Title
THE OBSERVATION OF T=3/2 LEVELS IN Li7 - Be7 AND THE UNCHARACTERIZED NUCLEI He7, B7 AND He8

Permalink
https://escholarship.org/uc/item/4qt1j1r3

Authors
Detraz, Claude
Cerny, Joseph
Pehl, Richard H.

Publication Date
1965-03-01
University of California

Ernest O. Lawrence Radiation Laboratory

TWO-WEEK LOAN COPY

This is a Library Circulating Copy

which may be borrowed for two weeks.

For a personal retention copy, call

Tech. Info. Division, Ext. 5545

THE OBSERVATION OF T=3/2 LEVELS IN Li7 - Be7 AND THE
UNCHARACTERIZED NUCLEI He7, B7 AND He8

Berkeley, California
DISCLAIMER

This document was prepared as an account of work sponsored by the United States Government. While this document is believed to contain correct information, neither the United States Government nor any agency thereof, nor the Regents of the University of California, nor any of their employees, makes any warranty, express or implied, or assumes any legal responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by its trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof, or the Regents of the University of California. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof or the Regents of the University of California.
THE OBSERVATION OF T=3/2 LEVELS IN Li7-Be7 AND THE UNCHARACTERIZED NUCLEI He7, B7 AND He8

Claude Détraz, Joseph Cerny, and Richard H. Pehl

March 1965
THE OBSERVATION OF $T = 3/2$ LEVELS IN Li$_7$ - Be$_7$ AND THE UNCHARACTERIZED NUCLEI He$_7$, B$_7$ AND He$_8$.

Claude Détraz, Joseph Cerny and Richard H. Pehl
Department of Chemistry and Lawrence Radiation Laboratory
University of California
Berkeley, California

The location and properties of the hitherto unestablished $T = 3/2$ levels in the $T_Z = \pm 1/2$ nuclei Li$_7$ and Be$_7$ are important nuclear structure information; in addition, the question of particle stability of the controversial nuclei He$_7$, B$_7$ and He$_8$ should be answerable by extrapolation from these $T = 3/2$ states.

As has previously been shown, the 12Be$_7$(p,t) and (p,He$_3$) reactions can be a valuable spectroscopic tool for locating states of high isospin in the residual nuclei. To investigate these mass seven nuclei, the reactions Be$_9$(p,t)Be$_7$ and Be$_9$(p,He$_3$)Li$_7$ were induced by 43.7 MeV protons from the Berkeley 88-inch cyclotron. Tritons and He$_3$ emitted from the 650 µg Be$_9$ target were detected by a (dE/dx) - E counter telescope which fed a particle identifier. Figure 1 shows two typical spectra obtained at 32.5 degrees; the energy resolution averaged 170 keV for tritons and 200 keV for He$_3$.

One would in general expect the angular distributions of the $T = 1/2$ mirror states of Be$_7$ and Li$_7$ formed in these reactions to differ both in shape and magnitude. This arises since the (p,t) transitions occur predominantly by 1S, $T = 1$ pick-up of two neutrons, while the (p,He$_3$) transitions can occur by pick-up of a proton-neutron pair in a predominant 3S, $T = 0$ or 1S, $T = 1$ configuration. Marked differences are in fact observed in the compared mirror angular distributions and are even apparent in Fig. 1.
However, transitions to $T = 3/2$ states in Li7 and Be7, assuming the
close independence of nuclear forces, proceed from identical initial to final
states through only $1s$, $T = 1$ pick-up of the two nucleons; as such, identical
cross sections are expected for such transitions after phase space and isospin
coupling corrections (here only 1.1%) are included (see Ref. 1). Indeed, Fig. 2
shows that the transitions to the pair of previously unobserved "mirror" levels
at 11.13 ± 0.05 MeV in Li7 and 10.79 ± 0.04 MeV in Be7 are identical, consider-
ing the background subtraction and statistical errors. Therefore, these two
states can be assigned a $T = 3/2$ isospin. Their excitation energies are close
to the theoretical estimates for the lowest $T = 3/2$ state5,6 in Li7—the first
three $T = 3/2$ states are predicted to be $3/2^- (10.9^5, 10.1^6)$; $1/2^- (\approx 12.4^5,6)$,
and $5/2^- (13.7^5, 13.2^6$ MeV).

We note that the angular distributions in Fig. 2 have the same shape
as is standardly observed for known $L = 0$ transitions at 43.7 MeV (see Fig.
3 of Ref. 3). Due to angular momentum conservation, this also restricts
our transitions to be to the $3/2^-$ states. These two $T = 3/2$ states are
therefore the lowest ones—analogs of the He7 and B7 ground states.

The difference between the two excitation energies in Li7 and Be7, which is about 340 keV, is qualitatively in accord with the variation of
the Coulomb energy with excitation, as calculated by Fairbairn7, with the
difference in pairing energies between the $T = 1/2$ and $T = 3/2$ states, esti-
mat ed by Wilkinson8 for the 1p shell; and with a probable Thomas-Ehrman
shift.

These two $T = 3/2$ levels are broad. Correcting for the experimental
energy resolution, we find full widths at half maximum of 268 ± 30 keV for
Li$^7^*$ and 298 ± 25 keV for Be$^7^*$. These two widths are very similar and both
states can decay through three $T = 3/2$ channels: $\text{He}^6 + p$, $\text{Li}^6*(T = 1) + n$, $\text{He}^4 + p + 2n$ for Li^7*; and $\text{Be}^6 + n$, $\text{Li}^6*(T = 1) + p$, $\text{He}^4 + 2p + n$ for Be^7*.

The mass of the He^7 nucleus can be obtained from the mass of $\text{Li}^7*(T = 3/2)$, taking into account the neutron-hydrogen atom mass difference and calculating the Coulomb energy difference from the pair $\text{He}^6 - \text{Li}^6*(T = 1)$. We find for He^7 a mass excess of $26.03 \pm 0.15 \text{MeV}$ in the C^{12} system; therefore, He^7 is definitely unbound to neutron emission by about 360 keV. Assuming the first $T = 3/2$ level of Li^7 to be lower than 10.81MeV, Balashov found that He^7 would be a β-emitter with a half life of 30-100 msec. He^7 being unbound, the assignment of 50 μsec for its half life, which appears in the Chart of the Nuclides, presumably quoted from Ref. 6 through a misprint in its abstract, should be dropped.

A similar calculation to that for He^7, but using the $T = 3/2$ state in Be^7, and the Coulomb energy difference from the pair $\text{Be}^{10} - \text{B}^{10}*(T = 1)$, indicates a mass excess of $27.99 \pm 0.15 \text{MeV}$ for B^7. Though this value is smaller than the one predicted by Goldanskii (29.4 \pm 0.5 MeV in C^{12} system), B^7 is still quite unstable for particle emission, decaying to $\text{Li}^5 + 2p$, $\text{Be}^6 + p$ and $\alpha + 3p$.

To estimate the mass of He^8, we can use the arguments reported by Goldanskii, namely that the difference between the binding energies of the fourth and third neutrons of the $1p_{3/2}$ shell, $B_n(\text{He}^8) - B_n(\text{He}^7)$, is smaller than for the second and first neutrons, $B_n(\text{He}^6) - B_n(\text{He}^5)$, but larger than $B_n(\text{Li}^9) - B_n(\text{Li}^8)$ where the extra proton disturbs, by a deuteron-like bond, the pairing between the two neutrons. Using the mass of He^7 as calculated above, we obtain the following double inequality:

$$31.6 \text{MeV} < \text{mass excess (He}^8) < 32.4 \text{MeV}.$$
Since the lightest particle unstable channel is $\text{He}^6 + 2n$, the mass excess of which is 33.74 MeV, He^8 should be stable to neutron emission by at least 1.3 MeV.

After theoretical predictions and experimental hints, the particle stability of He^8 has recently received its most reliable proof with the observation by Nefkens of what is thought to be its β-decay. He^8 can decay to the 3.22 MeV (1^+) and, if it is a 1^+ level, the 0.978 MeV level of Li^8. If the latter decay is possible, our He^8 mass predicts an end point energy lying between 9.7 and 10.5 MeV, which is slightly outside the values given by Nefkens, 13 ± 2 MeV. A lower energy than his would produce a lower value of log ft; his value of 4.3 seems somewhat high for this allowed transition.

These results for He^8 can be used to limit the mass excess of the tetranucleon n^4, which has recently "regained" stability with the apparent discovery that the trinucleon n^3 is bound by about 1 MeV. Our He^8 mass and the observed β-decay require a mass excess of more than 29.2 MeV for n^4; if Goldanskii's treatment is still meaningful for such very light nuclei, the pairing energy for the last two neutrons [$B_n(n^4) - B_n(n^3)$] would be at most 1 MeV, which appears somewhat low.

To summarize, the determination of the lowest $T = 3/2$ level energies and widths in Li^7 and Be^7 implies that He^7 is unbound by about 360 keV with a very short half-life (some 10^{-21} sec.), that B^7 is even more unbound, but that He^8 is bound, decaying by β-emission with a maximum energy of the order of 10.1 ± 0.4 MeV.
FOOTNOTES AND REFERENCES

†Work performed under the auspices of the U. S. Atomic Energy Commission.

*CNRS and NATO fellow, visitor from Laboratoire Joliot-Curie de Physique Nucleaire, Orsay, France.

9. This error of 150 keV is considerably larger than the errors on the masses of the analog Li7 and Be7 states and is our estimate of the accuracy of a Coulomb energy correction in such light nuclei.
10. In a note added in proof in Ref. 4, a particle identifier spectrum was shown with a group marked He7(P). This was in fact submitted as He7?6. The possibility that the particular group could be He7 was based on its lifetime given in Ref. 11, which is herein shown to be erroneous.
11. Chart of the Nuclides, Knolls Atomic Power Laboratory, USAEC, 7th ed.

15. Calculations in the mass 8, T = 2 system based on this He mass give for C\(^8\) a mass excess of 36.4 ± 0.8 MeV, which agrees with the predictions of Ref. 13 (< 38 MeV in the C\(^{12}\) system), and implies that C\(^8\) is unbound.

FIGURE CAPTIONS

Fig. 1. Energy spectra for the Be\(^9\)(p,t)Be\(^7\) and Be\(^9\)(p,He\(^3\))Li\(^7\) reactions at 32.5° in the laboratory system.

Fig. 2. Angular distributions for the \(T = 3/2\) states at 10.79 MeV in Be\(^7\) and 11.13 MeV in Li\(^7\). The cross sections for the Li\(^7\) state have been corrected for phase-space and isospin coupling by the factor of 0.989. The errors which appear on the figure are only statistical.
Fig. 1

Be\(^9\) (p, t) Be\(^7\)

32.5 deg
43.7 MeV

Be\(^9\) (p, He\(^3\)) Li\(^7\)

32.5 deg
43.7 MeV
\[\frac{d\sigma}{d\Omega} (p, t) \] and \[\frac{k_t}{k_{He^3}} \times \frac{d\sigma}{d\Omega} (p, He^3) \]

- Be\(^9\) (p, t) Be\(^7\) (10.79 MeV)
- Be\(^9\) (p, He\(^3\)) Li\(^7\) (11.13 MeV)

\(\theta_{c.m.} \) (deg)

MUB-5575

Fig. 2
This report was prepared as an account of Government sponsored work. Neither the United States, nor the Commission, nor any person acting on behalf of the Commission:

A. Makes any warranty or representation, expressed or implied, with respect to the accuracy, completeness, or usefulness of the information contained in this report, or that the use of any information, apparatus, method, or process disclosed in this report may not infringe privately owned rights; or

B. Assumes any liabilities with respect to the use of, or for damages resulting from the use of any information, apparatus, method, or process disclosed in this report.

As used in the above, "person acting on behalf of the Commission" includes any employee or contractor of the Commission, or employee of such contractor, to the extent that such employee or contractor of the Commission, or employee of such contractor prepares, disseminates, or provides access to, any information pursuant to his employment or contract with the Commission, or his employment with such contractor.