Title
REPLY TO ""DISCUSSION OF FACTORS DETERMINING TWINNING IN MARTENSITES"

Permalink
https://escholarship.org/uc/item/4r04q3kg

Authors
Johari, O.
Thomas, G.

Publication Date
1966-11-01
REPLY TO "DISCUSSION OF FACTORS DETERMINING TWINNING IN MARTENSITES"

TWO-WEEK LOAN COPY
This is a Library Circulating Copy which may be borrowed for two weeks. For a personal retention copy, call Tech. Info. Division, Ext. 5545

Berkeley, California
DISCLAIMER

This document was prepared as an account of work sponsored by the United States Government. While this document is believed to contain correct information, neither the United States Government nor any agency thereof, nor the Regents of the University of California, nor any of their employees, makes any warranty, express or implied, or assumes any legal responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by its trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof, or the Regents of the University of California. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof or the Regents of the University of California.
Reply to “Discussion of factors determining twinning in martensites”*

The two points we tried to make in our letter(1) were the following: firstly, that in a given alloy series with increasing solute content and corresponding decrease in Ms temperature the tendency will be for martensite to twin as is found for Fe-C and other alloys besides Fe-Ni and Fe-Ni-C. We are not implying that an absolute low Ms temperature is a prerequisite for twinning but rather that a relatively low Ms temperature favors twinning. Secondly, it does not seem feasible to correlate the stacking fault energy of austenites to the deformation behaviour of the transformed martensite, where the structure is b.c.c. or b.c.t.

University of California
Berkeley
California

References

* Received January 12, 1966.