Title
Unexpected nicotine in do-it-yourself electronic cigarette flavourings

Permalink
https://escholarship.org/uc/item/4ph45507

Journal
Tobacco Control, 25(E1)

ISSN
0964-4563

Authors
Davis, B
Razo, A
Nothnage, E
et al.

Publication Date
2016-04-01

DOI
10.1136/tobaccocontrol-2015-052468

Peer reviewed
The proof of your manuscript appears on the following page(s).

It is the responsibility of the corresponding author to check against the original manuscript and approve or amend these proofs.

Please read the proofs carefully, checking for accuracy, verifying the reference order and checking figures and tables. When reviewing your page proof please keep in mind that a professional copyeditor edited your manuscript to comply with the style requirements of the journal.

This is not an opportunity to alter, amend or revise your paper; it is intended to be for correction purposes only. The journal reserves the right to charge for excessive author alterations or for changes requested after the proofing stage has concluded.

During the preparation of your manuscript for publication, the questions listed below have arisen (the query number can also be found in the gutter close to the text it refers to). Please attend to these matters and return the answers to these questions when you return your corrections.

Please note, we will not be able to proceed with your article if these queries have not been addressed.

A second proof is not normally provided.

<table>
<thead>
<tr>
<th>Query Reference</th>
<th>Query</th>
</tr>
</thead>
<tbody>
<tr>
<td>Q1</td>
<td>IMPORTANT: Corrections at this stage should be limited to those that are essential. Extensive corrections will delay the time to publication and may also have to be approved by the journal Editor.</td>
</tr>
<tr>
<td>Q2</td>
<td>Please note that alterations cannot be made after the article has published online.</td>
</tr>
<tr>
<td>Q3</td>
<td>Author SURNAMES (family names) have been highlighted - please check that these are correct.</td>
</tr>
<tr>
<td>Q4</td>
<td>Please check all names are spelt correctly, and check affiliation and correspondence details, including departments.</td>
</tr>
<tr>
<td>Q5</td>
<td>please provide key messages as per journal style.</td>
</tr>
<tr>
<td>Q6</td>
<td>Please check references have been renumbered appearance wise.</td>
</tr>
<tr>
<td>Q7</td>
<td>You have opted to have colour in the print version of your article. Please confirm you have paid for this.</td>
</tr>
</tbody>
</table>

If you are happy with the proof as it stands, please email to confirm this. Minor changes that do not require a copy of the proof can be sent by email (please be as specific as possible).

Email: production.tc@bmj.com
If you have any changes that cannot be described easily in an email, please mark them clearly on the proof using the annotation tools and email this by reply to the eProof email.

We will keep a copy of any correspondence from you related to the author proof for six months. After six months, correspondence will be deleted.

Please respond within 48 hours
Unexpected nicotine in Do-it-Yourself electronic cigarette flavourings

Electronic cigarette (EC) users often create their own refill fluids by blending bottled nicotine/propylene glycol/glycerol mixtures with Do-it-Yourself (DIY) flavourings. Although a complete refill fluid usually contains nicotine, the flavouring solutions themselves are an additive and are presumed to be free of nicotine, which is a known addictive chemical and toxicant. To determine if DIY flavourings are nicotine free, we evaluated 30 products from one vendor, using high performance liquid chromatography (HPLC) and mass spectrometry (GC-MS) analysis. HPLC analysis was performed as previously described in detail. Nicotine was extracted from DIY flavourings and GC-MS analysis of the extracts was performed using a Hewlett-Packard 5890 Series II gas chromatograph equipped with a Restek Rtx-1MS, 30 m, 0.25 mm column and a Hewlett-Packard 5971A mass selective detector. Samples were analysed from 40°C to 250°C with a total run time of 32.75 min per sample. Of the 30 flavouring products evaluated via HPLC, 4 (figure 1A) had peaks with the retention time and shape characteristic of nicotine (figure 1C, D). GC-MS analysis confirmed the presence of nicotine in all four products (figure 1B, E, F). The limit of quantification for this method was 10 mg/L. Nicotine was quantifiable in two bottles, which had concentrations of 14.2 and 95.4 mg/mL (figure 1B). Nicotine can be fatal to humans in doses of 500–1000 mg for adults and 10 mg for children. The total nicotine content in these two 5 mL bottles of DIY flavourings was 71 and 477 mg, doses that, if ingested, could be fatal to children and possibly to adults. Assuming a dilution factor of 1:10, a solution mixed from the Joosy Froot flavour and propylene glycol alone would contain 9.5 mg/mL. These data demonstrate that DIY flavouring products, which are marketed for the purpose of flavour enhancement, may contain substantial amounts of nicotine. These DIY flavourings are named and described in terms that are attractive to children, have colourful attractive bottles and emit an aroma that may encourage ingestion. Some adult users of ECs are not addicted to nicotine and would avoid the use of these products if nicotine content were indicated on the label. The current finding of nicotine in DIY flavouring products that are expected to be nicotine free and our prior finding that a DIY bottle of nicotine (134.7 mg/mL) was unlabelled, are important public health problems. These products, which are presented to the consumer as ‘nicotine free’ could lead to unwanted addiction, poisoning, or even death. The simplest solution to this problem would be, at minimum, to require that any products containing nicotine be clearly labelled with the term ‘nicotine’ and an accurate concentration. Consumers who wish to use 0% nicotine products could then avoid unwanted exposure and EC users could protect their children from accidental ingestion of nicotine. The demonstration of nicotine in presumably nicotine-free DIY flavouring solutions should be valuable information for regulatory agencies, physicians, EC users and poison control centres.

Barbara Davis, Aladino Razo, Mathew Chen, Prue Talbot

1 Department of Cell Biology and Neuroscience, University of California, Riverside, California, USA
2 Department of Botany and Plant Sciences, University of California, Riverside, California, USA
3 Department of Chemical and Environmental Engineering, University of California, Riverside, California, USA

Correspondence to: Dr Prue Talbot, Department of Cell Biology and Neuroscience, University of California, Riverside, CA 92521, USA; talbot@ucr.edu

Contributors: BD planned the study, oversaw the HPLC and wrote the letter. AR performed and analysed the GC-MS data. MC performed and analysed the HPLC data. EN helped plan and design the GC-MS method, and assisted in editing the letter. PT designed the study, contributed to writing the letter and oversaw the project.

Funding: This work was supported by the National Institutes of Health grant number R01DA036493 and a National Science Foundation Predoctoral Fellowship to BD.

Competing interests: None declared.

Provenance and peer review: Not commissioned; externally peer reviewed.

To cite: Davis B, Razo A, Nothnagel E, et al. Tob Control Published Online First: [please include Day Month Year] doi:10.1136/tobaccocontrol-2015-052468

Accepted 15 May 2015

Received 15 May 2015

Tob Control 2015;0:1–2.

doi:10.1136/tobaccocontrol-2015-052468

REFERENCES

Figure 1 Analysis of Do-it-Yourself (DIY) flavourings. (A) Bottles of DIY flavourings in which nicotine was positivity identified. Bottles are indicated by inventory numbers. Numbers 53 and 69 are duplicate bottles of Sinful Cinnamon, #106 is Nilly Vanilla and #107 is Joosy Froot. (B) Table summarising the high performance liquid chromatography (HPLC), and gas chromatography and mass spectrometry (GC-MS) results. The table indicates inventory number, flavour, quantified nicotine concentration (NQ=nicotine was not quantifiable but was qualitatively determined to be present) and GC-MS confirmation of nicotine. (C and D) Three-dimensional chromatograms of HPLC analysed flavourings, x axis=time (min), y axis=absorbance (mAU), z axis=wavelength (nm). (C) an example of a DIY flavour without nicotine (#119 Mr Bubble) and (D) an example of a DIY flavour (#107 Joosy Froot) that contains nicotine, as indicated by the ultraviolet absorption spectrum present at approximately 8 min. (E and F) GC-MS analyses of flavourings. GC data are shown in the two upper graphs, x axis=time (min), y axis=abundance (mAU) and MS data are in the lower graphs, x axis=m/z, y axis=abundance (mAU). (E) The nicotine standard and (F) an example of a flavouring (#107 Joosy Froot) found to be positive for nicotine.