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Generalized Jackknife Estimators of Weighted
Average Derivatives

Matias D. CATTANEO, Richard K. CRUMP, and Michael JANSSON

With the aim of improving the quality of asymptotic distributional approximations for nonlinear functionals of nonparametric estimators, this
article revisits the large-sample properties of an important member of that class, namely a kernel-based weighted average derivative estimator.
Asymptotic linearity of the estimator is established under weak conditions. Indeed, we show that the bandwidth conditions employed are
necessary in some cases. A bias-corrected version of the estimator is proposed and shown to be asymptotically linear under yet weaker
bandwidth conditions. Implementational details of the estimators are discussed, including bandwidth selection procedures. Consistency of
an analog estimator of the asymptotic variance is also established. Numerical results from a simulation study and an empirical illustration
are reported. To establish the results, a novel result on uniform convergence rates for kernel estimators is obtained. The online supplemental
material to this article includes details on the theoretical proofs and other analytic derivations, and further results from the simulation study.

KEY WORDS: Bias correction; Semiparametric estimation; Uniform consistency.

1. INTRODUCTION

Two-step semiparametric m-estimators are an important and
versatile class of estimators whose conventional large-sample
properties are by now well understood. These procedures are
constructed by first choosing a preliminary nonparametric esti-
mator, which is then “plugged in” in a second step to form the
semiparametric estimator of the finite-dimensional parameter of
interest. Although the precise nature of the high-level assump-
tions used in conventional approximations varies slightly, it is
possible to formulate sufficient conditions so that the semipara-
metric estimator is

√
n-consistent (where n denotes the sample

size) and asymptotically linear (i.e., asymptotically equivalent to
a sample average based on the influence function). These results
lead to a Gaussian distributional approximation for the semi-
parametric estimator that, together with valid standard-error es-
timators, theoretically justify classical inference procedures, at
least in large samples. Newey and McFadden (1994, Sec. 8),
Chen (2007, Sec. 4), and Ichimura and Todd (2007, Sec. 7),
among others, gave detailed surveys on semiparametric infer-
ence in econometric theory, and further references in statistics
and econometrics.

A widespread concern with these conventional asymptotic
results is that the (finite sample) distributional properties of
semiparametric estimators are widely believed to be much more
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sensitive to the implementational details of its nonparametric
ingredient (e.g., bandwidth choice when the nonparametric es-
timator is kernel-based) than predicted by conventional asymp-
totic theory, according to which semiparametric estimators are
asymptotically linear with influence functions that are invari-
ant with respect to the choice of nonparametric estimator (e.g.,
Newey 1994a, Proposition 1). Conventional approximations rely
on sufficient conditions carefully tailored to achieve asymptotic
linearity, thereby assuming away additional approximation er-
rors that may be important in samples of moderate size. In
particular, whenever the preliminary nonparametric estimator
enters nonlinearly in the construction of the semiparametric
procedure, a common approach is to linearly approximate the
underlying estimating equation to characterize the contribution
of the nonparametric ingredient to the distributional approxi-
mation. This approach leads to the familiar sufficient condition
that requires the nonparametric ingredient to converge at a rate
faster than n1/4, effectively allowing one to proceed “as if” the
semiparametric estimator depends linearly on its nonparametric
ingredient, which in turn guarantees an asymptotic linear rep-
resentation of the semiparametric estimator under appropriate
sufficient conditions.

In this article we study the large-sample properties of a kernel-
based estimator of weighted average derivatives (Stoker 1986;
Newey and Stoker 1993), and propose a new first-order asymp-
totic approximation for the semiparametric estimator based on a
quadratic expansion of the underlying estimating equation. The
key idea is to relax the requirement that the convergence rate of
the nonparametric estimator be faster than n1/4, and to rely in-
stead on a quadratic expansion to tease out further information
about the dependence of the semiparametric estimator on its
nonparametric ingredient, thereby improving upon the conven-
tional (first-order) distributional approximation available in the
literature. Although our idea leads to an improved understand-
ing of the differences between linear and nonlinear functionals
of nonparametric estimators in some generality, we focus at-
tention on weighted average derivatives to keep the results as
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interpretable as possible, and because this estimand is popular
in theoretical and empirical works. Indeed, it should be con-
ceptually straightforward to apply the methodology employed
herein to other kernel-based semiparametric m-estimators at the
expense of more considerable notation and technicalities.

We obtain several new results for the kernel-based weighted
average derivatives estimator. First, under standard kernel and
bandwidth conditions we establish asymptotic linearity of the es-
timator and consistency of its associated “plug-in” variance es-
timator under a weaker-than-usual moment condition on the de-
pendent variable. Indeed, the moment condition imposed would
appear to be (close to) minimal, suggesting that these results
may be of independent theoretical interest in the specific con-
text of weighted average derivatives. More broadly, the results
(and their derivation) may be of interest as they are achieved by
judicial choice of estimator, and by employing a new uniform
law of large numbers specifically designed with consistency
proofs in mind.

Second, we also establish asymptotic linearity of the weighted
average derivative estimator under weaker-than-usual band-
width conditions. This relaxation of bandwidth conditions is
of practical usefulness because it permits the employment of
kernels of lower-than-usual order (and, relatedly, enables us to
accommodate unknown functions of lower-than-usual degree
of smoothness). More generally, the derivation of these results
may be of interest because of its “generic” nature and because of
its ability to deliver an improved understanding of the distribu-
tional properties of other semiparametric estimators that depend
nonlinearly on a nonparametric component.

These results are based on a stochastic expansion retaining a
“quadratic” term that is treated as a “remainder” term in con-
ventional derivations. Retaining this term not only permits the
relaxation of sufficient (bandwidth) conditions for asymptotic
linearity, but also enables us to establish necessity of these suf-
ficient conditions in some cases and, most importantly, to char-
acterize the consequences of further relaxing the bandwidth
conditions. Indeed, the third (and possibly most important) type
of result we obtain shows that in general the nonlinear depen-
dence on a nonparametric estimator gives rise to a nontrivial
“bias” term in the stochastic expansion of the semiparametric
estimator. Being a manifestation of the well-known curse of
dimensionality of nonparametric estimators, this “nonlinearity
bias” is a generic feature of nonlinear functionals of nonpara-
metric estimators whose presence can have an important impact
on distributional properties of such functionals.

Because the “nonlinearity bias” is due to the (large) vari-
ance of nonparametric estimators, attempting to remove it by
means of conventional bias reduction methods aimed at reduc-
ing “smoothing” bias, such as increasing the order of the kernel,
does not work. Nevertheless, it turns out that this “nonlinearity
bias” admits a polynomial expansion (in the bandwidth), sug-
gesting that it should be amenable to elimination by means of
the method of generalized jackknifing (Schucany and Sommers
1977). Making this intuition precise is the purpose of the final
type of result presented herein. Although some details of this
result are specific to our weighted average derivative estimator,
the main message is of much more general validity. Indeed,
an inspection of the derivation of the result suggests that the
fact that removal of “nonlinearity bias” can be accomplished by

means of generalized jackknifing is a property shared by most
(if not all) kernel-based semiparametric two-step estimators.

The article proceeds as follows. After briefly discussing the
related literature in the remaining of this section, Section 2
introduces the model and estimator(s) under study. Our main
theoretical results are presented in Section 3, including imple-
mentational recommendations for the estimators. Numerical re-
sults from a Monte Carlo and an empirical illustration are given
in Section 4. Section 5 offers concluding remarks. Appendix
A contains proofs of the theoretical results, while Appendix B
contains some auxiliary results (of possibly independent inter-
est) about uniform convergence of kernel estimators. The online
supplemental material includes details on the theoretical proofs
and other analytic derivations, and further results from the sim-
ulation study.

1.1 Related Literature

Our results are closely related and contribute to the impor-
tant literature on semiparametric averaged derivatives (Stoker
1986; see also, e.g., Härdle and Stoker 1989; Härdle et al. 1992;
Horowitz and Härdle 1996), in particular shedding new light
on the problem of semiparametric weighted average deriva-
tive estimation (Newey and Stoker 1993). This problem has
wide applicability in statistics and econometrics, as we further
discuss in the following section. This problem is conceptually
and analytically different from the problem of semiparametric
density-weighted average derivatives because a kernel-based
density-weighted average derivative estimator depends on the
nonparametric ingredient in a linear way (Powell, Stock, and
Stoker 1989), while the kernel-based weighted average deriva-
tive estimator has a nonlinear dependence on a nonparamet-
ric estimator. As a consequence, the alternative first-order dis-
tributional approximation obtained by Cattaneo, Crump, and
Jansson (2010, in press) for a kernel-based density-weighted
average derivatives estimator is not applicable to the estimator
studied herein and our main findings are qualitatively different
from those obtained in our earlier work. Indeed, a crucial finding
in this article is that considering “small bandwidth asymptotics”
for the kernel-based weighted average derivative estimator leads
to a first-order bias contribution to the distributional approxi-
mation (rather than a first-order variance contribution, as in the
case of the kernel-based density-weighted average derivative es-
timator), which in turn requires bias-correction of the estimator
(rather than adjustment of the standard-error estimates, as in the
case of the kernel-based density-weighted average derivative
estimator).

From a more general perspective, our findings are also
connected to other results in the semiparametric literature.
Mammen (1989) studied the large sample properties of a nonlin-
ear least-squares estimator when the (effective) dimension of the
parameter space is allowed to increase rapidly, and found a first-
order bias effect qualitatively similar to the one characterized
herein. The “nonlinearity bias” we encounter is also analogous
in source to the so-called “degrees of freedom bias” discussed
by Ichimura and Linton (2005) for the case of a univariate semi-
parametric estimation problem, but due to the different nature
of our asymptotic experiment its presence has first-order conse-
quences herein. Nonnegligible biases in models with covariates
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of large dimension (i.e., “curse of dimensionality” effects of
first order) were also found by Abadie and Imbens (2006), but
in the case of their matching estimator the bias in question
does not seem to be attributable to nonlinearities. Finally, the
recent work by Robins et al. (2008) on higher-order influence
functions is also related to our results insofar as it relaxes the
underlying convergence rate requirement for the nonparamet-
ric estimator. Whereas Robins et al. (2008) were motivated by
a concern about the plausibility of the smoothness conditions
needed to guarantee existence of n1/4-consistent nonparamet-
ric estimators in models with large-dimensional covariates, our
work seeks to relax this underlying convergence rate require-
ment for the nonparametric estimator to improve the accuracy
of the distributional approximation even in cases where lots of
smoothness is assumed. Indeed, our results highlight the pres-
ence of a leading, first-order bias term that is unrelated to the
amount of smoothness assumed (but clearly related to the di-
mensionality of the covariates).

2. PRELIMINARIES

2.1 Model and Estimand

We assume that zi = (yi, x′
i)

′, i = 1, . . . , n, are iid observed
copies of a vector z = (y, x′)′, where y ∈ R is a dependent vari-
able and x = (x1, x2, . . . , xd )′ ∈ Rd is a continuous explanatory
variable with density f (·). A weighted average derivative of the
regression function g(x) = E[y|x] is defined as

θ = E

[
w(x)

∂

∂x
g(x)

]
, (1)

where w(·) is a known scalar weight function. (Further restric-
tions on w(·) will be imposed below.) As illustrated by the
following examples, θ is an estimand that has been widely con-
sidered in both theoretical and empirical works.

Example 1. Semilinear Single-Index Models. Let x =
(x′

1, x′
2)′ and g(x) = G(x′

1β, x2) with G(·) unknown and β

the parameter of interest. Partition θ conformably with x as
θ = (θ ′

1, θ
′
2)′. Under appropriate assumptions, β is proportional

to θ1 because

θ1 = E
[
w(x)Ġ1(x′

1β, x2)
]
β, Ġ1(u, x2) = ∂

∂u
G(u, x2).

This setup covers several problems of interest. For example,
single-index limited dependent variable models (e.g., discrete
choice, censored and truncated models) are included with x1 = x
and G(·) the so-called link function. Another class of problems
fitting in this example are partially linear models of the form
G(x′

1β, x2) = φ1(x′
1β + φ2(x2)) with φ1(·) a link function and

φ2(·) another unknown function. For further discussion on these
and related examples, see Stoker (1986), Härdle and Stoker
(1989), Newey and Stoker (1993), and Powell (1994).

Example 2. Nonseparable Models. Let x = (x′
1, x′

2)′ and
y = m(x1, ε) with m(·) unknown and ε an unobserved random
variable. Under appropriate assumptions, including x1⊥⊥ε | x2,
a population parameter of interest is given by

θ1 = E

[
w(x)

∂

∂x1
m(x1, ε)

]
= E

[
w(x)

∂

∂x1
g(x1, x2)

]
,

which captures the (weighted) average marginal effect of x1 on
m(·) over the population (x′

1, ε)′. As in the previous example,
θ1 is the first component of the weighted average derivative θ

partitioned conformably with x. The parameter θ1 is of inter-
est in policy analysis and treatment effect models. A canon-
ical example is given by the linear random coefficients model
y = β0(ε) + x′

1β1(ε), where the parameter of interest reduces to
θ1 = E

[
w(x)β1(ε)

]
under appropriate assumptions. For further

discussion on averaged derivatives in non-separable models see,
for example, Matzkin (2007), Imbens and Newey (2009), and
Altonji, Ichimura, and Otsu (2012).

Example 3. Applications in Economics. In addition to the ex-
amples discussed above, weighted average derivatives have also
been employed in several specific economic applications that
do not necessarily fit the previous setups. Some examples are:
(i) Stoker (1989) proposed several tests statistics based on av-
eraged derivatives obtained from economic-theory restrictions
such as homogeneity or symmetry of cost functions; (ii) Härdle,
Hildenbrand, and Jerison (1991) developed a test for the law
of demand using weighted-average derivatives; (iii) Deaton and
Ng (1998) employed averaged derivatives to estimate the effect
of a tax and subsidy policy change on individuals’ behavior;
(iv) Coppejans and Sieg (2005) developed a test for nonlinear
pricing in labor markets based on averaged derivatives obtained
from utility maximization; and (v) Campbell (2011) used aver-
aged derivatives to evaluate empirically the simplifying assump-
tion of large market competition without strategic interactions.

2.2 Estimator and Known Results

Newey and Stoker (1993) studied estimands of the form (1)
and gave conditions under which the semiparametric variance
bound for θ is � = E[ψ(z)ψ(z)′], where ψ(·), the pathwise
derivative of θ , is given by

ψ(z) = w(x)
∂

∂x
g(x) − θ + [y − g(x)] s(x),

s(x) = − ∂

∂x
w(x) + w(x)�(x), �(x) = −∂f (x)/∂x

f (x)
.

The following assumption, which we make throughout the
article, guarantees existence of the parameter θ and semipara-
metrically efficient estimators thereof.

Assumption 1. (a) For some S ≥ 2, E[|y|S] < ∞ and
E[|y|S |x]f (x) is bounded. (b) � = E[ψ(z)ψ(z)′] is positive
definite. (c) w is continuously differentiable, and w and its first
derivative are bounded. (d) infx∈W f (x) > 0, where W = {x ∈
Rd : w(x) > 0}. (e) For some Pf ≥ 2, f is (Pf + 1) times dif-
ferentiable, and f and its first (Pf + 1) derivatives are bounded
and continuous. (f) g is continuously differentiable, and e
and its first derivative are bounded, where e(x) = f (x)g(x).
(g) lim‖x‖→∞[f (x) + |e(x)|] = 0, where ‖ · ‖ is the Euclidean
norm.

The restrictions imposed by Assumption 1 are fairly standard
and relatively mild, with the possible exception of the “fixed
trimming” condition in part (d). This condition simplifies the
exposition in our article, allowing us to avoid tedious technical
arguments. It may be relaxed to allow for nonrandom asymp-
totic trimming, but we decided not to pursue this extension to
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1246 Journal of the American Statistical Association, December 2013

avoid cumbersome notation and other associated technical dis-
tractions.

Under Assumption 1, it follows from integration by parts that
θ = E[ys(x)]. A kernel-based analog estimator of θ is therefore
given by

θ̂n(Hn) = 1

n

n∑
i=1

yi ŝn(xi ; Hn),

ŝn(xi ; Hn) = − ∂

∂x
w(x) − w(x)

∂f̂n(x; Hn)/∂x

f̂n(x; Hn)
,

where

f̂n(x; Hn) = 1

n

n∑
j=1

KHn
(x − xj ), KH(x) = |H|−1 K(H−1x),

for some kernel K : Rd → R and some sequence Hn of diago-
nal, positive definite d × d (bandwidth) matrices. By not requir-
ing Hn ∝ Id our results allow for different bandwidth sequences
for each coordinate of the covariates x ∈ Rd . (We thank the As-
sociate Editor for encouraging us relax the restriction Hn ∝ Id

imposed in an earlier version of the article.)
As defined, θ̂n = θ̂n(Hn) depends on the user-chosen objects

K and Hn, but because our main interest is in the sensitivity of
the properties of θ̂n with respect to the bandwidth matrix Hn, we
suppress the dependence of θ̂n on K in the notation (and make
the dependence on Hn explicit).

The following assumption about the kernel K will be assumed
to hold. [In Assumption 2(c), and elsewhere in the article, we use
the notational convention that if l = (l1, l2, . . . , ld )′ ∈ Zd

+ and if
u = (u1, u2, . . . , ud )′ ∈ Rd , then ul denotes u

l1
1 u

l2
2 , . . . , u

ld
d .]

Assumption 2. (a) K is even, bounded, and twice dif-
ferentiable, and its first two derivatives are bounded.
(b)

∫
Rd ‖K̇(u)‖du < ∞, where K̇(u) = ∂K(u)/∂u. (c) For

some PK ≥ 2,
∫

Rd |K(u)|(1 + ‖u‖PK )du < ∞ and for l =
(l1, . . . , ld )′ ∈ Zd

+,∫
Rd

ulK(u)du =
{

1 if l1 = · · · = ld = 0

0 if 0 < l1 + · · · + ld < PK

.

(d)
∫

R K̄(u)du < ∞, where K̄(u) = sup‖r‖≥u ‖∂(K(r), K̇(r)′)/
∂r‖.

With the possible exception of Assumption 2(d), the restric-
tions imposed on the kernel are fairly standard. Assumption
2(d) is inspired by Hansen (2008) and holds if K has bounded
support or if K is a Gaussian density-based higher-order kernel.

If Assumptions 1 and 2 hold (with Pf and PK large enough),
it is easy to give conditions on the bandwidth vector Hn under
which θ̂n is asymptotically linear with influence function ψ(·).
For instance, proceeding as by Newey (1994a, 1994b) it can be
shown that if Assumptions 1 and 2 hold and if

nλmax
(
H2P

n

) → 0, P = min(Pf , PK ) (2)

and

n |Hn|2 λmin
(
H4

n

)
(log n)2 → ∞, (3)

then

θ̂n(Hn) − θ = 1

n

n∑
i=1

ψ(zi) + op

(
n−1/2

)
, (4)

where in conditions (3) and (2), and elsewhere in the article,
λmin(·) and λmax(·) denote the smallest and largest eigenvalue,
respectively, of the argument. Moreover, under the same condi-
tions, the variance � is consistently estimable, as we discuss in
more detail in Section 3.4.

The lower bound on (the diagonal elements of) Hn implied by
condition (3) helps ensure that the estimation error of the non-
parametric estimator f̂n is op(n−1/4) in an appropriate (Sobolev)
norm, which in turn is a high-level assumption featuring promi-
nently in Newey’s (1994a) work on asymptotic normality of
semiparametric m-estimators and in more recent refinements
thereof (see, e.g., Chen 2007, for references).

This article explores the consequences of employing band-
widths that are “small” in the sense that Equation (3) is violated.
Three main results will be derived. The first result, given in The-
orem 1, gives sufficient conditions for Equation (4) that involve
a weaker lower bound on Hn than Equation (3). For d ≥ 3, the
weaker lower bound takes the form n|Hn|2 → ∞. The second
result, given in Theorem 2, shows that n|Hn|2 → ∞ is also nec-
essary for Equation (4) to hold (if d ≥ 3). More specifically,
Theorem 2 finds that if d ≥ 3, then θ̂n has a nonnegligible bias
when n|Hn|2 � ∞. The third result, given in Theorem 3, shows
that while n|Hn|2 → ∞ is necessary for asymptotic linearity of
θ̂n (when d ≥ 3), a bias-corrected version of θ̂n enjoys the prop-
erty of asymptotic linearity under the weaker condition

n |Hn| 3
2 λmin(Hn)

(log n)3/2
→ ∞. (5)

In addition, we provide some implementational recommen-
dations. First, in Section 3.3 we derive an “optimal” choice
of Hn based on an asymptotic expansion of the (approximate)
mean squared error of θ̂n(Hn) and used this bandwidth choice
to construct a feasible implementation of the bias-corrected ver-
sion of θ̂n proposed in Theorem 3. Second, in Section 3.4,
Theorem 4 shows that a modest strengthening of Assumption
1(a) is sufficient to obtain consistency of the conventional plug-
in standard-error estimator even when the lower bound on the
bandwidth is given by Equation (5).

Remark 1. (i) Most statements involving Hn can be simpli-
fied somewhat in the important special case when Hn ∝ Id ,
as |Hn| = hd

n and λmin(Hp
n ) = λmax(Hp

n ) = h
p
n (for any p ∈ R)

when Hn = hnId . For instance, conditions (2) and (5) become
nhP

n → 0 and nh
3d/2+1
n / (log n)3/2 → ∞, respectively, when

Hn = hnId . (ii) Imposing Equations (2) and (3), and mak-
ing assumptions similar to Assumptions 1 and 2, Newey and
McFadden (1994, pp. 2212–2214) established asymptotic lin-
earity of the alternative kernel-based estimator

θ̌n = 1

n

n∑
i=1

w(xi)
∂

∂x
ĝn(xi),

ĝn(x) = 1

n

n∑
j=1

KHn
(x − xj )yj/f̂n(x; Hn).
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Cattaneo, Crump, and Jansson: Generalized Jackknife Estimators 1247

Their analysis (assumes Hn = hnId and) requires S ≥ 4 to han-
dle the presence of ĝn. The fact that θ̂n does not involve ĝn

enables us to develop distribution theory for it under the seem-
ingly minimal condition S = 2.

3. THEORETICAL RESULTS

Validity of the stochastic expansion (Equation (4)) can be

established by exhibiting an approximation θ̂
A

n (say) to θ̂n sat-
isfying the following trio of conditions:

θ̂n(Hn) − θ̂
A

n = op(n−1/2), (6)

θ̂
A

n − E
[
θ̂

A

n

] = 1

n

n∑
i=1

ψ(zi) + op(n−1/2), (7)

E
[
θ̂

A

n

]− θ = o(n−1/2). (8)

Variations of this approach have been used in numerous papers,

the typical choice being to obtain θ̂
A

n by “linearizing” θ̂n with
respect to the nonparametric estimator f̂n and then establishing
Equation (6) by showing in particular that the estimation error
of f̂n is op(n−1/4) in a suitable norm. This general approach is
now well-established in semiparametrics (see, e.g., Newey and
McFadden 1994, Sec. 8; Chen 2007, Sec. 4; Ichimura and Todd
2007, Sec. 7, and references therein).

3.1 Asymptotic Linearity: Linear versus Quadratic
Approximations

In the context of averaged derivatives, “linearization”

amounts to setting θ̂
A

n equal to

θ̂
∗
n(Hn) = 1

n

n∑
i=1

yi ŝ∗
n(xi ; Hn),

where

ŝ∗
n(x; Hn) = s(x) − w(x)

f (x)

[
∂

∂x
f̂n(x; Hn) + �(x)f̂n(x; Hn)

]
is obtained by linearizing ŝn with respect to f̂n. With this choice
of θ̂

A

n , conditions (6)–(8) will hold if Assumptions 1 and 2
are satisfied and if Equations (2) and (3) hold. In particular,
Equation (3) serves as part of what would appear to be the
best-known sufficient condition for the estimation error of f̂n

(and its derivative) to be op(n−1/4), a property that in turn is
used to establish Equation (6) when θ̂

A

n = θ̂
∗
n(Hn).

In an attempt to establish Equation (6) under a bandwidth con-

dition weaker than Equation (3), we set θ̂
A

n equal to a “quadratic”
approximation to θ̂n(Hn) given by

θ̂
∗∗
n (Hn) = 1

n

n∑
i=1

yi ŝ∗∗
n (xi ; Hn),

where

ŝ∗∗
n (x; Hn) = ŝ∗

n(x; Hn) + w(x)

f (x)2
[f̂n(x; Hn)

− f (x)]

[
∂

∂x
f̂n(x; Hn) + �(x)f̂n(x; Hn)

]
.

The use of a quadratic approximation to θ̂n gives rise to a
“cubic” remainder in Equation (6), suggesting that it suffices

to require that the estimation error of f̂n (and its derivative) be
op(n−1/6). In fact, the proof of the following result shows that
the somewhat special structure of the estimator (i.e., ŝn is linear
in the derivative of f̂n) can be exploited to establish sufficiency
of a slightly weaker condition.

Theorem 1. Suppose Assumptions 1 and 2 are satisfied and
suppose Equation (2) holds. Then Equation (4) is true if either
of the following conditions is satisfied:

(i) d = 1 and n|Hn|3 → ∞,
(ii) d = 2 and n|Hn|2/(log n)3/2 → ∞, or

(iii) d ≥ 3 and n|Hn|2 → ∞.

The proof of Theorem 1 verifies Equations (6)–(8) for θ̂
A

n =
θ̂

∗∗
n (Hn). Because the lower bounds on Hn imposed in cases

(i) through (iii) are weaker than Equation (3) in all cases, work-
ing with θ̂

∗∗
n when analyzing θ̂n has the advantage that it enables

us to weaken the sufficient conditions for asymptotic linearity to
hold on the part of θ̂n. Notably, the existence of a bandwidth se-
quence satisfying the assumptions of Theorem 1 holds whenever
P > d, a weaker requirement than the restriction P > d + 2
implied by the conventional conditions (2) and (3). In other
words, Theorem 1 justifies the use of kernels of lower order,
and thus requires less smoothness on the part of the density f ,

than do analogous results obtained using θ̂
A

n = θ̂
∗
n(Hn). More-

over, working with θ̂
∗∗
n enables us to derive necessary conditions

for Equation (4) in some cases.

Theorem 2. Suppose Assumptions 1 and 2 are satisfied and
suppose Equations (2) and (5) hold.

(a) Small bandwidth bias:

E[θ̂
∗∗
n (Hn)]−θ = 1

n |Hn| [B0 + o(1)] + o(n−1/2), (9)

where

B0 =
(

−K(0d )Id +
∫

Rd

[
K(u)2Id + K(u)K̇(u)u′] du

)
×
∫

Rd

g(r)w(r)�(r)dr.

(b) Asymptotic Linearity: If either (i) d = 1 and n|Hn|3 →
∞ or (ii) d ≥ 2, then

θ̂n(Hn) − E[θ̂
∗∗
n (Hn)] = 1

n

n∑
i=1

ψ(zi) + op(n−1/2).

The first part of Theorem 2 is based on an asymptotic expan-
sion of the approximate bias E[θ̂

∗∗
n (Hn)] − θ and shows that, in

general, the condition n|Hn|2 → ∞ is necessary for Equation

(8) to hold when θ̂
A

n = θ̂
∗∗
n (Hn). (We know of no “popular” ker-

nels and/or “plausible” examples of g(·), w(·), and �(·) for which
B0 = 0.) The second part of Theorem 2 verifies Equations (6)
and (7) for θ̂

A

n = θ̂
∗∗
n (Hn) and can be combined with the first

part to yield the result that the sufficient condition n|Hn|2 → ∞
obtained in Theorem 1(iii) is also necessary (in general) when
d ≥ 3.
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To interpret the matrixB0 in the (approximate) bias expression
(9), it is instructive to decompose it as B0 = B∗

0 + B∗∗
0 , where

B∗
0 = −K(0d )

∫
Rd

g(r)w(r)�(r)dr,

and

B∗∗
0 =

(∫
Rd

[
K(u)2Id + K(u)K̇(u)u′] du

)∫
Rd

g(r)w(r)�(r)dr.

The term B∗
0 is a “leave in” bias term arising because each

ŝn(xi ; Hn) employs a nonparametric estimator ŝn that uses the
own observation xi . The other bias term, B∗∗

0 , is a “nonlinearity”
bias term reflecting the fact that ŝ∗∗

n involves a nonlinear function
of f̂n. The magnitude of this nonlinearity bias is n−1|Hn|−1. This
magnitude is exactly the magnitude of the pointwise variance of
f̂n, which is no coincidence because ŝ∗∗

n involves a term that is
“quadratic” in f̂n. (The approximation ŝ∗∗

n also involves a cross-
product term in f̂n and its derivative that, as shown in the proof
of Lemma A-3, gives rise to a bias term of magnitude n−1|Hn|−1

when K is even.)

Remark 2. (i) The leave-in-bias can be avoided simply by
employing a “leave-one-out” estimator of f when forming ŝn.
(ii) Merely removing leave-in-bias does not automatically ren-
der θ̂n asymptotically linear unless n|Hn|2 → ∞, however, as
the nonlinearity bias of the leave-one-out version of θ̂n is identi-
cal to that of θ̂n itself. (iii) Manipulating the order of the kernel
(PK ) does not eliminate the nonlinearity bias either, as the mag-
nitude, n−1|Hn|−1, of the bias is invariant with respect to the
order of the kernel.

3.2 Asymptotic Linearity Under Nonstandard Conditions

The second part of Theorem 2 suggests that if d ≥ 3, then a
bias-corrected version of θ̂n might be asymptotically linear even
if the condition n|Hn|2 → ∞ is violated. Indeed, the method of
generalized jackknifing can be used to arrive at an estimator
θ̃n (say) whose (approximate) bias is sufficiently small also
when n|Hn|2 � ∞. This approach is based on the following
refinement of Theorem 2(a).

Lemma 1. Suppose the assumptions of Theorem 2 hold.
Then, for any c > 0,

E[θ̂
∗∗
n (cHn)] − θ = c−d

n|Hn|

⎡⎣B0 +
�(P−1)/2∑

j=1

c2jBj (Hn)

⎤⎦
+ o(n−1/2), (10)

where {Bj (·) : 1 ≤ j ≤ �(P − 1)/2} are functions depending
only on the kernel function and the data-generating process.
(The {Bj (·)} are defined in Lemma A-3 in the Appendix.)

Accordingly, let J be a positive integer with J < 1 + d/2, let
c = (c0, . . . , cJ )′ ∈ RJ+1

++ be a vector of distinct constants with
c0 = 1, and define⎛⎜⎜⎜⎜⎝

ω0(c)

ω1(c)
...

ωJ (c)

⎞⎟⎟⎟⎟⎠ =

⎛⎜⎜⎜⎜⎜⎝
1 1 · · · 1

1 c−d
1 · · · c−d

J

...
...

. . .
...

1 c
2(J−1)−d
1 · · · c

2(J−1)−d
J

⎞⎟⎟⎟⎟⎟⎠
−1⎛⎜⎜⎜⎜⎝

1

0
...

0

⎞⎟⎟⎟⎟⎠ .

It follows from Equation (10) that if the assumptions of Theorem
2 hold and if J ≥ (d − 2)/8, then

J∑
j=0

ωj (c)E[θ̂
∗∗
n (cj Hn)] − θ = o(n−1/2).

As a consequence, we have the following result about the (gen-
eralized jackknife) estimator

θ̃n(Hn, c) =
J∑

j=0

ωj (c)θ̂n(cj Hn).

Theorem 3. Suppose Assumptions 1 and 2 are satisfied and
suppose Equations (2) and (5) hold. If (d − 2)/8 ≤ J < 1 +
d/2, then

θ̃n(Hn, c) − θ = 1

n

n∑
i=1

ψ(zi) + op(n−1/2)

if either (i) d = 1 and n|Hn|3 → ∞ or (ii) d ≥ 2.

Theorem 3 gives a simple recipe for constructing an estimator
of θ that is semiparametrically efficient under relatively mild
restrictions on the rate at which the bandwidth Hn vanishes.

Remark 3. (i) An alternative, and perhaps more conven-
tional, method of bias correction would employ (nonparamet-
ric) estimators of B0 and {Bj (·)} and subtract an estimator of
E[θ̂

∗∗
n (Hn)] − θ from θ̂n(Hn). In our view, generalized jackknif-

ing is attractive from a practical point of view precisely because
there is no need to explicitly (characterize and) estimate com-
plicated functionals such as B0 and {Bj (·)}. (ii) Our results
demonstrate by example that a more nuanced understanding of
the bias properties of θ̂n can be achieved by working with a
“quadratic” (as opposed to “linear”) approximation to it. It is
conceptually straightforward to go further and work with a “cu-
bic” approximation (say) to θ̂n. Doing so would enable a further
relaxation of the bandwidth condition at the expense of a more
complicated “bias” expression, but would not alter the fact that
generalized jackknifing could be used to eliminate also the bias
terms that become nonnegligible under the relaxed bandwidth
conditions. The simulation evidence presented in Section 4 sug-
gests that eliminating the biases characterized in Equation (10)
suffices for the purposes of rendering the bias of the estimator
negligible relative to its standard deviation in many cases, so for
brevity we omit results based on a “cubic” approximation to θ̂n.

3.3 Tuning Parameters Choices

We briefly discuss an implementation approach for the point
estimators θ̂n(Hn) and θ̃n(Hn; c), focusing in particular on
choosing Hn and c.

First, we discuss the choice of bandwidth Hn. With minor
additional effort, the derivations upon which our results are
based may be used to obtain an asymptotic expansion of the
mean squared error (MSE) of θ̂

∗∗
n (Hn), the “quadratic” ap-

proximation to θ̂n(Hn). [In turn, this approximation can be
used to justify a second-order stochastic expansion of the
estimator θ̂n(Hn).] It follows from Lemmas A-2 and A-3
in the appendix that the variance and bias of θ̂

∗∗
n (Hn) sat-

isfy, respectively, V [θ̂
∗∗
n (Hn)] ≈ n−1� and E[θ̂

∗∗
n (Hn)] − θ ≈
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n−1|Hn|−1B0 + S(Hn), where S(Hn) = O(λmax(HP
n )) is the

“smoothing” bias of θ̂
∗∗
n (Hn) (see Lemma A-3(a) for the exact

formula of S(·)). In these approximations only leading terms
have been retained on the right hand side, and the correspond-
ing remainder terms are of smaller order than the square of the
leading term(s) in the bias expansion. As a consequence, choos-
ing the bandwidth Hn in an attempt to make (approximate)
MSE small amounts to selecting a value of Hn for which the
outer product of the leading terms of E[θ̂

∗∗
n (Hn)] − θ is small:

minHn
AMSE[θ̂

∗∗
n (Hn)], where

AMSE[θ̂
∗∗
n (Hn)] =

( B0

n|Hn| + S(Hn)

)( B0

n|Hn| + S(Hn)

)′
.

(11)

Unfortunately, this problem does not have a (closed-form) so-
lution in general, but can usually be solved numerically.

If the same bandwidth hn is used for each coordinate,
then Hn = hnId and the approximate bias expression becomes
n−1h−d

n B0 + hP
n S(Id ). Minimizing the asymptotic order of this

expression requires hn ∝ n−1/(P+d), a rate of decay that is per-
mitted by our main results. (Bandwidth sequences of this type
violate the conventional condition (3) unless P is large enough.)
For example, when the object of main interest is a linear com-
bination of the form a′θ (for some a ∈ Rd ), and a′B0 �= 0 and
a′S(Id ) �= 0, then AMSE[a′θ̂

∗∗
n (hnId )] is minimized by setting

h∗
n =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

( ∣∣a′B0

∣∣
|a′S (Id )|

1

n

) 1
P+d

if sgn(a′B0) �= sgn(a′S(Id ))(
d

P

∣∣a′B0

∣∣
|a′S (Id )|

1

n

) 1
P+d

if sgn(a′B0) = sgn(a′S(Id ))

.

Implementation of the “optimal” bandwidth choice(s) based
on minimizing AMSE[θ̂

∗∗
n (Hn)] (or some variant thereof) re-

quires knowledge or estimation of the constants underlying B0

and S(In). A natural approach is to estimate these constants
nonparametrically, using some preliminary choices of tuning
parameters to construct the corresponding nonparametric esti-
mators. This approach is standard and readily applicable, but
requires constructing several (preliminary) nonparametric esti-
mators.

A simpler alternative is to construct a Silverman-style rule-
of-thumb (ROT) bandwidth estimator of Hn. We derive three
ROT bandwidth choices under the following assumptions:
(i) K(u) = ∏d

j=1 k(uj ) and P even, (ii) f (x) = ∏d
j=1

φ(xj/σj )/σj with φ(x) the standard Gaussian density, (iii)
g(x) = x′β, and (iv) w(x) = f (x). The supplemental appendix
includes all the derivations, and a few additional technical as-
sumptions not listed here. Using these assumptions, we find
simple expressions for B0 and S(Id ), which depend only on
the unknown but easy-to-estimate constants (σ1, σ2, . . . , σd )′

and β. We then employ these expressions to describe ROT
bandwidth choices based on the following three problems:
(i) minhn

AMSE [a′θ̂
∗∗
n (hnId )], (ii) minhn

tr(AMSE[θ̂
∗∗
n (hnId )]),

and (iii) minHn
tr(AMSE[θ̂

∗∗
n (Hn)]). [We did not characterize the

case minHn
AMSE[a′θ̂

∗∗
n (Hn)] because some of the associated

constants are zero.] For example, the ROT bandwidth choice

based on AMSE[a′θ̂
∗∗
n (hnId )] with a = (1, 0, 0, . . . , 0)′ ∈ Rd is

h∗
ROT-1d,n

=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
(

σP
1

∏d
l=1 σl

|CB|
|CSH|

1

n

) 1
P+d

if sgn(CB) �= sgn(CSH)(
σP

1

∏d
l=1 σl

d

P

|CB|
|CSH|

1

n

) 1
P+d

if sgn(CB) = sgn(CSH)

,

where CSH= (−1)3P/221−d−P π−d/2
∫

R uP k(u)du/�(P/2) and
CB = −k(0)d + 1

2 (
∫

R k(u)2du)d . If, in addition, σ = σ1 =
· · · = σd , then we obtain h∗

ROT-1d,n ∝ σn−1/(P+d). The supple-
mental appendix provides details on the ROT bandwidth choices
mentioned before. We explore the performance of all three ROT
choices in our simulations in Section 4.

Next, we discuss the choice of c, which requires selecting J
and the constants c1, c2, . . . , cJ . Constructing “optimal” choices
for the tuning parameters of a generalized jackknifing proce-
dure is a hard problem, which has only been solved in special
simple cases (e.g., Schucany 1988). Although it is beyond the
scope of this article to derive “optimal” choices, we may still
offer some heuristic recommendations based on our derivations
and our simulation evidence. First, we recommend to choose
J = �(d − 2)/8�, which amounts to remove only the first few
leading bias terms characterized in Lemma 1. This recommen-
dation is based on the observation that increasing J is likely
to increase the variability of the resulting jackknife estimator
θ̂

∗∗
n (Hn), a fact confirmed in our simulation study. Second, hav-

ing chosen J, a simple implementation approach to choose the
constants c1, c2, . . . , cJ is to construct an evenly spaced grid
starting from the value selected for Hn. Because our results offer
robustness properties for “small” bandwidths, we recommend
to select cJ < cJ−1 < · · · < c2 < c1 < c0 = 1. In our simula-
tions, for instance, 5% reductions in bandwidth (i.e., c0 = 1,
c1 = 0.95, c2 = 0.90, etc.) led to generalized jackknife estima-
tors that performed well in all the designs considered.

3.4 Standard Errors

The emphasis so far has been on demonstrating approximate
normality of θ̂n(Hn) even when the classical conditions imposed
in the literature are not satisfied. For inference purposes, it is
important to also have a consistent standard-error estimator. The
purpose of the following result is to give conditions under which

�̂n = �̂n(Hn) = 1

n

n∑
i=1

ψ̂n(z; Hn)ψ̂n(z; Hn)′ →p �, (12)

where

ψ̂n(z; Hn) = w(x)
∂

∂x
ĝn(x; Hn) − θ̂n(Hn)

+ [y − ĝn(x; Hn)] ŝn(x; Hn),

ĝn(x; Hn) = ên(x; Hn)

f̂n(x; Hn)
, ên(x; Hn)= 1

n

n∑
j=1

KHn
(x − xj )yj .

Theorem 4. Suppose Assumptions 1 and 2 are satisfied and
suppose Equations (2) and (5) hold. Then Equation (12) is true if
either (i) S ≥ 2 and n|Hn|2λmin(H2

n)/(log n)2 → ∞, (ii) d = 1,
n|Hn|3 → ∞ and S > 3, or (iii) S ≥ 3 + 2/d.
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Part (i) of the theorem shows that even under the (seemingly)
minimal moment requirement S = 2, consistency of �̂n holds
under conditions on Hn that are slightly weaker than the conven-
tional conditions (2) and (3). Perhaps more importantly, parts
(ii) and (iii) give conditions (on S) for consistency of �̂n to hold
under the assumptions of Theorem 3.

The proof of Theorem 4 uses a (seemingly) novel uniform
consistency result for kernel estimators (and their derivatives),
given in Appendix B. It does not seem possible to establish
part (i) using existing uniform consistency results for kernel
estimators, as we are unaware of any such results (for objects
like ĝn) that require only S = 2. For instance, assuming Hn =
hnId , a proof of Equation (12) based on Newey (1994b, Lemma
B.1) requires S > 4 − 4/(d + 2) when the lower bound on the
bandwidth is of the form nh2d+2

n /(log n)2 → ∞. (When the
lower bound on the bandwidth is of the form (5), Newey (1994b,
Lemma B.1) can be applied if d ≥ 2 and S > 6 − 8/(d + 2).)

4. NUMERICAL RESULTS

We report the main findings from a simulation study and
an empirical illustration employing the conventional estimator
θ̂n(Hn) and the generalized jackknife estimator θ̃n(Hn, c). The
supplemental appendix includes a complete set of results from
our simulation study.

4.1 Simulation Setup

The Monte Carlo study is based on a Tobit model yi =
ỹi1{ỹi ≥ 0} with ỹi = x′

iβ + εi , so that θ = βE[w(x)(x′β)]
with (·) the standard normal cdf. We set d = 3 and β =
(1, 1, 1)′, and assume that εi ∼iid N (0, 1), i = 1, 2, . . . , n, are
independent of the covariates. We report results for three mod-
els, which depend on the distribution assumed on the vector of
covariates. Specifically, for i = 1, 2, . . . , n, we consider:

Model 1 : xi ∼iid N (03, V1), V1 = I3,

Model 2 : xi ∼iid N (03, V2), V2 =

⎡⎢⎣ 1 1/4 1/4

1/4 2/3 1/4

1/4 1/4 1

⎤⎥⎦ ,

Model 3 : xi ∼iid

[(
χ2

4 − 4
)
/
√

8

N (02, V3)

]
, V3 =

[
2/3 1/4

1/4 1

]
,

with x1,i independent of (x2,i , x3,i)′. Consequently, Model 1
corresponds to independent, equal variance regressors; Model
2 corresponds to correlated, nonequal variance regressors;
and Model 3 corresponds to asymmetric, partially correlated,
nonequal variance regressors. We investigated many other con-
figurations of data-generating processes, and in all cases we
found qualitative similar results to those reported here (and in
the supplemental appendix).

As for the choice of weight function, we use

w(x; γ, κ) =
d∏

j=1

exp

[
− x2κ

j

τ 2κ
j

(
τ 2κ
j − x2κ

j

)] 1{|xj | < τj }.

The parameter κ governs the degree of approximation be-
tween w(·) and the rectangular function, the approxima-
tion becoming more precise as κ grows. (Being discontinu-
ous, w(·) violates Assumption 1(c), so strictly speaking our

theory does not cover the chosen weight function.) For speci-
ficity, we set κ = 2. When the covariates are jointly standard
normal (Model 1), the trimming parameter τj = τ (γ ) is given by
τ (γ ) = −1(1 − (1 − d

√
1 − γ )/2), where γ is the (symmetric)

nominal amount of trimming (i.e., γ = 0.15 implies a nominal
trimming of 15% of the observations). Thus, for Model 1, we set
τj = τ (γ ) with γ = 0.15, while for the other models, we chose
(τ1, τ2, τ3)′ so that approximately 15% of the observations were
trimmed.

We construct the estimators using a Gaussian density-based
multiplicative kernel with P = 4. (Note that since d = 3, choice
of P = 4 would not be available under the conventional condi-
tions (2) and ( 3).) The sample size is set to n = 700 for each
replication, and the number of simulations is set to 5000.

4.2 Simulation Results

We investigate the performance of the estimators θ̂n(Hn) and
θ̃n(Hn, c) for a variety of bandwidth choices, assuming both
a common bandwidth (Hn = hnI3) and different bandwidths
(Hn = diag(h1,n, h3,n, h3,n)). For each case, we consider a grid
of fixed (infeasible) bandwidths and the three ROT (data-driven,
feasible) bandwidth choices introduced in Section 3.3.

The grid of bandwidth choices was constructed as fol-
lows. First, we computed the MSE “optimal” bandwidth
choice for each model in each case, Hn = hnI3 and Hn =
diag(h1,n, h3,n, h3,n), which we denote (abusing notation) H∗

n =
h∗

nI3 or H∗
n = diag(h∗

1,n, h
∗
2,n, h

∗
3,n), respectively. Second, we

constructed a grid of bandwidths by setting Hn = ϑ · H∗
n

with ϑ ∈ {0.50, 0.55, 0.60, . . . , 1.45, 1.50}. Thus, ϑ = 1 corre-
sponds to using the infeasible, MSE optimal bandwidth choice
for each of the six cases considered (three models for either
common bandwidth or different bandwidths).

The ROT bandwidth choices were constructed as fol-
lows. First, we compute the scale of each covariate by ŝj =
min

{
Sj , IQRj /1.349

}
with S2

j and IQRj denoting, respectively,
the sample variance and interquartile range of the jth covari-
ate (j = 1, 2, 3). We also estimated β by least-squares when
needed. We report results for three feasible bandwidth choices:
ROT bandwidth choice for (i) the first element of the AMSE
(ROT-1d) with common bandwidth, (ii) the trace of the AMSE
(ROT-tr) with common bandwidth, and (iii) the trace of the
AMSE (ROT-tr) with different bandwidths. Abusing notation,
we let Ĥn denote any of these ROT bandwidth estimates.

The estimators θ̂n(Hn) and �̂n(Hn) are computed for each
point in the bandwidths grid and for the estimated ROT band-
widths. The generalized jackknife estimator θ̃n(Hn, c) was con-
structed as follows. First, for the bandwidths on the grid,
θ̃n(Hn, c) was computed by employing the adjacent band-
width(s) to Hn on the grid, depending on the specific im-
plementation (discussed next). [This approach implies that
the actual constants c = (c0, c1, . . . , cJ )′ are slightly differ-
ent along the grid.] Second, for the ROT estimated band-
widths, we constructed a five-point grid ϑ · Ĥn with ϑ ∈
{0.90, 0.95, 1, 1.05, 1.10}, and then implemented the estima-
tor θ̃n(Hn, c) at ϑ = 1 according to the specific implementation
(discussed next).

As for the actual implementation of θ̃n(Hn, c), for a given
Hn, we consider five distinct approaches depending on the
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choice of cL ∈ {0, 1, 2} and cU ∈ {0, 1, 2}. Specifically, cL and
cU determine, respectively, how many grid points below and
above the specific value Hn are used to construct θ̃n(Hn, c).
(Hence, J = cL + cU .) In this section we only report results
for cL = 1 and cU = 0, but in the supplemental appendix we
include four other cases: (cL, cU ) = (2, 0), (cL, cU ) = (0, 1),
(cL, cU ) = (1, 1), and (cL, cU ) = (0, 2).

Once the estimators θ̂n(Hn) and θ̃n(Hn, c) are constructed for
each bandwidth value Hn (either on the grid or estimated using
the ROT procedures), we computed MSE, squared-bias, vari-
ance, absolute-bias/square-root-variance, and coverage rates of
95% confidence intervals for each simulation design (Models
1–3, with either common or different bandwidths). In this sec-
tion, for brevity and to facilitate the comparison between the two
estimators, we only report two standardized measures: (i) MSE
relative to MSE when employing the optimal common band-
width, and (ii) absolute-bias divided by square-root of variance.
Thus, we only include three short tables in the article, but the
supplemental appendix includes all the results (30 long tables).

The results are presented in Tables 1–3 for Models 1–3, re-
spectively. In all cases, we found that the generalized jackknife
estimator θ̃n(Hn, c) leads to noticeable reductions in standard-
ized bias, especially for “small” bandwidths (i.e., for smaller
bandwidths than the MSE-optimal ones). This finding is con-
sistent with our theory. In addition, we found that the MSE of
θ̃n(Hn, c) was also reduced in most cases relative to the MSE of
θ̂n(Hn), suggesting that in our simulations employing general-
ized jackknifing does not increase the variability of the resulting
estimator much (relative to the gains in bias-reduction). These
findings highlight the potential sensitivity of the conventional
estimator to perturbations of the bandwidth choice, which, in
the case of the weighted average derivatives, leads to a nontriv-
ial bias for “small” bandwidths, and therefore a need for bias
correction.

Our simulations also suggest that the rule-of-thumb band-
width selectors perform relatively well, providing a simple and
easy-to-implement bandwidth choice. Although it is important
to also consider consistent nonparametric bandwidth choices,
our rule-of-thumbs seem to provide a natural and simple first
bandwidth choice to employ.

We also explored the quality of the normal approximation to
the distribution of the t-statistic (we do not report result here to
conserve space). We found that the distribution of both θ̂n(Hn)
and θ̃n(Hn, c) were close to Gaussian, although the classical
estimator exhibited a nontrivial bias. In contrast, the generalized
estimator θ̃n(Hn, c) was found to be approximately centered
correctly, especially for “small” bandwidths.

Finally, we also explored the empirical coverage rates of the
conventional and bias-corrected t-statistics. We found that nei-
ther the conventional nor the jackknife estimator succeeded in
achieving empirical coverage rates near the nominal rate. This
finding, together with the results reported above, suggests that
the lack of good empirical coverage of the associated confidence
intervals for the generalized jackknife procedure is due to the
poor performance of the classical variance estimator commonly
employed in the literature. Indeed, in the case of the conven-
tional procedure, we found that both the bias properties and the
performance of this variance estimator seem to be at fault for the
disappointing empirical coverage rates found in the simulations.

Table 1. Classical and generalized jackknife estimators, Model 1

θ̂n(Hn) θ̃n(Hn, c)

MSE
MSE∗

BIAS√
VAR

MSE
MSE∗

BIAS√
VAR

(a) Common bandwidth, J = 1, cL = 1, cU = 0
Hn = ϑ · 0.591 · I3

ϑ

0.50 3.744 2.018 1.720 1.092
0.55 2.919 1.750 1.287 0.835
0.60 2.316 1.513 1.050 0.643
0.65 1.887 1.310 0.921 0.510
0.70 1.582 1.141 0.854 0.426
0.75 1.371 1.004 0.820 0.380
0.80 1.225 0.894 0.809 0.365
0.85 1.125 0.810 0.816 0.375
0.90 1.062 0.748 0.837 0.405
0.95 1.021 0.705 0.869 0.452
1.00 1.000 0.679 0.916 0.513
1.05 0.993 0.667 0.979 0.585
1.10 0.998 0.668 1.057 0.665
1.15 1.014 0.681 1.153 0.754
1.20 1.040 0.702 1.266 0.848
1.25 1.072 0.732 1.400 0.947
1.30 1.115 0.770 1.552 1.051
1.35 1.167 0.813 1.723 1.157
1.40 1.227 0.862 1.912 1.265
1.45 1.296 0.915 2.119 1.375
1.50 1.375 0.972 2.340 1.485

Hn = Ĥn

ROT-1d = 0.565 1.019 0.703 0.876 0.459
ROT-tr = 0.564 1.019 0.704 0.876 0.458

(b) Different bandwidths, J = 1, cL = 1, cU = 0
Hn = ϑ · diag(0.591, 0.591, 0.591)

ϑ

0.50 3.744 2.018 1.720 1.092
0.55 2.919 1.750 1.287 0.835
0.60 2.316 1.513 1.050 0.643
0.65 1.887 1.310 0.921 0.510
0.70 1.582 1.141 0.854 0.426
0.75 1.371 1.004 0.820 0.380
0.80 1.225 0.894 0.809 0.365
0.85 1.125 0.810 0.816 0.375
0.90 1.062 0.748 0.837 0.405
0.95 1.021 0.705 0.869 0.452
1.00 1.000 0.679 0.916 0.513
1.05 0.993 0.667 0.979 0.585
1.10 0.998 0.668 1.057 0.665
1.15 1.014 0.681 1.153 0.754
1.20 1.040 0.702 1.266 0.848
1.25 1.072 0.732 1.400 0.947
1.30 1.115 0.770 1.552 1.051
1.35 1.167 0.813 1.723 1.157
1.40 1.227 0.862 1.912 1.265
1.45 1.296 0.915 2.119 1.375
1.50 1.375 0.972 2.340 1.485

Hn = Ĥn

ROT-tr = (0.565, 0.565, 0.565) 1.019 0.703 0.876 0.459

NOTE: (i) columns MSE
MSE∗ report MSE for each estimator divided by MSE of conven-

tional estimator employing optimal common bandwidth; (ii) columns BIAS√
VAR

report ab-
solute bias divided by square root of variance for each estimator; (iii) upper part of
panel (a) reports infeasible optimal bandwidth solving minhn AMSE[a′ θ̂

∗∗
n (hnId )] with

a = (1, 0, 0)′, while upper part of panel (b) reports infeasible optimal bandwidths solving
minHn tr(AMSE[θ̂

∗∗
n (Hn)]); (iv) lower parts of panels (a) and (b) report estimators employ-

ing ROT bandwidth choices, with average estimated bandwidths for each case (ROT-1d and
ROT-tr corresponds to ROT estimates based on AMSE[a′ θ̂

∗∗
n (·)] and tr(AMSE[θ̂

∗∗
n (·)]),

respectively).
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Table 2. Classical and generalized jackknife estimators, Model 2

θ̂n(Hn) θ̃n(Hn, c)

MSE
MSE∗

BIAS√
VAR

MSE
MSE∗

BIAS√
VAR

(a) Common bandwidth, J = 1, cL = 1, cU = 0
Hn = ϑ · 0.58 · I3

ϑ

0.50 2.504 1.323 1.252 0.566
0.55 1.974 1.107 1.069 0.392
0.60 1.619 0.925 0.985 0.278
0.65 1.386 0.778 0.946 0.211
0.70 1.233 0.660 0.931 0.177
0.75 1.136 0.569 0.931 0.168
0.80 1.075 0.500 0.935 0.175
0.85 1.037 0.450 0.946 0.195
0.90 1.015 0.415 0.963 0.226
0.95 1.004 0.393 0.985 0.266
1.00 1.000 0.382 1.013 0.313
1.05 1.004 0.380 1.050 0.366
1.10 1.013 0.387 1.095 0.424
1.15 1.026 0.400 1.149 0.486
1.20 1.043 0.419 1.213 0.552
1.25 1.065 0.443 1.293 0.619
1.30 1.091 0.472 1.377 0.692
1.35 1.123 0.505 1.476 0.766
1.40 1.157 0.540 1.584 0.840
1.45 1.198 0.579 1.705 0.915
1.50 1.244 0.620 1.834 0.991

Hn = Ĥn

ROT-1d = 0.549 1.006 0.396 0.985 0.263
ROT-tr = 0.516 1.019 0.422 0.963 0.222

(b) Different bandwidths, J = 1, cL = 1, cU = 0
Hn = ϑ · diag(0.529, 0.551, 0.529)

ϑ

0.50 3.060 1.501 1.496 0.729
0.55 2.397 1.280 1.200 0.521
0.60 1.929 1.085 1.054 0.370
0.65 1.608 0.919 0.981 0.269
0.70 1.392 0.781 0.946 0.206
0.75 1.246 0.670 0.931 0.172
0.80 1.149 0.581 0.927 0.159
0.85 1.084 0.512 0.931 0.161
0.90 1.043 0.459 0.940 0.175
0.95 1.017 0.420 0.950 0.198
1.00 1.002 0.393 0.968 0.230
1.05 0.994 0.377 0.987 0.268
1.10 0.994 0.369 1.015 0.311
1.15 0.996 0.368 1.047 0.360
1.20 1.004 0.374 1.086 0.412
1.25 1.015 0.386 1.134 0.469
1.30 1.030 0.402 1.192 0.528
1.35 1.052 0.422 1.386 0.547
1.40 1.071 0.448 1.463 0.619
1.45 1.097 0.476 1.420 0.716
1.50 1.127 0.508 1.509 0.788

Hn = Ĥn

ROT-tr = (0.563, 0.484, 0.564) 1.043 0.442 1.017 0.310

NOTE: (i) columns MSE
MSE∗ report MSE for each estimator divided by MSE of conven-

tional estimator employing optimal common bandwidth; (ii) columns BIAS√
VAR

report ab-
solute bias divided by square root of variance for each estimator; (iii) upper part of
panel (a) reports infeasible optimal bandwidth solving minhn AMSE[a′ θ̂

∗∗
n (hnId )] with

a = (1, 0, 0)′, while upper part of panel (b) reports infeasible optimal bandwidths solving
minHn tr(AMSE[θ̂

∗∗
n (Hn)]); (iv) lower parts of panels (a) and (b) report estimators employ-

ing ROT bandwidth choices, with average estimated bandwidths for each case (ROT-1d and
ROT-tr corresponds to ROT estimates based on AMSE[a′ θ̂

∗∗
n (·)] and tr(AMSE[θ̂

∗∗
n (·)]),

respectively).

Table 3. Classical and generalized jackknife estimators, Model 3

θ̂n(Hn) θ̃n(Hn, c)

MSE
MSE∗

BIAS√
VAR

MSE
MSE∗

BIAS√
VAR

(a) Common bandwidth, J = 1, cL = 1, cU = 0
Hn = ϑ · 0.466 · I3

ϑ

0.50 3.318 1.876 1.592 1.037
0.55 2.599 1.664 1.211 0.829
0.60 2.083 1.474 1.003 0.681
0.65 1.716 1.310 0.893 0.588
0.70 1.464 1.173 0.837 0.539
0.75 1.287 1.063 0.813 0.523
0.80 1.170 0.976 0.817 0.531
0.85 1.090 0.912 0.834 0.557
0.90 1.042 0.866 0.865 0.595
0.95 1.010 0.835 0.907 0.643
1.00 1.000 0.819 0.962 0.699
1.05 1.000 0.814 1.031 0.762
1.10 1.010 0.818 1.111 0.832
1.15 1.028 0.832 1.204 0.907
1.20 1.059 0.854 1.315 0.989
1.25 1.093 0.882 1.446 1.076
1.30 1.142 0.917 1.595 1.168
1.35 1.194 0.958 1.768 1.265
1.40 1.260 1.004 1.965 1.366
1.45 1.332 1.055 2.183 1.471
1.50 1.415 1.110 2.429 1.579

Hn = Ĥn

ROT-1d = 0.517 1.010 0.819 1.114 0.831
ROT-tr = 0.506 1.007 0.816 1.083 0.805

(b) Different bandwidths, J = 1, cL = 1, cU = 0
Hn = ϑ · diag(0.491, 0.466, 0.456)

ϑ

0.50 3.228 1.876 1.543 1.033
0.55 2.536 1.661 1.187 0.828
0.60 2.042 1.470 0.997 0.688
0.65 1.692 1.307 0.896 0.604
0.70 1.453 1.173 0.851 0.563
0.75 1.291 1.068 0.837 0.555
0.80 1.180 0.987 0.844 0.571
0.85 1.111 0.928 0.872 0.604
0.90 1.066 0.888 0.913 0.651
0.95 1.045 0.864 0.965 0.707
1.00 1.038 0.853 1.035 0.772
1.05 1.045 0.855 1.118 0.844
1.10 1.062 0.866 1.218 0.924
1.15 1.093 0.887 1.339 1.010
1.20 1.131 0.916 1.481 1.103
1.25 1.180 0.953 1.644 1.202
1.30 1.239 0.996 1.834 1.306
1.35 1.308 1.045 2.048 1.415
1.40 1.391 1.099 2.291 1.527
1.45 1.481 1.158 2.561 1.643
1.50 1.585 1.221 2.851 1.760

Hn = Ĥn

ROT-tr = (0.506, 0.488, 0.555) 0.997 0.796 1.083 0.790

NOTE: (i) columns MSE
MSE∗ report MSE for each estimator divided by MSE of conven-

tional estimator employing optimal common bandwidth; (ii) columns BIAS√
VAR

report ab-
solute bias divided by square root of variance for each estimator; (iii) upper part of
panel (a) reports infeasible optimal bandwidth solving minhn AMSE[a′ θ̂

∗∗
n (hnId )] with

a = (1, 0, 0)′, while upper part of panel (b) reports infeasible optimal bandwidths solving
minHn tr(AMSE[θ̂

∗∗
n (Hn)]); (iv) lower parts of panels (a) and (b) report estimators employ-

ing ROT bandwidth choices, with average estimated bandwidths for each case (ROT-1d and
ROT-tr corresponds to ROT estimates based on AMSE[a′ θ̂

∗∗
n (·)] and tr(AMSE[θ̂

∗∗
n (·)]),

respectively).
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Further investigation into alternative variance estimation proce-
dures, although beyond the scope of this article, is underway.

4.3 Empirical Illustration

To complement the simulation evidence reported above,
we undertake a small empirical illustration that shows how
our methods perform using real data. We focus on estimat-
ing the average marginal return to ability, employing a sub-
set of the dataset constructed by Lang and Manove (2011).
[The dataset is available at http://www.aeaweb.org/articles.php?
doi=10.1257/aer.101.4.1467.]

The data comes from the National Longitudinal Survey of
Youth (NLSY79), which follows individuals born in 1957–1964.
This (panel) dataset provides not only demographic, economic,
and educational information, but also includes a well-known
proxy for ability (beyond schooling and work experience) for
the individuals in the sample. Specifically, this data includes the
results from the Armed Forces Qualification Test (AFQT) for
those individuals who took the test in 1980, which provides a
close-to-continuous measure that may be understood as a proxy
for their intrinsic “ability.” This data has been used repeatedly to
either control for or estimate the effects of “ability” in empirical
studies in economics and related fields. For more details on this
data and a discussion on the related literature, see Lang and
Manove (2011) and references therein.

In our empirical illustration, we focus on estimating the
(weighted) average marginal effect of an increase in AFQT on
earnings while controlling for two other observed characteris-
tics. In particular, we let yi = log(WAGEi) where WAGEi de-
notes the mean adjusted hourly wages in 1996–2000 for individ-
ual i, and xi = (AFQTi , SCHSZi , TEACHWi)′ where AFQTi

denotes the (adjusted) standardized AFQT score for individual
i, SCHSZi denotes the school size that individual i attended to,
and TEACHWi denotes the average teacher salary in the school
that individual i attended to. Our parameter of interest is

θ1 = E

[
w(xi)

∂

∂AFQTi

g(AFQTi , SCHSZi , TEACHWi)

]
,

where g(xi) = E[yi |xi]. To conduct the estimation, we restrict
our sample to the subset of 15–19-year-old white males with
12–16 years of schooling in 1979. The final sample size is
n = 802 individuals. Figure 1 plots nonparametric smoothing

Table 4. Average marginal effect of ability on earnings (c = (1, 0.95))

Coef. Std. Err.

θ̂n(Ĥn) θ̃n(Ĥn, c) �̂n(Ĥn)

Common bandwidth: ROT-1d
Ĥn = 0.48 · I3 0.536 0.484 0.023
Ĥn = 0.9 · 0.48 · I3 0.560 0.432 0.024

Common bandwidth: ROT-tr
Ĥn = 0.483 · I3 0.535 0.487 0.023
Ĥn = 0.9 · 0.483 · I3 0.559 0.433 0.024

Different bandwidths: ROT-tr
Ĥn = diag(0.48, 0.48, 0.48) 0.536 0.484 0.023
Ĥn = 0.9 · diag(0.48, 0.48, 0.48) 0.560 0.432 0.024

spline estimates of the univariate conditional expectations for
each of the three covariates included in our sample, computed
using the command gam() in R (http://www.r-project.org).

Figure 1 exhibits a nonlinear relationship between wages and
ability, suggesting that different levels of ability will have differ-
ential effects on earnings for the individuals in this sample. The
average derivative θ1 provides an overall (weighted, averaged)
marginal-effect measure for these individuals, after controlling
for the other covariates.

Table 4 presents the empirical estimates of both the classi-
cal estimator θ̂n(Hn) and the generalized jackknife estimator
θ̃n(Hn, c). We employ the same weighting function introduced
in the simulation section. To implement these estimators, we
centered and scaled the covariates SCHSZi and TEACHWi

(without loss of generality), and then selected a trimming pa-
rameter for each dimension of xi such that at least 1% of the
sample was trimmed along each dimension. Based on our simu-
lations, we selected c = (1, 0.95) to implement the generalized
jackknife estimator. As for the bandwidth choice, we report
results for all three ROT alternatives discussed previously.

Our empirical results suggest that in this illustration bias may
be important. Indeed, while the point estimator θ̂n(Hn) gives
an average marginal return to ability of about 0.535, the gen-
eralized jackknife estimator θ̃n(Hn, c) gives a point estimate of
about 0.485. Interestingly, the 95% confidence interval based
on θ̃n(Hn, c) does not include the point estimate θ̂n(Hn). (As

Figure 1. Smoothing splines estimates for univariate conditional expectations.
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shown in the table, a 10% undersmoothing leads to even larger
differences between the conventional and the generalized jack-
knife estimators.) As a consequence, this empirical illustration
provides a simple empirical example where our procedure leads
to a quantitatively different estimate than the conventional one.

5. CONCLUSION

This article has revisited the large-sample properties of a
kernel-based weighted average derivative estimator. In impor-
tant respects, this estimator can be viewed as a representative
member of the much larger class of (kernel-based) semipara-
metric m-estimators. In particular, the “nonlinearity bias” high-
lighted by our development of asymptotics with smaller-than-
usual bandwidths (i.e., larger-than-usual undersmoothing) is a
generic feature of nonlinear functionals of nonparametric esti-
mators and is likely to be quantitatively important in samples of
moderate size also for estimators other than the one studied in
this article.

To remove this “nonlinearity bias,” we have employed the
method of generalized jackknifing. Being “semiautomatic” in
the sense that it requires knowledge only of the magnitudes of
the terms in an asymptotic expansion of the “nonlinearity bias,”
that same method should be easily applicable whenever the
nonparametric ingredient is a kernel estimator, as the variance
properties of kernel estimators are very well understood. Partly
because certain popular nonparametric estimators (notably se-
ries estimators) have variance properties that seem harder to
analyze than those of kernel estimators, it would be useful to
know if the validity of certain “fully automatic” bias correc-
tion methods and/or distributional approximations can be es-
tablished under assumptions similar to those entertained in this
article.

APPENDIX A: PROOFS

This appendix gives the proofs of Theorems 1–3. We first state
four lemmas, the proofs of which are available in the supplemental
appendix. We then employ these lemmas, together with the results for
kernel-based estimators outlined in Appendix B, to prove the main
theorems.

A.1 Useful Lemmas

The first lemma gives sufficient conditions for Equation (6) in
terms of the magnitudes of �0,n(Hn) = supx∈W |f̂n(x; Hn) − f (x)| and
�1,n(Hn) = max{�0,n(Hn), supx∈W ‖∂f̂n(x; Hn)/∂x − ∂f (x)/∂x‖}.

Lemma A-1. Suppose Assumption 1 is satisfied and suppose �0,n =
op(1). Then Equation (6) is true if either (i) θ̂

A

n = θ̂
∗∗
n (Hn)

and �0,n(Hn)2�1,n(Hn) = op(n−1/2) or (ii) θ̂
A

n = θ̂
∗
n(Hn) and

�0,n(Hn)�1,n(Hn) = op(n−1/2).

The next result gives sufficient conditions for Equation (7).

Lemma A-2. Suppose Assumptions 1 and 2 are satisfied and suppose
λmax(Hn) → 0 and n|Hn|λmin(H2

n) → ∞. Then Equation (7) is true for

θ̂
A

n = θ̂
∗
n(Hn) and θ̂

A

n = θ̂
∗∗
n (Hn).

Lemma 1 is a corollary of the following result, which can be used to

evaluate E[θ̂
A

n ] − θ . To state the result succinctly, let ḟ(x) = ∂f (x)/∂x,
let diag(hn) = Hn (i.e., let hn ∈ Rd

++ collect the diagonal elements of
Hn), and for any multi-index l = (l1, l2, . . . , ld )′ ∈ Zd

+ and any suffi-

ciently smooth function f (·) (not necessarily equal to the density of x),
let

l! = l1!l2! . . . ld !, ∂ lf (x) = ∂l1+l2+···+ld

∂x
l1
1 ∂x

l2
2 . . . ∂x

ld
d

f (x1, x2, . . . , xd ).

Also, for any k ∈ Z+, define Zd
+(k) = {(l1, . . . , ld )′ ∈ Zd

+ : l1 + · · · +
ld = k}.

Lemma A-3. Suppose Assumptions 1 and 2 are satisfied and suppose
λmax(Hn) → 0. (a) Bias of θ̂

∗
n(Hn):

E[θ̂
∗
n(Hn)] − θ = n−1|Hn|−1B∗

0 + S(Hn) + o
(
λmax(HP

n )
)

,

where

S(Hn) = (−1)P+1
∑

l∈Zd+(P )

hl
n

l!

[∫
Rd

w(r)g(r)
(
∂ l ḟ(r) + �(r)∂ lf (r)

)
dr
]

×
[∫

Rd

ulK(u)du
]

.

(b) Nonlinearity bias:

E[θ̂
∗∗
n (Hn) − θ̂∗

n (Hn)] = n−1|Hn|−1

⎡⎣B∗∗
0 +

�(P−1)/2∑
j=1

Bj (Hn)

⎤⎦
+ O

(
n−2|Hn|−2 + λmax(H2P

n )
)
,

where

Bj (Hn) =
∑

l∈Zd+(2j )

hl
n

l!
Bz(l)BK (l) +

∑
l∈Zd+(2j+1)

hl
n

l!
Ḃz(l)H−1

n ḂK (l),

with

BK (l) =
∫

Rd

ulK(u)2du, Bz(l) =
∫

Rd

g(r)
w(r)

f (r)
�(r)∂ lf (r)dr,

ḂK (l) =
∫

Rd

ulK(u)K̇(u)du , Ḃz(l) = −
∫

Rd

g(r)
w(r)

f (r)
∂ lf (r)dr.

The last lemma collects basic results about kernels-based integrals.
Let K̇H(x) = ∂KH(x)/∂x.

Lemma A-4. If Assumptions 1 and 2 are satisfied and if λmax(Hn) →
0, then (a) Uniformly in x ∈ W ,

b(x; Hn) =
∫

Rd

KHn (x − r)f (r)dr − f (x)

= (−1)P
∑

l∈Zd+(P )

hl
n

l!
∂ lf (x)

(∫
Rd

ulK(u) du
)

+ o
(
λmax(HP

n )
)

= O
(
λmax(HP

n )
)

,

ḃ(x; Hn) =
∫

Rd

K̇Hn (x − r)f (r)dr − ∂f (x)/∂x

= (−1)P+1
∑

l∈Zd+(P )

hl
n

l!
∂ l ḟ(x)

(∫
Rd

ulK(u)du
)

+ o
(
λmax(HP

n )
)

= O
(
λmax(HP

n )
)
.

(b) For any function F with E[F (z)2] < ∞,
(i) E[F (z1)2KHn (x1 − x2)2] = O(|Hn|−1), (ii) E[F (z1)2‖K̇Hn (x1 −

x2)‖2] = O(|Hn|−1λmax(H−2
n )), (iii) E[F (z1)2KHn (x1 − x2)2KHn (x1 −

x3)2] = O(|Hn|−2), and (iv) E[F (z1)2KHn (x1 − x2)2‖K̇Hn (x1 −
x3)‖2] = O(|Hn|−2λmax(H−2

n )).
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A.2 Proof of Theorems 1–3

Under the assumptions of the theorems, Equations (6) and (7) hold

for θ̂
A

n = θ̂
∗∗
n (Hn). Validity of Equation (7) follows from Lemma A-2,

while Equation (6) follows from Lemma A-1 because it can be shown
that

sup
x∈W

∣∣f̂n(x; Hn) − f (x)
∣∣ = Op

(
λmax(HP

n ) +
√

log n

n|Hn|

)
(A.1)

and

sup
x∈W

∥∥∥∥ ∂

∂x
f̂n(x; Hn)− ∂

∂x
f (x)

∥∥∥∥=Op

(
λmax(HP

n )+
√

log n

n|Hn|λmin(H2
n)

)
.

(A.2)

Specifically, Equation (A-1) holds because supx∈W |E[f̂n(x; Hn)]−
f (x)| = O(λmax(HP

n )) by Lemma A-4 (a) and because supx∈W |
f̂n(x; Hn) − E[f̂n(x; Hn)]| = Op(

√
log n/

√
n |Hn|) by Lemma B-1

with (Y, X) = (1, x), κ = K , and Xn = W . Similarly, Equation (A-2)
can be shown by applying Lemma A-4 (a) and Lemma B-1 (with κ(u)
equal to an element of Hn∂K(u)/∂u).

Theorem 1 is a special case of Theorem 2. To complete the proof
of Theorem 2, use Lemma A-3 to verify Equation (8). Similarly, the
proof of Theorem 3 can be completed by using Lemma A-3 to verify
Equation (10).

A.3 Proof of Theorem 4

It suffices to show that
∑n

i=1 ‖ψ̂n(zi ; Hn) − ψ(zi)‖2 = op(n).
To do so, it suffices to show that: (i) θ̂n(Hn) − θ = op(1),
(ii) supx∈W ‖ŝn(x; Hn) − s(x)‖ = op(1), (iii) supx∈W ‖ĝn(x; Hn) −
g(x)‖ = op(1), and (iv) supx∈W ‖∂ĝn(x; Hn)/∂x − ∂g(x)/∂x‖ = op(1).

It follows from Theorem 2 and its proof that (i) and (ii) hold. Also,
Lemma B-1 (with (Y, X′) = (y, x′), s = S, κ = K and Xn = W) and
routine arguments can be used to show that if Assumptions 1 and 2 are
satisfied and if Equations (2) and (5) hold, then (iii) will be implied
by n1−1/S |Hn|/ log n → ∞. Similarly, (iv) can be established under the
condition n1−1/S |Hn|λmin(Hn)/ log n → ∞. The latter holds if condi-
tion (i), (ii), or (iii) in the statement of the theorem is satisfied.

APPENDIX B: UNIFORM CONVERGENCE RATES
FOR KERNEL ESTIMATORS

This Appendix derives uniform convergence rates for kernel esti-
mators. Lemma B-1 is used in the proofs of the main results of this
article. Because this result may be of independent interest, it is stated
at a (slightly) greater level of generality than needed in the proofs of
the other results in this article.

Suppose (Yi, X′
i)

′, i = 1, . . . , n, are iid copies of (Y, X′)′, where
X ∈ Rd is continuous with density fX (·). Consider the nonparametric
estimator

�̂n(x) = 1

n

n∑
j=1

κHn (x − Xj )Yj , κH (x) = |H|−1 κ(H−1x),

where Hn is a sequence of diagonal, positive definite d × d bandwidth
matrices and κ : Rd → R is a kernel-like function. To obtain uniform
convergence rates for �̂n, we make the following assumptions.

Assumption B-1. For some s ≥ 2, E[|Y |s] + supx∈Rd E[|Y |s |X =
x]fX(x) < ∞.

Assumption B-2. (a) supu∈Rd |κ(u)| + ∫
Rd |κ(u)|du < ∞. (b) κ ad-

mits a δκ > 0 and a function κ∗ : Rd → R+ with supu∈Rd κ∗(u) +

∫
Rd κ∗(u)du < ∞, such that |κ(u) − κ(u∗)| ≤ ‖u − u∗‖κ∗(u∗) when-

ever ‖u − u∗‖ ≤ δκ .

Remark 4. Assumption B2(b) is adapted from the article by Hansen
(2008). It holds if κ is differentiable with κ̄ (0) + ∫

R κ̄(u)du < ∞,
where κ̄(u) = sup‖r‖≥u ‖∂κ(r)/∂r‖.

The first result gives an upper bound on the convergence rate of �̂n

on (possibly) expanding sets of the form Xn = {x ∈ Rd : ‖x‖ ≤ CX,n},
where CX,n is a positive sequence satisfying

limn→∞
log(CX,n)

log n
< ∞. (B.1)

Lemma B-1. Suppose Assumptions B1 and B2 are satisfied and sup-
pose Equation (B.1) holds. If λmax(Hn) → 0 and n1−1/s |Hn|/ log n →
∞, then

sup
x∈Xn

∣∣�̂n(x)−�n(x)
∣∣=Op (ρn) , ρn =

√
log n

n|Hn| max

{
1,

√
log n

n1−2/s |Hn|

}
,

where �n(x) = E[�̂n(x)] .

Remark 5. The natural “s = ∞” analog of Lemma B-1 holds if Y is
bounded (e.g., if Y ≡ 1, as in the case of density estimation). In other
words, the lower bound n|Hn|/ log n → ∞ suffices and ρn can be set
equal to

√
log n/

√
n|Hn| when Y is bounded.

Lemma B-1 generalizes Newey (1994b, Lemma B.1) in three re-
spects. First, we obtain results allowing for matrix bandwidths as op-
posed to a scalar, common bandwidth for all the covariates. Second,
by borrowing ideas from the article by Hansen (2008), we are able to
accommodate kernels with unbounded support and to establish uni-
form convergence over certain types of expanding sets. Finally, and
more importantly (for our purposes at least), Lemma B-1 relaxes the
condition n1−2/s |Hn|/ log n → ∞ imposed by Newey (1994b, Lemma
B.1), when assuming Hn = hnId . In typical applications of Newey
(1994b, Lemma B.1), a condition like s ≥ 4 is imposed to ensure
that n1−2/shd

n/ log n → ∞ is implied by “natural” conditions on hn,
such as nh2d

n /(log n)2 → ∞ (e.g., Newey, 1994b, Theorem 4.2; Newey
and McFadden, 1994, Theorem 8.11). In contrast, only s ≥ 2 is re-
quired for the condition imposed in Lemma B-1 to be implied by
nh2d

n /(log n)2 → ∞ (or its matrix analog n|Hn|2/(log n)2 → ∞).
If n1−2/s |Hn|/ log n → 0, then the uniform rate obtained in Lemma

B-1 falls short of the “usual” rate
√

n|Hn|/ log n. This is potentially
problematic if Lemma B-1 is used to establish uniform convergence
with a certain rate (e.g., n1/4 or n1/6, as in proofs of results such as
Equation (6)). On the other hand, the slower rate of convergence is
of no concern when any rate of convergence will do (as in proofs of
consistency results such as Equation (12)).

Because of their ability to control bias in some cases, leave-one-out
estimators of the form

�̂n,i(x) = 1

n − 1

n∑
j=1,j �=i

κHn (x − Xj )Yj

are sometimes of interest. The next result extends Lemma B-1 to such
estimators.

Lemma B-2. Suppose Assumptions B1 and B2 are satisfied and sup-
pose Equation (B.1)holds. If λmax(Hn) → 0 and n1−1/s |Hn|/ log n →
∞, then

max
1≤i≤n

sup
x∈Xn

∣∣�̂n,i(x) − �n,i(x)
∣∣ = Op (ρn) , �n,i(x) = E[�̂n,i(x)].
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Another corollary of Lemma B-1 is the following result, which can
be useful when uniform convergence on the support of the empirical
distribution of X suffices.

Lemma B-3. Suppose E[‖X‖sX ] < ∞ for some sX > 0 and sup-
pose Assumptions B1 and B2 are satisfied. If λmax(Hn) → 0 and
n1−1/s |Hn|/ log n → ∞, then

max
1≤i≤n

∣∣�̂n(Xi) − �n(Xi)
∣∣ = Op (ρn) ,

and

max
1≤i≤n

∣∣�̂n,i(Xi) − �n,i(Xi)
∣∣ = Op (ρn) .

Remark 6. Lemmas B-2 and B-3 are not used elsewhere in the
article. We have included them because they may be of independent
interest.

SUPPLEMENTARY MATERIALS

Supplementary appendix.

[Received November 2011. Revised August 2012.]
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Härdle, W., Hart, J., Marron, J., and Tsybakov, A. (1992), “Bandwidth Choice
for Average Derivative Estimation,” Journal of the American Statistical
Association, 87, 218–226. [1244]
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Donglin ZENG

Cattaneo, Grump, and Jansson (2013) present an interesting
estimator, namely the generalized jackknife estimator, for esti-
mating weighted average derivatives. Starting with a high-order
(in this case, second-order) linearization of the estimating equa-
tion, they obtain the asymptotic approximation under a weak
bandwidth selection which does not require the standard con-
vergence rate of the nonparametric estimator faster than n1/4.
Specifically, an asymptotic approximation of θ̂n(Hn) is given
when n|Hn|3/2λmin(Hn)/ log(n)3/2 → ∞. The polynomial ex-
pression of the asymptotic bias in θ̂n(Hn) in terms of Hn further
motivates the construction of the generalized jackknife estimator
θ̃n(Hn, c), which eliminates the asymptotic bias. They present
a number of simulation studies demonstrating that θ̃n(Hn, c)
leads to noticeable bias reduction with small bandwidths. An-
other contribution includes a proof of the uniform convergence
of the kernel estimators.

1. ASYMPTOTIC BIAS REDUCTION

Under a weak assumption on the bandwidth, this work han-
dles bias reduction via a second-order linearization of θ̂n(Hn)
in terms of the plug-in kernel estimator for f (x). A similar
technique was used by Robins et al. (2008) who addressed the
convergence rate with high-dimensional covariates. As pointed
out by Robins et al. (2008), the same technique can be carried out
for a cubic or even higher-order linearization if the estimating
function is sufficiently smooth in f (x). Then, an even weaker
bandwidth assumption is needed when a generalized jackknife
estimator is constructed, although the simulation evidence sug-
gests that the current second-order linearization is sufficient to
render a negligible bias relative to its standard deviation for the
sample sizes used.

In nonparametric or semiparametric literature, an alternative
approach to perform bias reduction is to use a high-order ker-
nel which has high-order zero moments. Consider the one-
dimensional case. A high-order kernel function K(x) satis-
fies

∫
xlK(x)dx = 0 for |l| ≤ P . Then the asymptotic bias in

θ̂n(Hn) will be in the form of
∫

�(x + Hn)K(x)dx so, by the
Taylor expansion and assuming �(x) is sufficiently smooth, this
bias is asymptotically equivalent to O(HP+1

n ). Therefore, a weak
assumption on Hn is required to eliminate this bias.

The comparison between these two approaches can be sum-
marized in the following way. The first approach, which is im-
plemented in the current article, is to directly study the influ-
ence of the bandwidth Hn on the estimating function, which in
turn relies on the smoothness of the estimating function as a
functional of f (x). In contrast, the second approach uses the
high-order kernel function to examine the influence of Hn on
the plug-in estimator f̂ (x) so mostly relies on the smoothness

Donglin Zeng, University of North Carolina, Biostatistics, Chapel Hill, USA
(E-mail: dzeng@email.unc.edu).

of f (x). From this point of view, it is evident that the former
is useful in semiparametric estimation when some functional of
f (x) instead of f (x) itself is of interest. However, when a class
of functionals of f (x), for example, θ = E[w(x)∇g(x)] when
w(x) belongs to a class of weights, it may be difficult for the
first method to identify a uniform Hn to eliminate all the bias
in estimating the whole class of functionals; instead, the second
method has its advantage as it only relies on the smoothness of
f (x) regardless of the number of w(x)’s in consideration.

2. DATA-ADAPTIVE JACKKNIFE ESTIMATOR

In the construction of the generalized jackknife estimator
θ̃n(Hn, c), one has to determine the order J (satisfying J <

1 + d/2 and J ≥ (d − 2)/8) so that

J∑
j=0

wj (cj )E[̂θ
∗∗
n (cj Hn)] − θ = o(n−1/2),

where wj (c) is given in Section 3.2 of the article. The sim-
ulations use J = 2. A more data-adaptive construction of the
jackknife estimator can be performed as follows. We again use
the fact that the asymptotic bias is in a polynomial order of
bandwidth. Thus, for c chosen from a reasonable range, con-
sider fitting the following regression model:

θ̂ (cHn) = θ + c−d (b0 + b1c
2 + · · · + bJ c2J ) + ε,

where ε is a stochastic term with mean zero and variance of
order n−1/2 and J < 1 + d/2. However, since θ̂ (cHn) is from
the same data, this regression is no longer stochastic.

To this end, divide the whole data into N independent data
of equal sizes and choose c1, . . . , cN . For each ck , we calculate
θ̂ (ckHn) using the kth data and denote it by θ̂ k . Then, the above
regression model implies

θ̂ k = θ + c−d
k

(
b0 + b1c

2
k + · · · + bJ c2J

k

)+ εk,

where εk, k = 1, . . . , N are iid and asymptotically follow the
normal distribution with mean zero and covariance �/(n/N ).
Therefore, we can regress {̂θ k} on (1, c−d

k , . . . , c−d+2J
k ) to

1. first, we implement the AIC or BIC to choose J;
2. we estimate θ after J is chosen;
3. we estimate � using the residual variance–variance ma-

trix.

3. VARIANCE ESTIMATION

Unfortunately, the variance estimates reported in the simu-
lations perform rather poorly. My experience is that one may
need larger bandwidths than the ones used in point estimation to

© 2013 American Statistical Association
Journal of the American Statistical Association

December 2013, Vol. 108, No. 504, Theory and Methods
DOI: 10.1080/01621459.2013.854172
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estimate the nonparametric quantity in the variance estimation.
Alternatively, the bootstrap approach may be worth pursuing,
especially smoothed bootstrapping, where bootstrap samples
are simulated from a kernel density estimator of (Y,X). The
asymptotic properties of the bootstrap estimator can be estab-
lished along the same lines as in the current article.

4. USE OF EMPIRICAL PROCESS THEORY

Empirical process theory has been a powerful tool to es-
tablish the uniform convergence of many estimators. In this
case, it can be used to derive a similar result (but with stronger
bandwidth condition) to Lemma B-1 regarding the kernel es-
timator. For example, consider d = 1. First, ψ̂n(x) − ψn(x) =
n−1/2Gn[kHn

(x − X)Y ], where Gn denotes the empirical pro-
cess. Consider the class of functions F = {kHn

(x − X)Y : x ∈
χn}. From Assumption B2, we note∣∣kHn

(x − X)Y − kHn
(x∗ − X)Y

∣∣
≤ ‖x − x∗‖|Y | sup

x

k∗(H−1
n x

)|Hn|−2.

Therefore, this class function has an envelop function given by
F = H−1

n |Y | and has a finite bracket entropy integral, that is,∫ 1

0

√
1 + log N[](ε‖F‖,F , ‖ · ‖L2(P ))dε < ∞.

Following Theorem 2.14.2 in van der Vaart and Wellner (1996),
it yields

‖ sup
F

|Gn|‖ = Op

(‖F‖L2(P )
) = Op

(
H−1

n

)
.

This gives

sup
x∈χn

|ψ̂n(x) − ψn(x)| = Op

(
1√
nH2

n

)
.

5. EXTENSION TO MORE GENERAL
SEMIPARAMETRIC ESTIMATION

The same technique can be applied to a more general semi-
parametric estimation where the parameter of interest, θ , implic-
itly solves an estimating function E[g(θ, f, f ′, f,′′ . . .)] = 0,
where f (x) is the density function of f and f ′ is its first deriva-
tive and so on . These kinds of estimating equations often arise
from modeling certain stochastic dynamic systems, for instance,
HIV dynamics. It will be interesting to see how the method can
be carried out in this general context.
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Comment
Holger DETTE

The article of Cattaneo, Crump, and Jansson (2013) makes
three important contributions to weighted average derivative es-
timation. It provides a new first-order asymptotic approximation
based on a quadratic expansion of the estimating equation. With
this approach nonparametric estimators with a slower rate of
convergence can be used for weighted derivative estimation.
Moreover, from a technical point of view, an asymptotic analy-
sis under substantially weaker conditions on the moments of the
dependent variable and on the bandwidths is possible. Addition-
ally, an interesting method for the elimination of an asymptotic
bias is proposed which is based on jackknife methodology.

For the sake of brevity, the focus of this discussion is on the
jackknife methodology. A careful investigation of this approach
in the case of weighted average derivative estimation would be
too technical and beyond the scope of a discussion. Therefore,
we will raise some general questions regarding the elimination
of the bias by jackknife methodology in the context of “classi-
cal” density estimation. All observations carry obviously over

Holger Dette is Professor, Fakultät für Mathematik, Ruhr-Universität
Bochum, 44780 Bochum, Germany (E-mail: holger.dette@rub.de).

to the more complicated case of weighted derivative estima-
tion. In particular, I will comment on the choice of ci for two
reasons:

1. I do not think that there exists an optimal choice of the
weights ci in the jackknife approach, at least if one applies
the “usual” mathematical machinery.

2. Some care is necessary in the application of the jackknifing
methodology, because in finite samples one pays a serious
price for the bias reduction in terms of variance.

Notation. We consider the classical setup of one-dimensional
density estimation, where X1, . . . , Xn are independent identi-
cally distributed random variables with density f . The classical
density estimate is defined by

f̂h(x) = 1

nh

n∑
i=1

K

(
Xi − x

h

)
. (1)

© 2013 American Statistical Association
Journal of the American Statistical Association

December 2013, Vol. 108, No. 504, Theory and Methods
DOI: 10.1080/01621459.2013.859516
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If f is twice differentiable and the kernel K is symmetric, then
the bias of this estimate is given by

E[f̂h(x)] = h2f ′′(x)

2
+ o(h2). (2)

Similarly, the variance is obtained as

var(f̂h(x)) = f (x)

nh

∫
K2(u)du · (1 + o(1)). (3)

The impact of bias correction on the variance. The jackknife
approach (see, e.g., Schucany and Sommers 1977) is based on
formula (2) and considers (in the simplest case) an estimator of
the form

ĝc1,c2 (x) = w1f̂c1h(x) + w2f̂c2h(x),

where the weights w1, w2 are determined such that w1 + w2 = 1
and the dominating term in

E[ĝc1,c2 (x)] = (
w1c

2
1 + w2c

2
2

)h2f ′′(x)

2
+ o(h2)

vanishes, that is,

w1 = c2
2

c2
2 − c1

2
; w2 = −c2

1

c2
2 − c2

1

(note that we basically construct a Lagrange interpolation func-
tion w1 + w2x

2 with values 1 and 0 at the points 1 and
c2/c1). For this choice, we obtain a density estimate with bias
E[ĝc1,c2 (x)] = o(h2). Now we investigate the variance of the
estimator ĝc1,c2 (x), that is,

var(ĝc1,c2 (x)) = w2
1var(f̂c1h(x)) + w2

2var(f̂c2h(x))

+ 2w1w2cov(f̂c1h(x), f̂c2h(x)).

A standard calculation yields

cov(f̂c1h(x), f̂c2h(x)) = f (x)

nhc2

∫
K(u)K

(
c1

c2
u

)
du(1 + o(1)),

and we obtain

var(ĝc1,c2 (x))

≥
{(

w2
1

c1
+ w2

2

c2

)
f (x)

nh

∫
K2(x)du

+ 2w1w2
f (x)

nhc2

(∫
K2(u)du

∫
K2

(
c1

c2
u

)
du

)1/2
}

× (1 + o(1)),

where we used the Cauchy Schwarz inequality and the fact that
w1w2 ≤ 0. Finally, a substitution in the integral

∫
K2( c1

c2
u)du

and a simple calculation gives

var(ĝc1,c2 (x)) ≥ α2(c1, c2)
f (x)

nh

∫
K2(u)du(1 + o(1))

= α2(c1, c2)var(f̂h(x))(1 + o(1)) (4)

as a lower bound for the variance of the jackknife estimate,
where the factor α2 = α2(c1, c2) is defined by

α2(c1, c2) :=
(

w1√
c1

+ w2√
c2

)2

. (5)

In the following, we will argue that for reasonable choices of
the parameters c1 and c2 we have α2(c1, c2) ≥ 1, which implies

Table 1. The value α2 in (5) for various choices of c1 and c2

c1 c2 α2 c1 c2 α2

0.5 1 2.41 0.5 0.7 2.71
0.7 1 1.91 0.3 0.6 4.23
0.9 1 1.65 0.2 0.6 5.54
0.8 1.2 1.64 1.2 1.6 1.14
0.8 1.4 1.56 1.2 1.8 1.10
0.8 1.6 1.51 1.4 1.8 0.99

that the reduction of the bias comes usually with an increase
in variance. For this purpose, we display in Table 1 the value
of α2 for various choices of c1 and c2 and make the following
observations:

1. For reasonable choices of c1 and c2, the factor α2 is always
larger than 1. This means the bias reduction is obtained at
a cost of a larger variance (note that the right-hand side of
Equation (4) provides a lower bound for the variance of
ĝc1,c2 (x)).

2. For increasing values of c1, c2 → ∞, the first-order ap-
proximation for the variance of ĝc1,c2 becomes arbitrarily
small. Thus, in principle there does not exist any optimal
choice of the constants c1 and c2. Moreover, this reduction
is obtained by an increase of the bias in the terms of order
h3, h4, etc. Thus, these first-order considerations might be
misleading.

A similar problem occurs in the application of higher-order
kernels. Consider, for example, the Epanechnikov kernel

K1(x) = 3

4
(1 − x2)I[−1,1](x),

which is of order 2 (see Gasser, Müller, and Mammitzsch 1985
for a precise definition) and yields a bias of order O(h2). Now
the kernel

K2(x) = 15

32
(1 − x2)(3 − 7x2)I[−1,1](x)

is of order 4 and yields a bias of order O(h4). However, we
obtain for the corresponding terms in the variance∫

K2
1 (x)dx = 3

5
,

∫
K2

2 (x)dx = 5

4
,

which means that the kernel density estimate (1) based on the
kernel K2 has a 108% larger variance than the corresponding
estimate based on the kernel K1. Similarly, if the kernel of
order 6

K3(x) = 15

256
(1 − x2)(35 − 250x2 − 231x4 + 231x6)

is used, the asymptotic variance increases by a factor 3.15.
Gasser, Müller, and Mammitzsch (1985) realized these prob-
lems and proposed to choose the kernel K, such that it mini-
mizes the first-order approximation of the mean squared error
if an asymptotic optimal bandwidth has been used. While this
method yields an improvement in kernel density and regression
estimation, it seems to be difficult to develop an analog concept
for the jackknife methodology.
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Comment
Enno MAMMEN

Professors M. D. Cattaneo, R. K. Crump, and M. Jansson are
to be congratulated for an interesting article with a new point
of view on semiparametrics. Their nonstandard way to look at
semiparametric estimation problems is very innovative and it is
motivating for further research.

The article studies what happens if one goes beyond the bor-
der of standard asymptotics. For a specific example, the article
discusses a semiparametric estimation problem, where the non-
parametric estimator has a poorer asymptotic performance than
required from classical semiparametric theory. This is an im-
portant problem, in the concrete setting of the article and also
in general theory. Often, in semiparametrics, assumptions are
made on the nonparametric estimator that are not realistic. An
example would be higher dimensional nonparametric regression
functions where higher order smoothness assumptions are made
that allow oP (n−1/4) convergence of the nonparametric estima-
tor. There are some concerns in nonparametrics about the sense
of such higher order smoothness conditions for moderate sample
sizes, see, for example, Marron and Wand (1992). It is natural
to argue that also in semiparametric contexts it is questionable
if these higher order assumptions make sense. This motivates an
asymptotic framework in semiparametrics, where such assump-
tions are avoided and where this problem is not neglected in the
asymptotic limit. That is exactly what the authors of this article
have done. I think that the article addresses a central question
of mathematical statistics.

As mentioned in the article, the discussions of the article are
related to recent work of L. Li, J. Robins, E. Tchetgen, and A.
van der Vaart, but a different point of view is taken here. It is
assumed that the bias of the nonparametric estimator is negli-
gible and does not influence the first-order asymptotics of the
parametric estimator. Then the asymptotics of the parametric
part is only affected by the stochastic part of the nonparametric
estimator. As was shortly mentioned in the article, this relates
the article to discussions on high-dimensional parametric mod-
els. Nonparametric regression can be interpreted as parametrics
with increasing dimension. Then the nuisance nonparametric
component is related to a nuisance parameter with increasing
dimension in a purely parametric model. In the following I will

Enno Mammen is Professor in Statistics, Department of Economics,
University of Mannheim, L7, 3-5, 68131 Mannheim, Germany (E-mail:
emammen@rumms.uni-mannheim.de). The author acknowledges support by the
DFG project FOR916.

give a more detailed discussion of this relation in the context of
this article.

1. DIMENSION ASYMPTOTICS

High-dimensional models are a central example where
asymptotic frameworks are used that do not neglect an im-
portant finite-sample feature in the asymptotic limit. Here, the
important feature is the high dimensionality of the model. For
high-dimensional models, this can be easily done by letting
the dimension of the model grow with increasing sample size.
Recently, there has been a huge amount of research on high-
dimensional models under sparsity constraints. This has also
motivated investigators to revisit older strands of research and
to study high-dimensional models without sparsity, see, for ex-
ample, Belloni, Chernozhukov, and Fernandez-Val (2011) who
considered high-dimensional linear quantile regression. Early
papers on dimension asymptotics in linear models were Huber
(1973) and Portnoy (1984, 1985, 1986). High-dimensional log-
linear models were considered in Haberman (1977a,b) and Ehm
(1991). The latter papers discuss applications to large contin-
gency tables where the minimal cell expectations do not con-
verge to infinity. Exponential families with increasing dimension
were studied in Portnoy (1988) and Belloni and Chernozhukov
(2012). For linear and log–linear models, Mammen (1989) and
Sauermann (1989) showed consistency of bootstrap for linear
contrasts under conditions where the normal approximation fails
because of bias effects. These two papers are closely related
in spirit to the findings in the article of M. D. Cattaneo, R. K.
Crump, and M. Jansson. I will outline this below for robust linear
regression. I would like to mention other papers, where dimen-
sion asymptotics lead to insights that were hidden by asymp-
totics with fixed dimension. Bickel and Freedman (1983) proved
consistency of bootstrap for least-squares estimation in high-
dimensional linear models that includes cases where the asymp-
totic distribution is nonnormal. This was the first article where
it was shown that bootstrap works in a setting where classi-
cal approaches fail. Bootstrap and Wild Bootstrap were com-
pared in Mammen (1993), again including settings where the

© 2013 American Statistical Association
Journal of the American Statistical Association

December 2013, Vol. 108, No. 504, Theory and Methods
DOI: 10.1080/01621459.2013.829000
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normal approximation fails. Mammen (1996) showed that for
ML estimation in high-dimensional linear models the empiri-
cal distribution of residuals is biased toward the assumed error
distribution.

2. NUISANCE PARAMETERS WITH INCREASING
DIMENSION

I now outline the relation between a parametric model with
a high-dimensional nuisance parameter and the semiparamet-
ric estimation problem of the article by M. D. Cattaneo, R. K.
Crump, and M. Jansson. I will do this by using the example
of robust regression in a high-dimensional linear model. Sup-
pose one observes Yi = X�

i β + εi with deterministic covari-
ables Xi ∈ Rp and iid errors with E[ψ(εi)] = 0 for a function
ψ : R → R. Consider an M-estimator β̂n with M-function ψ :

n∑
i=1

Xiψ
(
Yi − X�

i β̂n

) = 0. (1)

W.l.o.g. we assume that
∑n

i=1 XiX
�
i = Ip, where Ip is the

p × p identity matrix. Then p = trace [
∑n

i=1 XiX
�
i ] = trace

[
∑n

i=1 X�
i Xi] = ∑n

i=1 ‖Xi‖2. For simplicity, we make the as-
sumption that the design vectors are of the same order of size,
in the sense that max1≤i≤n ‖Xi‖2 = O(p/n). For dimension p
fixed one has under regularity assumptions that β̂n − β con-
verges in distribution to N (0, ρ0ρ

−2
1 Ip), where ρ0 = E[ψ2(εi)]

and ρ1 = E[ψ ′(εi)]. In particular, for cn ∈ Rp with norm
‖cn‖ = 1 one gets that the linear contrast c�

n (β̂n − β) has a
normal limit N (0, ρ0ρ

−2
1 ).

We now start a heuristic discussion for the case that p → ∞.
By Taylor expansion of the left-hand side of Equation (1)
one gets that 0 ≈ ∑n

i=1 Xiψ(εi) −∑n
i=1 XiX

�
i ψ ′(εi)(β̂n −

β) + (1/2)
∑n

i=1 Xi[X�
i (β̂n − β)]2ψ ′′(εi). This gives with ρ2 =

E[ψ ′′(εi)], ρ3 = E[ψ(εi)[ψ ′(εi) − ρ1]] and ψ1(x) = ψ ′(x) −
ρ1

β̂n−β ≈ ρ−1
1

n∑
i=1

Xiψ(εi) − ρ−2
1

n∑
i,j=1

Xiψ1(εi)
(
X�

i Xj

)
ψ(εj )

+ 1

2
ρ−3

1

n∑
i,j,k=1

Xiψ
′′(εi)

(
X�

i Xj

)
ψ(εj )(X�

i Xk)ψ(εk)

≈ ρ−1
1

n∑
i=1

Xiψ(εi) − ρ−2
1 ρ3

n∑
i

Xi(X
�
i Xi)

+ 1

2
ρ−3

1 ρ2ρ0

n∑
i,j=1

Xi

(
X�

i Xj

)2

= ρ−1
1

n∑
i=1

Xiψ(εi) + ρ−3
1

(
1

2
ρ2ρ0 − ρ1ρ3

)

×
n∑
i

Xi‖Xi‖2. (2)

Under appropriate conditions, this expansion is valid with rest
terms of order p3/2 log(n)3/2/n. This can be shown with the
methods developed in Mammen (1989). For a linear contrast
c�
n (β̂n − β) with ‖cn‖ = 1 one gets that c�

n (β̂n − β) − c�
n bn

has a normal limit N (0, ρ0ρ
−2
1 ) where bn = ρ−3

1 ( 1
2ρ2ρ0 −

ρ1ρ3)
∑n

i Xi‖Xi‖2. The bias term is of order O(pn−1/2). This

follows from ‖bn‖ = O(pn−1/2). Note that for a vector e with
‖e‖ = 1 it holds that

|e�bn| ≤ Cn1/2

[
n∑

i=1

(e�Xi‖Xi‖2)2

]1/2

≤ n1/2 max
1≤i≤n

‖Xi‖2

[
n∑

i=1

(e�Xi)
2

]1/2

= O(pn−1/2)

because of
∑n

i=1 XiX
�
i = Ip and max1≤i≤n ‖Xi‖2 = O(pn−1).

One can write X�
i β = Xi,1β1 + X�

i,−1β−1, where β1 is the
first element of β and where β−1 contains the remaining ele-
ments of β. If X�

i,−1β−1 is a series expansion of a nonparametric
function and if β1 is the parameter of interest and β−1 a nui-
sance parameter we are in a semiparametric model as is the
case in the article by Cattaneo, Crump, and Jansson. Note also
that in their article bias terms of the nonparametric estimators
are neglected in the chosen asymptotic setting. With the choice
cn = (1, 0, . . . , 0)�, we get from the above discussion the fol-
lowing conclusions. As long as p3/2 log(n)3/2/n → 0, it holds

(1) that β̂n,1 − β1 has an asymptotic bias bn,1 which is of
order O(pn−1/2),

(2) and that for β̂n,1 − β1 − bn,1 the same stochastic expan-
sion ρ−1

1

∑n
i=1 Xi,1ψ(εi) holds as for β̂n,1 − β1 if p is

fixed.

Analogous statements hold for the estimator θ̂n(Hn) of the ar-
ticle. This follows from their Theorem 2. Note that one has to
compare β̂n,1 − β1 with

√
n(θ̂n(Hn) − θ ). The dimension p of

the linear model corresponds to (h1 · . . . · hd )−1 = |Hn|−1. With
this relation, we get from part (a) of Theorem 2 that the bias
terms of β̂n,1 and of θ̂n(Hn) are of the same order. The validity
(2) of the linear stochastic expansion is stated in part (b) of The-
orem 2. Even the rest terms in the asymptotic expansions are
comparable, at least for d large. This all suggests that the dis-
cussion of Cattaneo, Crump, and Jansson apply to a much larger
class of models than considered in their article. These are not
only further semiparametric models but also high-dimensional
models where the dimension of a nuisance parameter converges
to infinity.

The above asymptotic expansions also give some insights for
higher dimensional models where p3/2/n does not converge to
0. For the case that p3/2/n → ∞ one has to apply Taylor expan-
sions around β − bn instead of expansions around β. The first
term in the stochastic expansion (2) of β̂n − β now becomes
[
∑n

i=1 XiX
�
i E[ψ ′(εi − X�

i bn)]−1∑n
i=1 Xiψ(εi − X�

i bn). Be-
cause now in general X�

i bn does not converge to zero this term
has another variance as the first term in Equation (2). Also the
second term in Equation (2) becomes nonrandom, in general.

[Received April 2013. Revised July 2013.]
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Comment
Xiaohong CHEN

1. INTRODUCTION

There is a great deal of literature on semiparametric two-
step estimation of Euclidean parameters of interest in statistics
and econometrics. Most of the existing results are about root-n
asymptotically normal and efficient estimation of the Euclidean
parameter in the second step when unknown nuisance functions
are estimated in the first step. Surprisingly enough, there is little
research on the finite sample behavior of the first-order asymp-
totically normal approximation when the Euclidean parameter
is a nonlinear functional of the unknown nuisance functions.
Cattaneo, Crump, and Jansson (CCJ) are to be congratulated
for this excellent article addressing the important issue of non-
linearity bias within the class of root-n asymptotically normal
(or regular and asymptotically linear) estimators. In the con-
text of kernel plug-in estimation of a weighted average deriva-
tive (WAD) parameter, they (i) characterize the nonlinearity
bias by a stochastic quadratic expansion; (ii) highlight that the
nonlinearity bias is due to a large variance of nonparametric
first-step kernel estimation, and hence could not be reduced
by conventional nonparametric bias reduction methods such as
increasing the order of the kernel; (iii) propose a clever general-
ized jackknife procedure to correct the nonlinearity bias; and
(iv) establish the root-n asymptotic normality of the bias-
corrected WAD estimator θ̃ and the consistency of their kernel
estimator of the asymptotic variance of θ̃ under very weak band-
width conditions. As a side but very useful technical result, they
establish a new uniform convergence rate for kernel estimators.

In the following I make two general comments. First, in some
applications, although the Euclidean parameter is nonlinear in
one nuisance function, it can be also rewritten as a linear func-
tional of another nuisance function that can be consistently es-
timated via the sieve method. This alternative way to eliminate

Xiaohong Chen, Department of Economics, Yale University, 30 Hillhouse,
Box 208281, New Haven, CT 06520 (E-mail: xiaohong.chen@yale.edu). The
authors thank Matias Cattaneo and Jeffery Racine for very useful discussions.

nonlinearity bias might perform better in finite samples since it
is based on estimation of a linear functional. Second, in other
applications, there is no simple reparameterization that could
convert a nonlinear functional of a nuisance function into a lin-
ear functional of another nuisance function. The insight of a
stochastic quadratic expansion to characterize the nonlinearity
bias suggested in this article should be widely applicable to other
semiparametric estimators of nonlinear smooth functionals. The
results of this article also call for additional research on how to
provide easy-to-compute nonlinearity bias correction and more
accurate variance estimation of bias-corrected semiparametric
estimators.

2. SIEVE WEIGHTED AVERAGE DERIVATIVE
ESTIMATORS

In many applications, although the Euclidean parameter of
interest, θ , is a nonlinear functional of one nuisance function f ,
it could be expressed as a linear functional of another nuisance
function g that could be estimated via the sieve method. For
these applications, we suspect that a semiparametric two-step
estimator of θ based on a nonparametric sieve estimation of g
in the first step typically performs better in finite sample than
another estimator of θ based on a nonparametric estimation of
f in the first step. For example, consider the weighted average
derivative parameter θ :

θ = E

[
w(x)

∂

∂x
g0(x)

]
with g0(x) = E[y|X = x], (1)

= −E

[
y

(
∂

∂x
w(x) + w(x)

∂

∂x
log f (x)

)]
(2)

= −E

[
y

(
∂

∂x
w(x) + w(x)

∂f (x)

∂x
/f (x)

)]
, (3)

© 2013 American Statistical Association
Journal of the American Statistical Association

December 2013, Vol. 108, No. 504, Theory and Methods
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where f () is the density of the regressor x and g() is the con-
ditional mean function of y given x. It is clear that θ is linear
in nuisance function g0 (see Equation (1)) and also linear in
nuisance function log f (see Equation (2)), but is nonlinear in
nuisance function f (see Equation (3)). CCJ considers estimation
of θ based on Equation (3). Alternatively, one could estimate θ

based on either Equation (1) or Equation (2).

Sieve WAD estimation based on Equation (1). Let ĝ =
arg ming∈Hn

1
n

∑n
i=1[yi − g(xi)]2 be a sieve least squares (LS)

estimator of g0(·) = E[y|X = ·]. Then the WAD parameter θ

defined in Equation (1) can be estimated by the following sieve
WAD estimator:

θ̂1 = 1

n

n∑
i=1

w(xi)
∂

∂x
ĝ(xi). (4)

There is no universal “best” sieves Hn to use in terms of the
convergence rate in mean squared error metric, since the rate
depends on the function parameter spaceH to which g0 belongs.
For a typical function space such as a Sobolev space Wm

2 (X )
or a Holder space �m(X ), (X a subset in Rd ), we typically
obtain ‖ĝ − g0‖L2(X) = OP (n−m/(2m+d)) for tensor product lin-
ear sieves (or series), where the series LS estimator ĝ has a
closed-form expression:

ĝ(x) = pkn(x)′(P ′P )−
n∑

i=1

pkn(Xi)Yi, x ∈ X , (5)

where {pj (), j = 1, 2, . . .} denotes a sequence of known ba-
sis functions that can approximate any square integrable
functions of x well, pkn(X) = (p1(X), . . . , pkn

(X))′, P =
(pkn(X1), . . . , pkn (Xn))′ and (P ′P )− the Moore–Penrose gen-
eralized inverse. This includes as special cases of tensor prod-
uct polynomial splines, Fourier series, wavelets, Hermite poly-
nomials, etc. (see Newey 1997; Huang 1998; Chen 2007 and
the references therein). Therefore, linear sieves (or series)
could achieve a convergence rate of ‖ĝ − g0‖L2(X) = oP (n−1/4)
if and only if 2m > d. When 2m ≤ d it is better to either
use some dimension reduction modeling techniques (such as
additive models) or to use nonlinear sieves in purely non-
parametric estimation of g0 to achieve a convergence rate of
‖ĝ − g0‖L2(X) = oP (n−1/4). For instance, a nonlinear sigmoid
neural network sieve has a convergence rate of ‖ĝ − g0‖L2(X) =
Op([n/ log n]−(1+1/d)/[4(1+1/(2d))]) = oP (n−1/4) (see Chen and
Shen 1998, Proposition 1), which is faster than the best rate
achievable by any linear sieves whenever 2m ≤ d.

Sieve WAD estimation based on Equation (2). Let q0(x) ≡
log f (x) denote the log density of x. Then we could estimate
q0(x) via the sieve maximum likelihood:

q̂ = arg max
q∈Hn

1

n

n∑
i=1

[
q(xi) − log

∫
X

exp q(z)dz

]
.

Again, if q0(·) belongs to a Sobolev space Wm
2 (X ) or a

Holder space �m(X ), we could let Hn be a nonlinear sieve
such as the artificial neural networks when d ≥ 2m (see,
e.g., Chen and White 1999). When d < 2m we could let Hn

be a tensor product linear sieves, Hn = {q : X → R, q(x) =

�
kn

j=1ajpj (x) :
∫
X q(z)dz = 0, a1, . . . , akn

∈ R}, such as ten-
sor product polynomial splines (see, e.g, Stone 1990). Let
l̂og f (x) = q̂(x) − log

∫
X exp q̂(z)dz. Then the WAD parame-

ter θ defined in Equation (2) can be estimated by the following
sieve WAD estimator:

θ̂2 = −1

n

n∑
i=1

yi

(
∂

∂x
w(xi) + w(xi)

∂

∂x
q̂(xi)

)
. (6)

We note that these two alternative sieve WAD estimators are
linear in their respective nonparametric estimators of nuisance
functions, and hence there is no bias due to nonlinearity. More-
over, unlike the kernel WAD estimator considered by CCJ, there
is no trimming involved either so these sieve WAD estimators
allow for wider class of weight functions w() and the estimator
(4) is extremely easy to compute.

By applying Lemma 5.1 of Newey (1994a) or Theorem 4.1
of Chen (2007),1 the root-n asymptotic normality of these two
sieve WAD estimators can be easily established under weak reg-
ularity conditions. For instance, Ai and Chen (2007, Example
2.1 and sec. 4.1) considered the sieve WAD estimator (4) when
the conditional mean function g0(·) = E[y|X = ·] might be po-
tentially misspecified as a nonparametric additive form. Newey
(1994a, Example 3 and Theorem 7.2) considered a linear sieve
(series) estimation of average derivative parameter E

[
∂
∂x

g(x)
]
.

Moreover, Newey (1994a), Ai and Chen (2007), and others
have shown how to consistently estimate the variance of a sieve
semiparametric two-step estimator easily, while Newey (1994a)
and Ackerberg, Chen, and Hahn (2012) provided a numerically
equivalent way to compute standard errors of a large class of
semiparametric two-step estimator when the first step nuisance
functions are estimated via linear sieves. One additional benefit
of using sieve estimation in the first step is that a cross-validated
choice of sieve number of terms to get optimal mean squared
error rate in the first step would typically lead to root-n asymp-
totic normality of the second step plug-in estimate of θ . See, for
example, Newey (1994a) and Chen (2007).

The idea of removing nonlinearity bias completely by reex-
pressing the Euclidean parameter of interest as a linear func-
tional of some nuisance functions is more broadly applicable.
See, for example, Chen, Hong, and Tamer (2005), Chen, Hong,
and Tarozzi (2008a,b), and Imbens and Wooldridge (2009) for
the Euclidean parameters that could be expressed as either a
nonlinear functional similar to Equation (3) or a linear func-
tional similar to Equation (1) in nonclassical measurement error,
missing data, program evaluation, and other settings.

3. ROOT-N ESTIMATION OF GENERAL NONLINEAR
FUNCTIONALS

In some applications, there is no simple reparameterization
that could convert a nonlinear functional of a nuisance func-
tion into a linear functional of another nuisance function. The
insight of a stochastic quadratic expansion to characterize the
nonlinearity bias suggested in this article should be widely ap-
plicable to other semiparametric estimators of nonlinear smooth
functionals.

1Theorem 4.1 in Chen (2007) is a slight improvement of Theorem 2 in Chen,
Linton, and Keilgom (2003).
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This article proposes generalized jackknife to reduce non-
linearity bias, which, based on the Monte Carlo results, works
quite well for kernel estimation of WAD. In principle, their
jackknife bias correction idea is directly applicable to all other
semiparametric nonlinear smooth functionals estimated via the
kernel method in the first step. However, the generalized jack-
knife bias reduction needs additional choice of parameters (the
vector valued c in this article).

This article proposes to compute the standard error of the
bias-corrected kernel WAD estimator based on the asymptotic
variance expression (Equation (12) in the article), which, based
on the Monte Carlo results in the online appendix, seems have
room for improvement. There are alternative consistent variance
estimators that might have better finite sample performance:
(a) a jackknife variance estimator (e.g., Shao and Wu (1989)
and the references therein); (b) instead of computing a standard
error based on the asymptotic variance expression, one could
use a finite sample (or “fixing smoothing parameter”) version
such as in Newey (1994a,b), Ai and Chen (2007), Ackerberg,
Chen, and Hahn (2012).

Instead of jackknife, bootstrap is another popular method
to provide better finite sample approximation to estimators
of smooth functionals in terms of both reducing bias and
more accurate confidence sets. See, for example, Efron (1979),
Mammen (1990), Horowitz (2003) and the references therein.

There is also a tradeoff between how smooth the functional
is with respect to the nuisance function f ∈ F and how com-
plex the function parameter space F is. See, for example, Shen
(1997). If the functional is highly nonlinear but not very smooth
or if the space F is too large (in terms of covering numbers,
say), then at some point we would no longer be able to estimate
the Euclidean parameter functional θ at a root-n rate. In the case
of kernel WAD estimation, the nonlinear functional is smooth
and this article presents clean necessary conditions on kernel
bandwidth choice to ensure a root-n rate. Recently Li et al.
(2011) considered quadratic expansion of a particular nonlin-
ear functional allowing for slower than root-n case. I think the
theoretical results developed in this article could be extended
further to allow for slower than root-n estimated nonlinear
functionals.

In summary, this article highlights the difficult issue of non-
linearity bias in semiparametric estimation of nonlinear func-
tionals of nuisance functions estimated nonparametrically in
the first step. The article makes significant progress in provid-
ing clever solutions to the nonlinearity bias issue in a class of
widely used kernel WAD estimators. The Monte Carlo results

of the article also call for additional research on exploring other
solutions.

[Received April 2013. Revised July 2013.]
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Rejoinder
Matias D. CATTANEO, Richard K. CRUMP, and Michael JANSSON

We wish to thank our discussants Xiaohong Chen, Holger
Dette, Enno Mammen, and Donglin Zeng for a very stimulating
discussion of our article (Cattaneo, Crump, and Jansson, 2013a;
CCJ, hereafter). We also acknowledge the fantastic work of
Jun Liu, Xuming He, and Jin Sun in shaping this intellectual
exchange. Participants at the 2013 JSM Meeting (JASA invited
session) also provided useful comments.

Our discussants offered an array of insightful comments rang-
ing from implementation issues to theoretical considerations.
Our rejoinder is organized by topic to clarify the importance,
overlap, and implications for present and future research of these
comments.

1. BIAS REDUCTION AND VARIANCE INFLATION

The comments by Dette and Zeng both touch upon the rela-
tionship between generalized jackknifing and the use of higher-
order kernels for the purpose of reducing bias. This is an im-
portant issue because, in conventional nonparametric problems,
it is well known not only that higher-order kernels can reduce
smoothing bias (provided enough smoothness of the underlying
nonparametric function), but also that the method of generalized
jackknifing generates a class of higher-order kernels. See, for
example, Härdle (1989). An important finding in CCJ, however,
is that the “equivalence” between higher-order kernels and gen-
eralized jackknifing breaks down when the nonlinearity bias, as
opposed to the smoothing bias, of a semiparametric procedure
is considered. Nonlinearity biases are potentially first-order bi-
ases arising in some semiparametric problems under “severe”
undersmoothing (e.g., hn → 0 faster than usual), a situation
where smoothing bias is less of a concern. (The smoothing bias
is large when the bandwidth is “large”.) Nevertheless, connec-
tions between higher-order kernels and generalized jackknif-
ing could still be useful to better understand the features of a
bias-corrected semiparametric estimator constructed using the
generalized jackknifing.

To be more specific, and following Dette, suppose X1, . . . , Xn

is a random sample from a univariate continuous distribu-
tion with density f (·) and consider the problem of estimat-
ing the value of f at some point x. The classical density

Matias D. Cattaneo is Associate Professor of Economics, Department of
Economics, University of Michigan, Ann Arbor, MI 48109-1220 (E-mail:
cattaneo@umich.edu). Richard K. Crump is Senior Economist, Federal Re-
serve Bank of New York, 33 Liberty Street, New York, NY 10045 (E-mail:
richard.crump@ny.frb.org). Michael Jansson is Professor of Economics, De-
partment of Economics, University of California, Berkeley, 530 Evans Hall
#3880, Berkeley, CA 94720-3880 (E-mail: mjansson@econ.berkeley.edu) and
CREATES. The first author gratefully acknowledges financial support from the
National Science Foundation (SES 0921505 and SES 1122994). The third author
gratefully acknowledges financial support from the National Science Founda-
tion (SES 0920953 and SES 1124174) and the research support of CREATES
(funded by the Danish National Research Foundation).

estimate is

f̂h(x) = 1

n

n∑
i=1

Kh(Xi − x), Kh(u) = 1

h
K
(u

h

)
,

where K is a symmetric density and h is a bandwidth.
Dette compared this estimator with the (generalized) jackknife
estimator

f̃c,h(x) = c2
2

c2
2 − c2

1

f̂c1h(x) − c2
1

c2
2 − c2

1

f̂c2h(x),

where c = (c1, c2)′ ∈ R2
++ is a vector of distinct positive con-

stants, in an attempt to gain further intuition on the properties
of θ̂n(Hn) and θ̃n(Hn, c). It is argued that, although f̃c,h(x) has
(smoothing) bias of smaller order than f̂h(x), this reduction in
bias typically comes at the expense of an increase in variance.
In addition, the problem of choosing an “optimal” value of c
is complicated by the fact that the (approximate) variance of
f̃c,h(x) can be made arbitrarily small by increasing c. For fur-
ther discussion on these and related points see, for example,
Jones and Foster (1993).

Indeed, defining h̃ = c1h and c̃ = c2/c1, the estimator f̃c,h(x)
can be written as

f̃c,h(x) = 1

n

n∑
i=1

K̃c̃,h̃(Xi − x),

K̃c̃,h̃(u) = Kh̃(u) + 1

c̃2 − 1
[Kh̃(u) − Kc̃h̃(u)].

Thus, f̃c,h(x) can itself be interpreted as a kernel density esti-
mator based on the kernel K̃c̃,h̃, which in turn can be thought
of as a higher-order kernel obtained by means of a modification
(indexed by c̃) of Kh̃(·). Because the modified kernel K̃c̃,h̃(·) is
a higher-order kernel, estimators based upon it will “usually”
have larger variance than estimators based on Kh̃(·). Interpret-
ing f̃c,h(x) as a kernel estimator based on a higher-order kernel
therefore provides an alternative explanation for Dette’s obser-
vation that “usually” the variance of f̃c,h(x) exceeds that of
f̂h (x).

Furthermore, the reparameterization (c′, h) → (c̃, h̃) =
(c1/c2, c1h) employed above also sheds light on Dette’s obser-
vation about the difficulty of characterizing an “optimal” value
of c. In particular, the fact that h̃ = c1h can be thought of as
the “effective” bandwidth of the kernel estimator based on K̃c̃,h̃

explains why an increase in c gives you “something for nothing”
in the sense that it decreases the (approximate) variance of the
generalized bandwidth estimator without affecting the order of
magnitude of its bias.

© 2013 American Statistical Association
Journal of the American Statistical Association

December 2013, Vol. 108, No. 504, Theory and Methods
DOI: 10.1080/01621459.2013.856717
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In addition to providing an alternative explanation for the
findings of Dette, recognizing generalized jackknifing as a spe-
cial case of employing a higher-order kernel when estimating
the value of a density at a point is useful for the purpose of
comparing that problem with the one addressed in our article.
Zeng also offered some insightful comments about asymptotic
(smoothing) bias reduction in general and about the relationship
between generalized jackknifing and the use of higher-order ker-
nels in particular.

All in all, three main points are highlighted in the discus-
sions: (1) because generalized jackknifing is just like using a
higher-order kernel one could think of using higher-order ker-
nels more generically, (2) implementing generalized jackknife
estimators requires choosing particular constants (e.g., c) which
is challenging in practice, and (3) generalized jackknifing will
typically increase (higher-order) variance.

The main points above employ ideas from the nonparamet-
ric literature, and naturally apply to many problems where the
concern is about smoothing bias (e.g., “large” bandwidths) as
opposed to the nonlinearity bias (e.g., “small” bandwidths). In
fact, many (but not all) linear functionals of a kernel estima-
tor will not even have a nonlinearity bias (e.g., estimation of a
density or regression function at a point). However, as shown
in CCJ, not all of those ideas automatically apply when the ob-
ject of interest is the nonlinearity bias, which naturally arises in
the context of many nonlinear functionals of a kernel estimator.
The weighted average derivative estimator studied in CCJ is
just one example of a nonlinear functional of its nonparametric
(kernel-based) ingredient. This distinction has two main impli-
cations. First, it implies that our generalized jackknife estimator
cannot be interpreted as one based on a single higher-order
kernel-based estimator. If anything, generalize jackknifing is
altering the shape of the estimating equation and not of the
kernel employed in the nonparametric estimator. Second, and
perhaps more importantly, it implies that the bias problem ad-
dressed in the article cannot be solved simply by increasing the
order of the kernel. Thus, point (1) above does not extend to the
semiparametric problems considered in our article. On the other
hand, points (2) and (3) above continue to be true insofar, first,
it seems hard to propose a general selection rule for the con-
stant c (see the discussion of Zeng for one such proposal) and,
second, our generalized jackknife estimator is likely to have a
larger finite-sample variance (our simulations provide support-
ing numerical evidence), although this variance inflation disap-
pears asymptotically. The latter point implies that second-order
efficiency considerations may be important, as mentioned by
Dette.

2. THE ROLE OF NONLINEARITIES AND THE
METHOD OF SIEVES

The main goal of our article was to highlight, in the con-
text of semiparametrics, the presence of a potentially first-order
bias arising from severe undersmoothing (i.e., for “small” band-
widths, hn → 0 faster than usual). Although the results in CCJ
are obtained for a particular functional of a particular type of
nonparametric estimator (namely, a kernel estimator), the conse-
quences of nonlinearities in the estimating equation emphasized
in our article will be shared also by other, but not all, semipara-

metric estimators based on the method of sieves. The comments
of Chen and Mammen are both related to this point. As we fur-
ther discuss in this section, we highlight that the presence and
implications of the nonlinearity bias are crucially related to both
the form of the estimating equation and the choice of nonpara-
metric estimator (kernel-based, series-based, etc.). Furthermore,
it appears difficult to separate the role of each of these two fea-
tures of the semiparametric estimator. In other words, we can
find “linear” and “nonlinear” population estimating equations
that, when employed to construct semiparametric estimators us-
ing either kernels or sieves, will lead to estimators that may or
may not exhibit a nonlinearity bias.

More specifically, Chen observed that while our chosen esti-
mator can be motivated by the representation

θ = −E

[
y

(
∂

∂x
w(x) + w(x)

∂f (x)

∂x
/f (x)

)]
, (C3)

sieve-based alternative estimators can be motivated by writing
θ as

θ = E

[
w(x)

∂

∂x
g(x)

]
, g(x) = E[y|x], (C2)

or

θ = −E

[
y

(
∂

∂x
w(x) + w(x)

∂

∂x
L(x)

)]
, L(x) = log f (x).

(C1)

As remarked by Chen, (1) the representations in (C1) and (C2)
are linear in the nuisance functions g(·) and L(·), respectively,
and (2) the nuisance functions g(·) and L(·) can be estimated
using the method of sieves.

For estimators based on kernels, the relevant issue (from the
perspective of our article) is not only whether the functional can
be represented as a linear functional of some nuisance function
that can be estimated using a kernel-based method. For instance,
if f̂ (·) is a kernel estimator of f (·), then L̂(·) = log f̂ (·) is a
kernel-based estimator of L(·) in (C2), but of course the estima-
tor based on evaluating the sample analog of (C2) at L(·) = L̂(·)
is equivalent to our estimator based on (C3). Thus, at least in
the case of kernels, the nuisance function has to be of the “right
form” for it to be valuable to express the estimand as a lin-
ear functional thereof. As another example of the same point,
consider the estimand θ = E[f (x)] = ∫

Rd f (x)2dx, and the as-
sociated plug-in kernel-based sample analogue estimators:

θ̂1 = 1

n

n∑
i=1

f̂ (xi) and θ̂2 =
∫

Rd

f̂ (x)2dx,

where f̂ (x) is a classical kernel-based density estimator. Both
of the estimators θ̂1 and θ̂2 will exhibit leave-in bias and, fur-
thermore, θ̂2 will also exhibit nonlinearity bias. Therefore, it
should be clear that studying the shape of the estimating equa-
tion alone is not enough to understand whether the semipara-
metric estimator will exhibit either leave-in-bias, nonlinearity
bias, or both, at least when kernel-based estimators are em-
ployed. Indeed, in the case of kernels the relevant issue seems
to be whether the estimand can be written as a linear functional
of a nuisance function expressible as a density-weighted condi-
tional expectation; that is, the nuisance function should be of the
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form γ (x) = E[w|x]f (x), where w is some (possibly constant)
observed variable.

We conjecture that similar remarks apply to estimators based
on the method of sieves; that is, we suspect that also estimators
based on the method of sieves can suffer from nonlinearity bi-
ases unless the estimand can be expressed as a linear functional
of a nuisance function of the “right type.” For sieve least-squares
estimators, such as the estimator of g(·) in (C1) mentioned by
Chen, it would appear that nuisance functions are of the “right
type” when they are expressible as mean square projections
(e.g., as a conditional expectation). Accordingly, we agree that
it seems plausible that nonlinearity biases of the form high-
lighted by the article can be avoided by using the (least-squares)
sieve-based estimator motivated by (C1). More generally, al-
though we feel that more work is needed to understand the
circumstances in which also nonlinear sieve estimators can be
plugged into linear functionals without generating biases, we
agree wholeheartedly with what we believe is the main message
of Chen’s comment: rather than basing the choice of nonpara-
metric estimation method mainly on the ease of implementation
one should pay careful attention to whether the nuisance func-
tion (estimator) can be chosen in such a way that the object of
interest is a linear functional thereof.

As discussed in the article, the estimator we consider suffers
from two distinct types of bias, namely nonlinearity bias and
leave-in bias. Both biases are (of the same order of magnitude
and) asymptotically nonnegligible only when the rate of con-
vergence of the nonparametric ingredient is slower than n1/4.
Therefore, it is necessary to relax (among other assumptions)
the assumption of n1/4-consistency on the part of the nonpara-
metric ingredient to uncover and characterize these biases. The
extent to which this feature is shared by estimators based on
the method of sieves would appear to be an open question.
For instance, although we agree with Chen that analyzing sieve
weighted average derivative estimators is easy once conven-
tional assumptions such as n1/4-consistency have been made,
existing results such as Theorem 4.1 of Chen (2007) are silent
about the consequences of employing severely undersmoothed
nonparametric estimators (e.g., sieve estimators implemented
using a larger-than-usual value of the tuning parameter kn) when
estimating finite-dimensional parameters. In particular, even if
nonlinearity biases can be avoided by relying on the method of
sieves, it would appear to be an open question whether any of
the estimators proposed by Chen suffers from an analog of the
leave-in bias discussed in the article.

Conversely to the discussion given so far, we also know of
the existence of “nonlinear” estimands that lead to series-based
estimators that do not exhibit either leave-in bias or nonlinearity
bias. Specifically, the estimand of the parametric part of the par-
tially linear model yi = x′

iβ + g(zi) + εi , with E[εi |zi , xi] = 0
and other assumptions imposed, is given by

β = (E[(xi − E[xi |zi])x′
i])

−1E [(xi − E[xi |zi])yi] ,

which could be regarded as a nonlinear estimating equation
(i.e., the nuisance function h(zi) = E[xi |zi] enters nonlinearly).
Nonetheless, Cattaneo, Jansson, and Newey (2012) showed that
when h(·) is estimated by the method of linear sieves the result-
ing semiparametric estimator β̂ does not exhibit leave-in or non-

linearity biases. Furthermore, to make things more interesting, if
undersmoothing is sufficiently severe (i.e., K/n → α ∈ (0, 1)),
the asymptotic distribution of β̂ exhibits a different, larger
asymptotic variance instead of a bias, very much in line with the
findings documented in Cattaneo, Crump, and Jansson (2010,
2013b) for a class of “linear” kernel-based semiparametric
estimators.

For these reasons, we are currently developing distributional
results for sieve-based semiparametric estimators under assump-
tions that permit (but do not necessarily require) the com-
plexity of the sieve space to grow relatively rapidly with the
sample size. Although doing so will require a possibly non-
trivial relaxation of the methods used when establishing re-
sults such as Theorem 4.1 of Chen (2007), the comments of
Mammen strongly suggest that, at least in some cases, signifi-
cant progress toward a better theory-based understanding of the
small-sample properties of sieve-based estimators is possible.
We are very grateful to Mammen for not only clarifying the
relationship between our work and his but, most importantly,
for helping to place the work in a broader context and for pro-
viding a template for analyzing sieve-based estimators under
weaker-than-usual assumptions about complexity of the sieve
space.

3. THE ROLE OF DIMENSIONALITY
AND BOOTSTRAPPING

The discussants raised a number of additional points. We
found little to disagree with and would like to take this oppor-
tunity to thank the discussants for the numerous constructive
suggestions. Among those, we would like to highlight two, one
mainly conceptual and the other both theoretical and imple-
mentational. First, as pointed out by Mammen, our nonstandard
asymptotics and the resulting biases in the distributional approx-
imation also highlight an interesting role of the dimensionality
of covariates, x ∈ Rd . In the context of kernel-based estimators,
our article suggests that the larger d, the more important the non-
linearity and leave-in bias will be. As pointed out by Mammen,
his work is closely related to this point insofar as nonlinear
least-squares models with large-/high-dimensional covariates
may also exhibit potentially first-order biases very similar in
spirit, but different in form, from those we found in our work.
It would certainly be of interest to deepen our understanding of
these seemingly unrelated findings.

Second, as suggested by Mammen’s comment, the idea of
studying the properties of the bootstrap under the types of as-
sumptions entertained in CCJ seems particularly interesting and
promising. Despite the fact that severe undersmoothing of cer-
tain “linear” semiparametric estimators leads to invalidity of
the bootstrap (Cattaneo, Crump, and Jansson 2014), in research
currently under way we have addressed that very question and
found that the bootstrap provides a method of (variance esti-
mation and) bias correction that is valid under the assumptions
made in CCJ. That is, we have shown that the bootstrap is in-
deed able to remove both nonlinearity and leave-in biases. Our
current research is also extending the scope of this finding to
a large class of possibly nonsmooth, nondifferentiable two-step
semiparametric models.
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