar, Ashland, OR).

Intracellular cytokine staining

PBMC were stimulated ex vivo with SVV lysate (1 μg) in the
presence of brefeldin A (Sigma, St. Louis, MO) for 14 h. Cells
were then stained with antibodies against CD4 and CD8β.
Cells were then fixed, permeabilized (BioLegend), and
stained for IFN-γ (eBioscience) and TNF-α (eBioscience).
Samples were then acquired on the LSRII instrument and data
was analyzed using FlowJo software.

RNA-sequencing analysis

RNAwas extracted from ganglia tissue homogenized in trizol
using a bead beater and zirconia/silica beads followed by ex-
traction using the Ambion Purelink RNA Mini Kit (Life
Technologies, Carlsbad, CA). RNA library preparation was
done using the NEXTflex® Rapid Directional RNA-Seq kit
(BIOO Scientific, Austin, TX). DNA libraries were then
multiplexed and sequenced on the Illumina HiSeq2500
(Illumina, San Diego, CA) platform. All data analysis steps
were performed with the RNA-Seq workflow module of the
systemPiperR package available on Bioconductor (Girke

2015; Huber et al. 2015). Next-generation sequencing
(NGS) quality reports were generated with the seeFastq func-
tion defined by the same package. RNA-Seq reads were
mapped with the splice junction aware short read alignment
suite Bowtie2/Tophat2 (Kim et al. 2013; Langmead and
Salzberg 2012) against theMacaca mulatta genome sequence
downloaded from Ensembl (Cunningham et al. 2015). The
default parameters of Tophat2 optimized for mammalian ge-
nomes were used for the alignments. Raw expression values in
the form of gene-level read counts were generated with the
summarizeOverlaps function (Lawrence et al. 2013). Only
reads overlapping the exonic regions of genes were counted,
while reads mapping to ambiguous regions of exons from
overlapping genes were discarded. Analysis of differentially
expressed genes (DEGs) was performed with the GLM meth-
od from the edgeR package (Anders et al. 2013; Robinson
et al. 2010) (SRP097695). For comparison to naïve ganglia,
we leveraged RNA-Seq data from our recent publication
(SRP072525 (Arnold et al. 2016)). In all analyses, differen-
tially expressed genes (DEGs) were defined as those with a
fold change ≥2, a false discovery rate (FDR) ≤0.05, and a
median RPKM value ≥5. Enrichment analysis was performed
using MetaCore software (GeneGo, Philadelphia, PA).

Gene expression change validation

RNA was reverse transcribed using random hexamers and
SuperScript ® IV RT using the SuperScript ® IV First-
Strand Synthesis System (Invitrogen, Lithuania) to generate
cDNA. Taqman gene expression assays (Thermo Fisher,
Waltham, MA) of selected genes and housekeeping gene
(RPL32) were carried out using 100 ng of cDNA in duplicate
on the ABI StepOne instrument (Applied Biosystems).
mRNA expression levels were calculated relative to our
housekeeping gene (RPL32) using 2−ΔCt calculations.

Statistical analysis

Graphing was performed with GraphPad Prism software
(GraphPad Software Inc., La Jolla, CA). One-way repeated-
measures analysis of variance (ANOVA) with Dunnett’s mul-
tiple comparison post-test was used to explore differences
relative to and pre-thymectomy (−6 DPT) values. Unpaired t
test was used to determine significance of ganglia viral loads
and gene validation.
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