Lawrence Berkeley National Laboratory
Recent Work

Title
SUMMARY OF THE RESEARCH PROGRESS MEETING OF JUNE 19, 1952

Permalink
https://escholarship.org/uc/item/4r14x3hf

Author
Cushman, Bonnie E.

Publication Date
1952-07-11
TWO-WEEK LOAN COPY

This is a Library Circulating Copy which may be borrowed for two weeks. For a personal retention copy, call Tech. Info. Division, Ext. 5545
This document was prepared as an account of work sponsored by the United States Government. While this document is believed to contain correct information, neither the United States Government nor any agency thereof, nor the Regents of the University of California, nor any of their employees, makes any warranty, express or implied, or assumes any legal responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by its trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof, or the Regents of the University of California. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof or the Regents of the University of California.
SUMMARY OF THE RESEARCH PROGRESS MEETING OF JUNE 19, 1952

Bonnie E. Cushman

July 11, 1952

Some of the results reported in this document may be of a preliminary or incomplete nature. It is the request of the Radiation Laboratory that the document not be circulated off the project nor the results quoted without permission.

Berkeley, California
SUMMARY OF THE RESEARCH PROGRESS MEETING OF JUNE 19, 1952

Bonnie E. Cushman

July 11, 1952

I. Crystal Structure of YCl₃. G. Carter

The study of YCl₃ is of interest because its crystal structure is the same as that of the chlorides of the heavier rare earths. YCl₃ crystals were prepared by the reaction Y₂O₃ + 6HCl(g) → 2YCl₃ + 3H₂O. The product was heated to its melting point and, after cooling, the resultant mass was broken into fragments. Single crystal technique was used in taking the x-ray diffractions patterns as the structure is quite complex. Work was done in a dry box because of the hydroscopic nature of the material. Density measurements indicate four Y and twelve Cl atoms per unit cell. The crystal is monoclinic with six layers along the b axis and cleavage quite marked in a b plane. There is two fold symmetry perpendicular to a mirror plane in the direction of the b axis. The structure and parameters are almost identical with those of AlCl₃. Measurements are listed below.

Melting Point	680°C
Density Observed	2.55 gms/cm³
Density Calculated	2.60 gms/cm³
Cell Dimensions:	a 6.92 Å
	b 11.94 Å
	c 6.44 Å
	β 110° 20'
Interatomic Distances:	Y-Y 3.99 Å
	Y-Cl 2.65 Å
	Cl-Cl 3.54 Å and 4.38 Å
Polarization effects are striking when one considers that the diameter of the Cl ion is 3.62 Å.

II. Further Identification of the Reaction $p + d \rightarrow \pi^+ + t$. K. Bandtel

The angular and energy correlations of the pion - triton coincidences in the reaction $p + d \rightarrow \pi^+ + t$ have been examined. The experimental results are shown in Fig. 1; both the pion energy and triton energy are determined by the pion angle. Time of flight measurements eliminated the background problem. The time of flight from target to telescope of the elastically scattered particles was about two to three times the resolution time of the quadruple coincidence circuit used. The absorbers were such that the particle was near the end of its range as it hit the stilbene counter so that the largest pulses possible were obtained. Absorber thickness was varied to obtain a range spectrum and check the identification of the particle. The telescope levels were raised and lowered to check the position for optimum counting rate. The horizontal angle was also varied. The counting rate ratio in the CD_2 and C targets was three to one.
Fig. 1