Title
DELIVERY OF ANTIOXIDATIVE ENZYME GENES PROTECTS AGAINST ISCHEMIA/REPERFUSION-INDUCED LIVER INJURY IN MICE

Permalink
https://escholarship.org/uc/item/4ps7c7kx

Journal
Liver Transplantation, 12(12)

Author
Wu, Jian

Publication Date
2007

Peer reviewed
Delivery of Antioxidative Enzyme Genes Protects Against Ischemia/Reperfusion–Induced Liver Injury in Mice

Song-Qing He,1 Yan-Hong Zhang,1 Senthil K. Venugopal,1 Christopher W. Dicus,2 Richard V. Perez,3 Rajen Ramsamooj,4 Michael H. Nantz,2 Mark A. Zern,1 and Jian Wu1

1Transplant Research Institute, University of California, Davis Medical Center, Sacramento, CA; 2Department of Chemistry, University of California, Davis, Davis, CA; 3Department of Surgery, University of California, Davis Medical Center, Sacramento, CA; 4Department of Pathology, University of California, Davis Medical Center, Sacramento, CA

Hepatic ischemia/reperfusion (I/R) injury is characterized by the generation of reactive oxygen species (ROS), such as superoxide anions and hydrogen peroxide. The aim of this study is to investigate whether antioxidative gene delivery by our polylipid nanoparticles (PLNP) is an effective approach for prevention of the injury. Polyplexes of extracellular superoxide dismutase (EC-SOD) and/or catalase genes were injected via the portal vein 1 day prior to a warm I/R procedure in mice. The effects of the gene delivery were determined 6 hours after starting reperfusion. PLNP-mediated antioxidative gene delivery led to a marked increase in human EC-SOD and catalase gene expression in the liver. Liver superoxide dismutase (SOD) and catalase activity both increased approximately 10-fold. Increased liver superoxide anion levels caused by the I/R procedure were reduced to normal levels by EC-SOD gene delivery. The overexpression of these 2 antioxidative genes significantly suppressed the I/R-induced elevation of serum alanine aminotransferase (ALT) levels, decreased liver malondialdehyde content, restored glutathione reserve, and improved liver histology. In conclusion, EC-SOD or catalase gene delivery by PLNP resulted in high levels of the transgene activity in the liver, and markedly attenuated hepatic I/R injury. The protection is directly associated with elevated antioxidative enzyme activity as the result of the gene delivery. This novel approach may become a potential therapy to improve graft function and survival after liver transplantation. Liver Transpl 12:000-000, 2006.

Abbreviations: I/R, ischemia/reperfusion; ROS, reactive oxygen species; PLNP, polylipid nanoparticle; EC-SOD, extracellular superoxide dismutase; SOD, superoxide dismutase; ALT, alanine aminotransferase; DNA, deoxyribonucleic acid; MCLA, 2-methyl-6-[p-methoxyphenyl]-3,7-dihydroimidazo [1,2-c] pyrazin-3-one; GSH, reduced form of glutathione; MDA, malondialdehyde; N.S., normal saline; AP-1, ______________; NF-κB, nuclear factor-κB; TNF-α, tumor necrosis factor-α

Supported by National Institutes of Health (NIH) grants (DK069939 to J.W. and AA06386 to M.A.Z.).

Address reprint requests to Jian Wu, MD, PhD, UC Davis Medical Center, Transplant Research Institute, 4635 2nd Ave. Suite 1001, Sacramento, CA 95817. Telephone: (916) 734-8044; FAX: (916) 734-8097; E-mail: jdwu@ucdavis.edu

Received June 16, 2006; Accepted August 29, 2006.

DOI 10.1002/lt.21001

© 2006 American Association for the Study of Liver Diseases.
also indicated by the fact that a manganese superoxide dismutase (SOD) mimic and genetically engineered manganese-SOD inhibited I/R-induced liver injury by 60 to 70%.6 O$_2^-$ is a central and initial species that is readily converted to other species when SOD activity is inadequate.7 A significant amount of O$_2^-$ may be released into the extracellular space when cells are injured and thus causes toxicity to other surrounding cells. Accumulated O$_2^-$ in the extracellular space may be converted to more toxic H$_2$O$_2$, HO$^-$, or ONOO$^-$.8,9 Moreover, O$_2^-$ existing in the extracellular space is unable to cross the cell membrane, to be removed by intracellular SOD.10 Providing more SOD activity by delivering the enzyme or SOD mimics has been shown to be effective in preventing a variety of types of liver injury. However, the half-life of SOD is only 6 minutes.11 Therefore, a gene therapy strategy aimed at increasing levels of SOD that provides sufficient gene expression in the donor liver is desirable for protection against hepatic I/R injury. Our previous studies, which employed polymeric nanoparticles (PLNP) to deliver the human EC-SOD gene in a mouse model of acute liver injury caused by D-galactosamine plus lipopolysaccharide, demonstrate the effectiveness of this gene transfer approach to the liver, and the protection of EC-SOD overexpression against acute toxicity.12 Catalase is a potent scavenger of H$_2$O$_2$, and provides another means of inhibiting oxidant stress. It prevents the formation of more toxic HO$^-$ when SOD is insufficient to remove O$_2^-$ overload. Thus, the production of catalase provides additional antioxidative activity against oxidative stress that is present during the I/R procedure. The delivery of SOD and catalase proteins has successfully prevented hepatic I/R injury in mice.13,14 However, to our knowledge there has been no animal study that assesses the efficacy of EC-SOD and/or catalase gene transfer on hepatic I/R injury. In this study we report the effectiveness of EC-SOD and catalase gene delivery by our PLNP in preventing subsequent warm hepatic I/R injury in mice.

MATERIALS AND METHODS

Subcloning EC-SOD and Catalase Plasmids

The pEGFP-C1-ECsod plasmid was generated as described previously.15 The human catalase gene sequence was obtained by digestion with restriction endonucleases SalI and Xba1 from the pC1-catalase plasmid (kindly provided by Dr. Arthur Cederbaum, Mount Sinai School of Medicine, New York, NY). The sequence fragment was blunted at both ends, and then a SalI linker was added to the 3' end. The resulting sequence was further digested with HindIII, and the product was subcloned into an expression vector, pEGFP-C1, at the HindIII and SalI sites by replacing the EGFP sequence to form pC1-catalase. The sequence of the new plasmid was verified by sequencing of the polymerase chain reaction product. The resulting plasmid deoxyribonucleic acid (DNA) was amplified, extracted, purified, and quantitated as described previously.13,16

Generation and Size Measurement of PLNP

Polyolipidic lipid was synthesized and validated as previously described17 and PLNP were formulated from polyolipidic lipid and cholesterol in a molar ratio of 3:1 (polyolipidic lipid to cholesterol). The size of PLNP at different times of generation was between 200 and 250 nm before use. For animal experiments, PLNP were complexed with plasmid DNA to form polyplexes at a charge ratio of 5:1. For each mouse, 200 μL of PLNP suspension containing 0.3 μmol polyolipidic lipid, 0.1 μmol cholesterol and 100 μg plasmid DNA was injected via the portal vein.

Mouse Model of Warm Hepatic I/R Injury and Experimental Design

ICR mice (from Charles River Laboratory, Wilmington, MA) were fed a pelleted diet and water ad libitum, and kept on a 12-hour-light/dark cycle. The animal experiment was performed according to a protocol approved by the University of California Davis Institutional Animal Care and Use Committee. The protocol was prepared in accordance with the National Institutes of Health Animal Guidelines. PLNP-mediated EC-SOD and/or catalase gene delivery to mouse liver was conducted according to our previous description.13 Animals were randomly divided into groups as listed in Table 1 and all received 1 injection of triiodothyronine (4 mg/kg subcutaneously) 1 day before the injection of polyplexes in order to stimulate hepatocyte proliferation.14 The time line of the experiment is shown in Illustration 1.

One day after triiodothyronine injection, a surgical procedure was undertaken to inject polyplexes through the portal vein. The total volume of 300 μL of polyplexes (control, EC-SOD, catalase, or EC-SOD/catalase polyplexes) consists of a mixture of 200 μL of PLNP and 100 μg of plasmid DNA (pEGFP-C1, pEGFP-C1-ECsod, or pC1-catalase). For the EC-SOD/catalase polyplex-injected group, 50 μg of each plasmid DNA was used. At 1
day after polyplex injection, the mice were operated on
gain for an I/R procedure. In brief, mice were anes-
thetized with pentobarbital sodium (60 mg/kg intra-
peritoneally). Laparotomy was performed with a midline
incision. Following surgical exposure of the portal vein,
mice were injected with heparin (100 unit/kg) intrave-
nously to prevent the formation of blood clots during
ischemia. The portal vein and hepatic artery were oc-
cluded for 30 minutes with a microaneurysm clamp to
induce hepatic ischemia. Then, the clamp was removed
to allow reperfusion of the liver. A sham surgery was
performed in heparinized animals under anesthesia
but without occluding the vessels.

At 2 and 6 hours after starting the reperfusion, blood
samples were collected via tail incision or from the vena
cava before sacrifice. Portions of the liver tissue were
fixed in 10% neutralized formalin for histological eval-
uation or snap frozen in liquid nitrogen and maintained
at \(-80^\circ\)C until homogenization for the various bio-
chemical assays.

Serum Alanine Aminotransferase Assay
Serum alanine aminotransferase (ALT) levels serving as
an indicator of liver injury were analyzed using a diag-
nostic kit (Sigma Chemical, St. Louis, MO), and ex-
pressed as units per milliliter.

Measurement of ROS Generation in Liver
Homogenates
2-methyl-6-[p-methoxyphenyl]-3,7-dihydroimidazo
[1,2-\alpha] pyrazin-3-one (MCLA)-enhanced chemilumines-
cence was used to determine \(O_2^-\) generation. On the
day of measurement, approximately 10 mg of frozen
liver tissue was homogenized on ice in 1 mL of homog-
enization buffer containing 20 mmol/L 4-2-hydroxy-
ethyl-1-piperazineethanesulfonic acid and 10 mmol/L
ethylene diamine tetraacetic acid. The homogenate was
subjected to low speed centrifugation (1,000 g) for 10
minutes to remove debris. Luminometer vials contain-
ing 2 mL of prewarmed Krebs-4-2-hydroxyethyl-1-
piperazineethanesulfonic acid buffer with 1.0 mmol/L
of MCLA were placed in the dark for at least 20 minutes.
After the dark adaptation, background readings were
recorded in a luminometer (Lumat LB; Berthold Tech-
nologies, BmbH & Co. KG, Germany), and then 20 \(\mu\)L of
homogenate supernatant was added to a vial contain-
ing MCLA. Chemiluminescent emission in relative light
units was recorded during a plateau phase of each
recording period, corrected by subtracting the back-
ground reading. The calculated value was used to ex-
press the integrated values of chemiluminescence (rel-
ative light units/second/\(\mu\)g protein).

Assays of Liver Glutathione, Malondialdehyde,
and Hydrogen Peroxide
Levels of the reduced form of liver glutathione (GSH)
and malondialdehyde (MDA) in the liver tissue were
measured spectrophotometrically 6 hours after starting
reperfusion by commercially available kits (OXIS Re-
search, Portland, OR). The levels of GSH and MDA are
expressed as nanomoles per milligram of protein. Liver
\(H_2O_2\) levels were assayed with an Amplex Red kit from
Invitrogen (Carlsbad, CA) according to the manufactur-
er’s instruction and expressed as millimoles per milli-
grams of tissue.

Real-Time Quantitative Reverse Transcriptase
Polymerase Chain Reaction for EC-SOD Gene
Expression
Real-time quantitative reverse transcriptase polymer-
ase chain reaction was employed to assess the human
EC-SOD gene expression levels in mouse liver using
mouse \(\beta\)-actin as a housekeeping gene control, as re-
ported previously. The relative gene expression in
different groups was calculated based on the average
level of the normal saline (N.S.) control group.
Western Blot Analysis for Catalase Protein Levels

Western blotting was used to confirm recombinant human catalase protein expression in the liver with a method reported previously using sheep anti-human catalase polyclonal primary antibodies (Abcam, Cambridge, MA).

Measurement of SOD and Catalase Activity

SOD and catalase activity in liver homogenates was measured with the CalBiochem SOD Assay Kit and Catalase Assay Kit (CalBiochem, San Diego, CA). The SOD activity was expressed as units per milligrams of protein. The catalase activity was expressed as micromoles of H$_2$O$_2$ per minute per milligrams of protein.

Nuclear Protein Extraction and Electrophoretic Mobility Shift Assay

Nuclear protein was prepared as reported previously and used for electrophoretic mobility shift assay. AP-1 and nuclear factor-kB (NF-kB) DNA binding activity was determined by electrophoretic mobility shift assay (Pierce, Rockford, IL). For confirming the specificity of binding reactions, antibodies against NF-kB subunits p65 and p50, or c-Jun and c-Fos, or unlabeled cold probe were incubated with nuclear protein before the addition of biotin-end-labeled probes for the binding reaction.

Histological Examination

Fixed liver specimens were embedded in paraffin wax, sectioned, and stained with hematoxylin and eosin. Micrographs were taken with a digital camera. The extent of hepatocellular death was semiquantitatively scored by a pathologist blinded to the experimental protocol, according to a modified scoring system of Batts and Ludwig.

Determination of Serum Tumor Necrosis Factor-α Levels

Serum tumor necrosis factor-α (TNF-α) levels after the I/R procedure were determined with an enzyme-linked immunosorbent assay kit (ELISA kit; R&D Systems, Minneapolis, MN) and expressed as nanograms per milliliter.

Statistical Analysis

Most data were expressed as means ± standard error of the mean and evaluated with analysis of variance and Newman-Keuls test for multiple comparisons among groups. Wilcoxon signed rank test was employed for a semiquantitative score of liver injury, followed by q tests for multiple comparisons among groups. $P < 0.05$ was considered statistically significant.

RESULTS

Overexpression of Antioxidative Genes in Mouse Livers

We delivered EC-SOD and/or catalase genes into mouse livers using our PLNP with a prior injection of triiodothyronine. As shown in Figure 1A, there was an approximately 10-fold increase in liver SOD activity in mice receiving either EC-SOD or EC-SOD plus catalase polyplex injection via the portal vein 30 hours after the injection. Surprisingly, catalase polyplex injection resulted in a 5.5-fold increase in SOD activity. Real-time reverse transcriptase polymerase chain reaction showed that EC-SOD messenger ribonucleic acid levels increased approximately 50.8-fold and 22.9-fold in animals receiving EC-SOD or EC-SOD plus catalase gene delivery when compared to those receiving the control polyplex injection (Fig. 1B). Catalase polyplex injection did not significantly affect EC-SOD gene expression levels. Thus, it seems that the enhanced SOD activity in catalase polyplex-injected mice may be associated with posttranscriptional modification or alteration in activities of EC-SOD or other SOD isoforms.

Catalase polyplex injection led to an approximately 10-fold increase in liver catalase activity (Fig. 2A), and EC-SOD gene delivery enhanced catalase activity approximately 6.6-fold when compared to the control polyplex injection. The liver catalase activity in the animals receiving EC-SOD plus catalase gene delivery was increased 8-fold. Western blot analysis indicated that catalase protein levels were markedly elevated in the liver of mice receiving catalase gene delivery, but not in those with EC-SOD gene delivery. Thus, it is evident that our PLNP-mediated human EC-SOD and catalase gene delivery resulted in marked overexpression of these 2 antioxidative genes and a profound elevation in enzyme activity in the mouse livers.

Enhanced Superoxide Anion Release and H$_2$O$_2$ Production During Hepatic I/R

No direct evidence exists that there is enhanced generation of O$_2^-$ and related ROS in rodent models of hepatic I/R. We employed MCLA, which is proportional to levels of O$_2^-$ and singlet oxygen, to investigate whether the I/R procedure enhanced the chemiluminescent emission from the liver homogenates. We found that light emission from the liver homogenates started to increase at 5 minutes, was significantly elevated at 2 hours, and was 4.9-fold higher 6 hours after starting the reperfusion, compared to animals with sham surgery. The enhanced chemiluminescent emission caused by the I/R procedure was almost completely inhibited by prior EC-SOD or catalase polyplex injection (Fig. 3). This finding provides convincing evidence that enhanced SOD and catalase activity, as the result of the gene delivery, effectively eliminated the oxidative stress during the I/R procedure. We also measured liver H$_2$O$_2$ levels with a highly sensitive fluorescent probe, Amplex Red reagent, and found that H$_2$O$_2$ levels were significantly higher at 5 minutes after reperfusion.
Figure 1. Human EC-SOD gene expression and SOD activity in liver tissue of mice receiving PLNP-mediated EC-SOD gene delivery. (A) Liver SOD activity after PLNP-mediated EC-SOD gene delivery and subsequent I/R-induced liver injury. Total SOD activity in liver tissue was measured spectrophotometrically 30 hours after portal vein injection of polyplexes. (B) Human EC-SOD messenger ribonucleic acid levels in mouse liver tissue were determined with real-time quantitative reverse transcriptase polymerase chain reaction using mouse β-actin as a housekeeping gene control. The relative human EC-SOD gene expression levels in 5 other groups were calculated based on an average level in the N.S. control group. In both panels, *P < 0.05, **P < 0.01 compared with N.S. control, sham-operated, or control polyplex groups. Groups of animals which received the I/R procedure are indicated.
compared to normal liver tissue, and were maintained at a high level for 6 hours (Fig. 4A). This level was not changed in the I/R procedure plus N.S. control or control polyplexes, but was markedly reduced by either EC-SOD, catalase, or the combination of the 2-gene delivery (Fig. 4B).

Amelioration of I/R-induced Acute Liver Injury

As shown in Figure 5, the I/R procedure caused a marked increase in serum ALT levels during the first 2 to 6 hours after starting the reperfusion. Prior intravenous injection of either EC-SOD or catalase polyplexes via the portal vein resulted in a marked decrease in serum ALT levels compared to animals with I/R plus N.S. injection (at the 6-hour point, \(P < 0.01\)). It appeared that the combination of EC-SOD and catalase polyplexes tended to exert further improved protection than either EC-SOD or catalase polyplexes alone; however, the differences were not statistically significant at all time points. For controls, additional animals were injected with PLNP alone or control polyplexes without the I/R procedure. At 1 day after the injection in animals that did not have the I/R procedure, serum ALT levels in animals receiving PLNP alone (45 ± 7 units/mL, \(n = 3\)) or control polyplexes (57 ± 6.5 units/mL, \(n = 3\)) were similar to levels in saline controls (42 ± 8.5 units/mL, \(n = 3\)). The data indicate that neither PLNP nor the control polyplexes are toxic to the liver.

The extent of hepatocellular death in liver sections was assessed by a pathologist blinded to the experimental protocol (Table 2 and Fig. 5B). Liver sections from normal or sham-operated mice showed no necrosis. The I/R procedure led to marked necrosis in the central lobule (Zone III) with significant inflammatory...
Liver histology revealed a similar degree of massive cell death and inflammatory infiltration in I/R-challenged animals plus portal vein injection of N.S. (Fig. 5Bb) or control polyplexes (Fig. 5Bc). A significant reduction in necrosis was found in the liver of animals receiving injection of EC-SOD, catalase, or EC-SOD/catalase polyplexes (Fig. 5Bd, Be, and Bf), compared to the control groups (Fig. 5Ba, Bb, and Bc). The degree of necrosis, as judged by a histological semi-quantitative score which is shown in Table 2, verifies...
that liver injury in mice receiving EC-SOD, catalase, or EC-SOD/catalase polyplexes was markedly attenuated when compared to those treated with N.S. control (Fig. 5Bb) or control polyplexes (Fig. 5Bc).

Restored GSH and Reduced MDA Levels by EC-SOD and/or Catalase Gene Delivery

Liver GSH and MDA levels were determined as indicators of oxidant stress and lipid peroxidation during the hepatic I/R procedure. As shown in Figure 6, the antioxidative gene delivery led to a restoration of decreased GSH levels and a reversion of elevated MDA levels in the liver, and the levels were close to controls. Animals receiving injection of EC-SOD and/or catalase polyplexes also had preserved GSH levels and reversed the increased liver MDA levels in comparison with those receiving injection of N.S. or control polyplexes (Fig. 6A and B). Both liver GSH and MDA levels in animals...
Activation of NF-κB or AP-1 During the I/R Procedure

NF-κB and AP-1 activation may lead to the coordinated expression of many genes that are involved in the mediation and perpetuation of the inflammatory response. We were therefore interested in the effects of EC-SOD, catalase, or their combined gene delivery on NF-κB and AP-1 activation during the hepatic I/R injury. As shown in Figure 7Aa and Ab, the I/R procedure significantly enhanced DNA binding activity of NF-κB and AP-1 as compared to the sham-operated group. The enhanced DNA binding activity caused by the I/R procedure was markedly inhibited by prior EC-SOD and AP-1 as compared to the sham-operated group. The enhanced DNA binding activity caused by the I/R procedure was markedly inhibited by prior EC-SOD and catalase gene delivery, which was confirmed by the antibody or unlabeled probe blocking experiments (Fig. 7A). Neither N.S. nor the control polyplexes had appreciable effects on DNA binding activity of NF-κB and AP-1 as compared to the sham surgery. Serum TNF-α levels increased as early as 2 hours after starting reperfusion, and continued to increase up to 6 hours after the reperfusion (Fig. 7B). The antioxidative gene delivery completely prevented the increase in serum TNF-α levels, and TNF-α levels in EC-SOD, catalase, or EC-SOD/catalase polyplexes plus the I/R procedure groups were similar to the sham-operated controls without the I/R procedure.

DISCUSSION

An I/R process is inevitable in organ transplantation. The extent of I/R-associated liver injury is one of the major factors directly affecting the graft survival and function after transplantation. The injury is characterized by early necrosis due to hypoxia and mitochondrial malfunction during an extended period of ischemia, marked apoptosis during reperfusion due to the activation of infiltrating neutrophils and resident Kupffer cells, and release of ROS from various sources.24,25 Thus, enhancing antioxidative gene delivery is 1 of molecular intervention with an obvious rationale, in addition to other gene therapy approaches.26-28 In the

Table 2. Semiquantitative Score of Hepatocellular Injury

<table>
<thead>
<tr>
<th>Score</th>
<th>I/R procedure + N.S. control</th>
<th>I/R procedure + control polyplexes</th>
<th>I/R procedure + EC-SOD polyplexes</th>
<th>I/R procedure + catalase polyplexes</th>
<th>I/R procedure + EC-SOD/catalase polyplexes</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>P value</td>
<td>N/A</td>
<td>N/A</td>
<td><0.05*</td>
<td><0.05*</td>
<td><0.05*</td>
</tr>
</tbody>
</table>

Abbreviation: N/A, not applicable.

*Compared with I/R procedure plus control polyplex or N.S. control groups.
present study, we explored a new application of non-viral PLNP in the mediation of antioxidative gene delivery for the prevention of I/R-induced liver injury. Thus, the study evaluated the potential of this nonviral gene transfer approach for organ transplantation.

One characteristic of I/R-induced liver injury is enhanced ROS release during the procedure. Most studies have suggested that the O$_2^-$ are the primary oxidant species generated during the I/R procedure, and that O$_2^-$ may be capable of directly or indirectly mediating a substantial portion of postschismic injury. MCLA has been used to detect O$_2^-$ levels in Kupffer cells. Due to a very short half-life and the instability of O$_2^-$, no convenient and reliable method is available for its in vivo detection. For this purpose, a specific charged-coupled device camera is needed to couple with a microscopic objective lens. This allows for direct contact with the tissue, monitoring chemiluminescent signals while the organ is being perfused. The system cannot be readily applied to liver injury model systems due to the limitation in the detection of signal depth within the tissue and the duration of monitoring. In the present study, we adapted a method for other systems, and added MCLA as the substrate to liver homogenates immediately after completing the I/R procedure. We determined the chemiluminescent emission in order to reflect the generation of O$_2^-$ in liver homogenates. The results showed that the increase of chemiluminescent emission started 5 minutes after beginning of the reperfusion, and that a significant increase in O$_2^-$ generation and other ROS levels in the liver was documented after 2 to 6 hours of the reperfusion. To our knowledge, this is the first direct evidence that during the reperfusion phase there is a marked increase in O$_2^-$ release in the liver. This finding further provides the rationale for antioxidative treatment in the prevention of I/R-induced liver injury.

SOD and catalase are 2 critical enzymes in the antioxidative defense. Early work involving the direct administration of recombinant SOD or catalase protein through the tail vein eliminated excessive ROS and decreased neutrophil accumulation in the liver. However, the therapeutic effects of the recombinant proteins are limited due to low tissue availability and very short half-life. Adenoviral vector-mediated Cu/Zn-SOD protected mice from I/R-induced acute liver injury, but an adenoviral vector containing EC-SOD was not effective due to no increase in SOD activity in the liver and only a slight increase in serum. A further increase in adenoviral titer led to a 3-fold increase in liver SOD activity and protected the injury. It is known that a high titer of adenoviruses may cause direct damage to the liver, and that the occurrence of immune responses against adenoviral components impedes the wide application of this viral vector. We used an established PLNP formulation to deliver both EC-SOD and catalase genes to the mouse liver, and achieved much higher levels of SOD activity than reported by Wheeler et al., as well as a high level of catalase activity in mouse liver. The overexpression of these 2 antioxidative genes significantly suppressed the

Figure 7. I/R-induced NF-kB and AP-1 activation, and the effects of antioxidative gene delivery. (A) DNA binding of NF-kB and AP-1 was determined by electrophoretic mobility shift assay after sham operation or 6 hours following I/R procedure. Representative images from at least 3 independent experiments. In both (a) and (b): Lane 1: Sham-operated; Lane 2: I/R procedure plus N.S. control; Lane 3: I/R procedure plus control polyplexes; Lane 4: I/R procedure plus catalase polyplexes; Lane 5: I/R procedure plus EC-SOD polyplexes; and Lane 6: nuclear protein samples from animals with the hepatic I/R procedure. Supershift assays using specific antibodies against p50 (lane 7) and p65 (lane 8) subunits in (a), and c-Jun (lane 7), and c-Fos (lane 8) in (b) are also shown. The specificity of the binding reaction was also examined by the inclusion of unlabeled cold probe (lane 9) in both panels. (B) Serum TNF-α levels as measured by an enzyme-linked immunosorbent assay kit (R&D Systems) in mice with hepatic I/R-induced liver injury. **P < 0.01 compared to normal controls, ***P < 0.01 compared to I/R plus N.S. or control polyplex injection.
subsequent I/R-induced acute liver injury as reflected by a marked reduction of serum ALT levels, and improved liver histology. Moreover, PLNP-mediated EC-SOD and/or catalase gene delivery completely suppressed the increased O$_3^-$ levels and H$_2$O$_2$ production caused by the I/R procedure, and significantly attenuated the oxidative stress as evidenced by lower MDA levels and restored GSH levels.

A significantly lower level of serum ALT was noted at 6 hours of reperfusion in the combination of EC-SOD with catalase gene delivery when compared to either EC-SOD or catalase gene delivery alone (Fig. 4). This suggests synergetic protective function by these 2 antioxidative enzymes in this hepatic I/R model system because only half the amount of each plasmid was used. This is not unexpected because each enzyme targets a complementary antioxidative system. In our previous studies13 we found that increased SOD activity was detected in both the extracellular space (culture medium) and cell lysates after transfection of EC-SOD plasmid in Hep G$_2$ cells, and that catalase acts primarily on intracellular H$_2$O$_2$ (increased catalase activity was only detected in cell lysates after transduction of a lentiviral catalase vector in Hep G$_2$ cells, our unpublished results). Therefore, it appears that the combined gene delivery led to enhanced antioxidative protection in both the intracellular and extracellular spaces. We injected thyroid hormone (triiodothyronine) prior to polyplex injection in order to promote hepatocyte proliferation and to enhance gene transfer efficacy, as we reported previously.13,16 Taken together, our PLNP and the gene delivery approach are very useful in delivering antioxidative genes for the prevention of acute I/R-induced liver injury. To our knowledge, this is the first evidence that a nonviral gene transfer agent has successfully delivered functional genes to improve graft function and survival.

In conclusion, the findings in the present study demonstrate that PLNP-mediated EC-SOD or catalase gene delivery resulted in high levels of the transgene activity in the liver, and markedly attenuated liver I/R injury. The protection is associated with enhanced antioxidative effects in the liver. To our knowledge, this is the first successful demonstration that PLNP-mediated EC-SOD and/or catalase gene delivery ameliorates warm I/R-induced liver injury in mice. This approach may become a potential therapy to improve the graft function and survival of liver transplantation.

ACKNOWLEDGMENTS

We thank Mr. Christopher Bishop, Ms. Lauren Eisenbud, and Andreea Catana, MD for their technical assistance.

REFERENCES

