Title
TOTAL CROSS SECTIONS FOR FISSION OF U238 INDUCED BY He4 AND HEAVY IONS

Permalink
https://escholarship.org/uc/item/4rb054qj

Authors
Viola, Victor E.
Sikkeland, Torbjorn.

Publication Date
1962-02-20
DISCLAIMER

This document was prepared as an account of work sponsored by the United States Government. While this document is believed to contain correct information, neither the United States Government nor any agency thereof, nor the Regents of the University of California, nor any of their employees, makes any warranty, express or implied, or assumes any legal responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by its trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof, or the Regents of the University of California. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof or the Regents of the University of California.
TOTAL CROSS SECTIONS FOR FISSION OF ^{238}U
INDUCED BY ^4He AND HEAVY IONS

Victor E. Viola, Jr. and Torbjørn Sikkeland

February 20, 1962
TOTAL CROSS SECTIONS FOR FISSION OF U238

INDUCED BY He4 AND HEAVY IONS

Victor E. Viola, Jr. and Torbjørn Sikkeland

Department of Chemistry and Lawrence Radiation Laboratory
University of California
Berkeley, California

ABSTRACT

The total fission cross sections have been measured for bombardment of U238 with He4, B11, C12, N14, O16, and Ne20 ions at energies up to 10.4 Mev/nucleon. Because of the high fissionability of these systems, it is assumed that the fission cross section is equal to the total reaction cross section for heavy-ion reactions. The data have been compared with the theoretical cross-section calculations of Thomas, assuming (1) a square-well nuclear potential, and (2) a parabolic approximation to the real part of the optical potential. At energies well above the Coulomb barrier, the data are well represented using a square-well potential and $r_0 = 1.50\text{fm}$. Near the barrier, however, the agreement is poor. With the parabolic approximation, the entire excitation function can be generally reproduced except in the case of Ne20. For the He4 data, these calculations used a well depth $V_0 = -67$ Mev, a nuclear radius $r_0 = 1.17\text{fm}$, and a diffuseness parameter $d = 0.574\text{fm}$. These values for heavy ions were $V_0 = -70$ Mev, r_0 increasing from 1.26 to 1.26 to 1.26fm and d decreasing from 0.50 to 0.44 as a function of heavy-ion mass.
TOTAL CROSS SECTIONS FOR FISSION OF 238U
INDUCED BY 4He AND HEAVY IONS

Victor E. Viola, Jr. and Torbørn Sikkeland

Department of Chemistry and Lawrence Radiation Laboratory
University of California
Berkeley, California

I. INTRODUCTION

The measurement of total reaction cross sections provides a valuable means of investigating the basic characteristics of nuclear structure. From such information one is able to derive a greater understanding of the range of the nuclear potential and its corresponding shape at the nuclear surface. In this paper we shall define the total reaction cross section to be the sum of all processes in which the incident particle is absorbed or scattered into a reaction channel other than the entrance channel; i.e., it includes all nuclear reactions except shape elastic scattering.\(^1\)

Because of the many competing nuclear processes, total reaction cross sections are generally difficult to measure. Zucker has suggested that the low incident velocity of heavy ions should enhance the probability for compound-nucleus formation at the expense of direct interaction.\(^2\) As a consequence, one would expect the determination of total reaction cross sections from heavy-ion bombardments to be simplified somewhat, in comparison with those involving lighter charged particles ($A \ll 4$).

Total reaction cross sections for heavy ions have been calculated from elastic-scattering data.\(^3,4\) Experiments are currently in progress to measure σ_R directly by a beam-attenuation method.\(^5\) The attenuation experiments, as well as several other studies,\(^6,7,8\) have revealed that the compound-nucleus picture for heavy-ion reactions is much too simple. Instead, these reactions
are quite complex--largely due to the occurrence of nuclear surface reactions. Surface reactions presumably take place among the high l-wave impact parameters that lie between those which lead to pure Coulomb scattering and those which lead to complete amalgamation of the target and projectile. The projectile, although partially deflected by the Coulomb field, comes into approximate tangential contact with the target--resulting in inelastic scattering, nucleon transfer, or breakup of the projectile. These may occur in abundances representing as much as 4-5% of the total reaction cross section.

If one considers only heavy-element target nuclei, however, this difficulty in the measurement of σ_R can be subverted. Because the residual nuclei formed from bombardment of ^{238}U with heavy ions have low fission barriers (25 Mev) and high excitation energies, nearly every nuclear interaction will result in fission. Hence, to a good approximation, the absolute fission cross section σ_f is equal to the total reaction cross section. This fact, plus the ease of detection of fission fragments, makes the ^{238}U-heavy-ion systems quite favorable for the measurement of σ_R. Although the method is limited in its applicability to a few target masses, it can furnish a sensitive determination of the variation of σ_R with energy.

The assumption that $\sigma_R = \sigma_f$ for ^{238}U is supported by several arguments. Studies of products from reactions with heavy elements that can be written as (HI,xn), (HI,pxn), and $(\text{HI},\alpha xn)$ have shown the maximum cross sections to be at most only a few hundred microbarns. Reactions involving the transfer of an alpha particle--e.g., $(\text{C}^{12}, \text{Be}^8 xn)$--are known to have larger cross sections, but are still less than 1% of the fission yield at any given energy. The probability of neutron or proton transfer has been shown to be but a few millibarns. Finally, because of the low probability for re-emission of a heavy ion from such compound nuclei, the inelastic and compound elastic scattering cross sections should be negligible. Therefore, to
within a few percent, \(\sigma_f = \sigma_R \) for heavy-ion fission of \(^{238}\text{U}\). To investigate the behavior of \(\sigma_R \) as a function of energy, the fission cross sections for bombardment of \(^{238}\text{U}\) with \(^{11}\text{B}\), \(^{12}\text{C}\), \(^{14}\text{N}\), \(^{16}\text{O}\) and \(^{20}\text{Ne}\) ions at energies up to 10.4 Mev/nucleon were chosen.

Much of the data on the \(^{12}\text{C}\) system is based upon earlier work.\(^{11}\) As an additional comparison, it was decided to study the fission excitation function for the system \(^4\text{He} + ^{238}\text{U}\), and use previously determined spallation cross sections to obtain \(\sigma_R \). These results are then compared with theoretical cross sections calculated by Thomas assuming (1) a square-well nuclear potential, and (2) a parabolic approximation to the diffuse well.\(^{13}\)

II. EXPERIMENTAL PROCEDURE

The fission chamber and electronics system used in these experiments have been described previously.\(^6\) Two silicon-diode crystals covered with about 50 \(\mu \)g/cm\(^2\) of Au were used as detectors. One of these had a resistivity of 15 \(\Omega \)-cm, and was used for detection of both fission fragments and elastically scattered beam particles, with good resolution. The second detector, of 1800 \(\Omega \)-cm resistivity, served as a secondary energy calibration by measuring the pulse height of elastically scattered heavy ions at 30 deg to the beam in each measurement.

The total cross section for binary fission is given by the expression

\[
\sigma_f = 2\pi (d\sigma_f/d\Omega)_{90 \text{ deg}} \int_0^{\pi} (d\sigma_f/d\Omega)_{\theta} \sin \theta d\theta,
\]

where \(\theta \) refers to either the laboratory or the center-of-mass coordinate system. Here \((d\sigma_f/d\Omega)_{90 \text{ deg}}\) is the absolute differential cross section at 90 deg to the beam axis. The integral expression accounts for the angular distribution relative to 90 deg for the fission fragments. Thus, in order to determine accurate excitation functions, it was necessary to obtain: (a) the absolute
value of $\frac{d\sigma}{d\Omega}$ at 90 deg as a function of energy, (b) relative angular distributions at several energies, and (c) accurate knowledge of the bombarding energy.

A. Absolute Differential Cross Sections

Relative values for $(d\sigma_f/d\Omega)_{90 \ deg}$ were obtained by measuring the number of fissions per number of incident beam particles as a function of energy. These values are proportional to the detector geometry G, and target thickness T, according to the relation

$$(d\sigma_f/d\Omega)_{90 \ deg} = G \cdot T \cdot (d\sigma/e)/(d\Omega)_{90 \ deg}.$$

The product $G \cdot T$ was then established by measurement of the relative differential cross section for elastically scattered heavy ions, using the same target and geometry. For this reaction we can write, as above,

$$(d\sigma/\Omega)_{rel} = G \cdot T \cdot (d\sigma/(d\Omega)_{abs}.$$

The absolute value for $(d\sigma/\Omega)_{abs}$ is given by Rutherford's formula for pure elastic scattering of two-point charges:

$$[d\sigma(\theta)/d\Omega]_{el} = \left(\frac{Z_1 Z_2 e^2}{4\pi E}\right)^2 \sin ^2 \left(\theta/2\right),$$

where Z is the nuclear charge and E the center-of-mass energy.

The ratio of the experimental value of the elastic scattering differential cross section to the value predicted by Eq. (2) is characterized by a flat portion at small angles. This is followed by a 20 to 30% rise before a sharp drop-off at larger angles. Over the flat portion of the curve it is assumed that the absolute value for the differential cross section is given by the Rutherford formula.

For each heavy-ion-$^\text{238}U$ system, we measured $[d\sigma(\theta)/d\Omega]_{rel}^{el}$ at three or more angles where Eq. (2) should be valid. Then, using this value and that predicted by Eq. (2), we calculated the product $G \cdot T$. This comparison was also made at one or two lower energies where the flat portion of the ratio of experimental to theoretical differential cross section extends over a wider
range of angles. The agreement between the values obtained established no systematic change in the Faraday-cup efficiency with energy and ion. Knowing the product \(G \times T \), we were then able to calculate \((d\sigma_f/d\Omega)_{90\,\text{deg}} \). To determine the \(\text{He}^4 \) cross sections, the fission counting rates were normalized to maximum-energy \(\text{O}^{16} \) and \(\text{C}^{12} \) results obtained during the same experiment.

A single target consisting of 110-\(\mu \)g/cm\(^2\) \(\text{UF}_4 \) vaporized onto a 110-\(\mu \)g/cm\(^2\) Ni backing foil was used in all of these experiments. Experiment has shown that no fragments are lost in a target of this thickness; it was oriented at 45 deg to the beam axis. Contribution to the elastic scattering from the Ni foil was corrected by examination of a Ni foil of similar thickness. This contribution was significant only at the lowest angles, hence scattering from the fluorine in the target was assumed to be negligible.

The number of projectile ions striking the target was measured with the Faraday-cup arrangement discussed in reference 6. This value was corrected with the aid of values for the equilibrium charge distributions for heavy ions passing through matter.\(^{14}\) For lighter projectiles this correction is negligible; its magnitude for \(\text{N}^{14} \), \(\text{O}^{16} \), and \(\text{Ne}^{20} \) is indicated in Table I.

<table>
<thead>
<tr>
<th>(\text{N}^{14})</th>
<th>(\text{O}^{16})</th>
<th>(\text{Ne}^{20})</th>
</tr>
</thead>
<tbody>
<tr>
<td>(E) (Mev)</td>
<td>(\bar{q})</td>
<td>(E) (Mev)</td>
</tr>
<tr>
<td>145.5</td>
<td>6.99</td>
<td>166.1</td>
</tr>
<tr>
<td>108.2</td>
<td>6.96</td>
<td>116.6</td>
</tr>
<tr>
<td>77.1</td>
<td>6.88</td>
<td>87.7</td>
</tr>
</tbody>
</table>

B. Angular Distributions

To account for the anisotrophy of fission fragments from these reactions, the angular distributions of the fission fragments were measured at 10-deg
intervals between 30 and 170 deg. These measurements were usually made at three widely differing energies for each system. The distributions were assumed to vary smoothly with energy.11,15 The relative value of the integration factor in Eq. (1) varies between unity for an isotopic angular distribution and $\pi/2$ for the limiting theoretical angular distribution of $1/\sin \theta$.

For all of the heavy ion systems studied here, the behavior of the center-of-mass anisotropies as a function of energy were the same within the limits of error. The angular distributions were equivalent to those reported in reference 11. The integration factors ranged from 1.27 at maximum energy to about 1.17 near the barrier. This introduced, at most, a 2% error in the cross section. For He4 bombardments, experimental anisotropies measured elsewhere were used to obtain the integration factor.16 These values were between 1.15 and 1.10.

C. Bombarding Energy

All projectiles were obtained from the Berkeley Heavy-Ion Linear Accelerator, which accelerates ions to 10.4 ± 0.2 Mev/nucleon.17 Because the value of this experimental technique lies in the sensitivity of σ_R as a function of energy, extreme care was taken to obtain an accurate energy calibration. Lower energies were obtained by inserting carefully weighed aluminum foils into the beam.

The primary energy calibration for the heavy ions was based upon the range-energy relations of Northcliffe, assuming 10.4 Mev/amu.18 The consistency of these calculations was checked by measuring the pulse height for elastically scattered projectiles at a fixed angle, as discussed above. In Fig. 1 the behavior of the pulse height versus the calculated energy is given for B11. The maximum deviation between the calculated energy and a linear pulse-height behavior is about 0.5 Mev.
Fig. 1. Linearity of energy calibration; heavy-ion energy calculated from Northcliffe (△) and from emulsion data (○) vs pulse height of scattered beam.
As an additional check on the absolute value of the energies, emulsions were exposed at the maximum, minimum, and usually one intermediate energy. The range curves in emulsions were found to be symmetric around a most probable track length. From comparison of the most probable track lengths with the results of range-energy relations in desiccated emulsions, excellent agreement with Northcliffe's results was observed at the two higher energies.

However, except for B11 and Ne20, at the lowest bombarding energies the value obtained from the emulsion studies was 1 to 2 Mev lower than that calculated from the range-energy curves in Al. One possible source of this discrepancy is that any variation of the plane of the degrading foil from 90 deg to the beam axis serves to increase the foil thickness seen by the beam. The energy values determined from the Al thickness are therefore upper limits. Whenever such deviations occurred, the energy values were based upon the average of the two and appropriate error bars were assigned. The \(\alpha\)-particle energy calculations were based upon the data of Bichsel.20

Because of the slope of the excitation function is quite steep at the lowest energies, it was necessary to further correct the energies for the variation of the cross section due to the energy spread of the beam. To accomplish this, we graphically integrated the expression

\[
\sigma(E') = \sigma_{\text{exp}}(E_0) = \frac{\int_{\frac{E_0}{2} + \frac{\Delta E}{2}}^{E_0 + \frac{\Delta E}{2}} P(E) \, (d\sigma/dE) \, dE}{\int_{E_0 - \frac{\Delta E}{2}}^{E_0 + \frac{\Delta E}{2}} P(E) \, dE}
\]

Here \(E'\) is corrected energy, \(E_0\) is the initial energy discussed above, and \(\Delta E\) is the energy spread determined from the measured range straggling in emulsions. The function \(P(E)\) was derived from the number of tracks of a given length in the emulsion, whereas \((d\sigma/dE)\) was interpolated from the data.
Successive application of this correction usually increased the most probable energy of the lowest points from 0.5 to 1.0 Mev. The energy spreads (full width at half maximum) and energies found for the different ions are shown in Table II.

One additional piece of information obtained from the emulsions was the physical width of the beam after passing through the collimation system. This showed that the number of beam particles that failed to reach the Faraday cup because of scattering from the collimator or the target was negligible.

III. RESULTS

The measured cross sections and the corresponding most probable energies are listed in Table III. The errors in σ_f are standard deviations calculated from the statistical errors in $(d\sigma_f/d\Omega)_{rel}$, from the error in geometry and target thickness of 3%, and from the 2% error in the knowledge of the integral in Eq. (1).

A qualitative comparison of the data at the maximum bombarding energies shows that the cross section increases regularly with increasing Z and A. As would be expected at these excitation energies, no noticeable effect of projectile spin is observed. The maximum 7B11 cross section is an exception to the regular variation with Z and A, but this result is not surprising because we are comparing it with projectiles having an equal number of neutrons and protons. The effect of adding a neutron while maintaining Z constant is two-fold. First, because the Hilac accelerates ions to 10.4 Mev/nucleon, an additional neutron effectively adds 10.4 Mev to the bombarding energy. Second, it increases the nuclear radius, thus enhancing the probability for interaction, and slightly lowering the Coulomb barrier. If one chooses for comparison the 7B11 cross section at about 103 Mev, then
<table>
<thead>
<tr>
<th>Heavy Ion</th>
<th>Average energy in emulsion (Mev)</th>
<th>Full-width at half-maximum (Mev)</th>
</tr>
</thead>
<tbody>
<tr>
<td>^7B</td>
<td>114.8</td>
<td>1.7</td>
</tr>
<tr>
<td></td>
<td>90.4</td>
<td>2.3</td>
</tr>
<tr>
<td></td>
<td>52.6</td>
<td>2.3</td>
</tr>
<tr>
<td>^{12}C</td>
<td>110.9</td>
<td>3.1</td>
</tr>
<tr>
<td></td>
<td>72.1</td>
<td>4.1</td>
</tr>
<tr>
<td>^{14}N</td>
<td>145.6</td>
<td>2.8</td>
</tr>
<tr>
<td></td>
<td>75.0</td>
<td>4.2</td>
</tr>
<tr>
<td>^{16}O</td>
<td>165.9</td>
<td>2.0</td>
</tr>
<tr>
<td></td>
<td>134.4</td>
<td>3.7</td>
</tr>
<tr>
<td></td>
<td>85.9</td>
<td>4.3</td>
</tr>
<tr>
<td>^{20}Ne</td>
<td>207.8</td>
<td>4.4</td>
</tr>
<tr>
<td></td>
<td>109.5</td>
<td>5.0</td>
</tr>
<tr>
<td>He$^+$</td>
<td>He$^+$</td>
<td>B11</td>
</tr>
<tr>
<td>--------</td>
<td>--------</td>
<td>--------</td>
</tr>
<tr>
<td>41.6</td>
<td>1602±59</td>
<td>114.4</td>
</tr>
<tr>
<td>37.3</td>
<td>1366±50</td>
<td>111.6</td>
</tr>
<tr>
<td>34.6</td>
<td>1163±43</td>
<td>108.3</td>
</tr>
<tr>
<td>32.0</td>
<td>1041±36</td>
<td>105.5</td>
</tr>
<tr>
<td>29.8</td>
<td>945±31</td>
<td>102.5</td>
</tr>
<tr>
<td>28.7</td>
<td>770±28</td>
<td>99.6</td>
</tr>
<tr>
<td>27.6</td>
<td>660±25</td>
<td>96.0</td>
</tr>
<tr>
<td>26.75</td>
<td>563±21</td>
<td>92.7</td>
</tr>
<tr>
<td>25.5</td>
<td>445±17</td>
<td>89.6</td>
</tr>
<tr>
<td>24.25</td>
<td>289±11</td>
<td>86.5</td>
</tr>
<tr>
<td>22.9</td>
<td>162±6.6</td>
<td>82.2</td>
</tr>
<tr>
<td>21.6</td>
<td>61.2±2.9</td>
<td>79.3</td>
</tr>
<tr>
<td>79.7</td>
<td>1227±46</td>
<td>72.5</td>
</tr>
<tr>
<td>73.5</td>
<td>1114±42</td>
<td>72.5</td>
</tr>
<tr>
<td>68.4</td>
<td>891±34</td>
<td>70.0</td>
</tr>
<tr>
<td>64.9</td>
<td>692±27</td>
<td>69.1</td>
</tr>
<tr>
<td>62.6</td>
<td>520±21</td>
<td>67.5</td>
</tr>
<tr>
<td>60.6</td>
<td>391±16</td>
<td>66.0</td>
</tr>
<tr>
<td>58.4</td>
<td>257±11</td>
<td>65.0</td>
</tr>
<tr>
<td>56.6</td>
<td>132±7</td>
<td>65.0</td>
</tr>
<tr>
<td>54.0</td>
<td>44.0±3.0</td>
<td>65.0</td>
</tr>
</tbody>
</table>
the cross sections increase regularly as a function of increasing Z and A for all ions studied here.

Thomas has calculated heavy-ion cross sections as a function of energy on the basis of two simple nuclear potentials: (a) a square well and (b) a parabolic approximation to the optical-model real potential. According to the model, if we represent the incoming projectile by a wave \(\psi_1 = \exp(-ikr) \), where \(k \) is the wave number, any particle that penetrates the barrier sufficiently to feel the nuclear force must be completely absorbed. Otherwise, it continues with the same wave function.

In this model there is no provision for reactions in which the projectile is only partially absorbed; e.g., the nuclear surface reactions. However, one can interpret the calculations from a somewhat different point of view. The cross sections calculated by Thomas are derived from the probability of the projectile penetrating the barrier far enough to feel the attractive nuclear potential. For the nuclear surface reactions, it can be argued that the projectile must feel some part of the nuclear force because its wave function has some new form \(\psi_r = \exp(-i k'r) \) after passing the target nucleus.

From this point of view, Thomas' calculations can be considered to be total reaction cross sections, to a good approximation. This interpretation, then, suggests that the nuclear surface reactions occur at the expense of complete compound-nucleus formation in the high \(\ell \)-wave angular momentum states. These assumptions are justified in part by the results presented below.

A. Square-Well Model

The square-well calculations are based on the model presented by Blatt and Weiskopf. The basic assumptions are: (a) The target and projectile nuclei are spheres having well-defined surfaces and radii, \(R_i = r_0 A_i^{1/3} \).
(b) The potential energy for the system can be written as

\[V = \frac{Z_1 Z_2 e^2}{r}, \quad r > R_1 + R_2 \]
\[(3a); \]

\[V = -V_0, \quad r < R_1 + R_2 \]
\[(3b); \]

where \(r \) is the distance between the center of the two nuclei, and \(V_0 \) is a constant.

(c) There is an interaction radius, \(R = R_1 + R_2 \), such that for \(r > R \) there is no nuclear interaction, and for \(r < R \) there is a strong nuclear interaction causing the incident particle to be absorbed.

The comparison between the experimental data and \(\sigma_R \) predicted by this model is shown in Fig. 2 for \(C^{12}, N^{14}, O^{16} \), and \(Ne^{20} \)-using \(r_0 = 1.50f \). This value for \(r_0 \) has been used by others to fit heavy-ion cross sections with a square-well model,\(^9,23\) and is the value commonly used to fit similar data from alpha-particle bombardments.\(^24\) At energies from about 25 Mev above the classical Coulomb barrier and higher, the square-well potential predicts the cross sections quite accurately. At lower energies the theoretical values are much too high.

B. Diffuse-Well Model

In the diffuse-well model, the real part of the optical-model potential proposed by Igo to fit alpha-particle data has been used:\(^{25,26}\)

\[V = Z_1 Z_2 e^2 \frac{1}{r} - V_0 \exp \left\{ - \left[\frac{r-r_0(A_1^{1/3} + A_2^{1/3})}{d} \right] \right\}. \]
\[(4) \]

Here \(V_0, r_0, \) and \(d \) are the parameters in the real part of the Woods-Saxon optical potential.\(^{27}\) The cross section can be expressed as

\[\sigma_R = \pi \sum_{\ell = 0} (2\ell + 1) T_{\ell}, \]
\[(5) \]
Fig. 2. Comparison of the experimental excitation functions for bombardment of U238 with C12, N14, O16, and Ne20 with calculations based on a square-well nuclear potential and $r_0 = 1.50f$ (solid line).
where \(\lambda \) is the de Broglie wavelength, and \(T_{\ell} \) is the transmission coefficient for the \(\ell \)th partial wave. The values of \(T_{\ell} \) are calculated by assuming that the potential given by Eq. (4) can be approximated by a parabola. Hill and Wheeler have shown that for a parabolic barrier

\[
T = \left[1 + \exp \left(\frac{2\pi (B-E)}{\hbar \omega} \right) \right]^{-1},
\]

where \(B \) is the barrier height, \(E \) is the energy of the system, and

\[
\hbar \omega = \left(\frac{\hbar}{\mu} \frac{\partial^2 V}{\partial r^2} \right)^{1/2},
\]

\(V \) and \(\mu \) being defined in Eq. (4).

Using this model, Igo was able to fit the data from alpha-particle bombardments using \(r_0 = 1.17f \), \(V_0 = -67 \) Mev, and \(d = 0.574f \). In Fig. 3 we have used the same parameters to fit \(\sigma_R \) for the \(\text{He}^4 + \text{U}^{238} \) system. Within the limits of error, the agreement is satisfactory. Here \(\sigma_R \) represents the sum of our measured fission cross sections plus interpolated cross sections for the \((\alpha,xn)\) reactions, and for the \((\alpha,pxn)\) and \((\alpha,a'n)\) reactions. Our data for the \(\text{U}^{238} (\alpha,f) \) cross sections are in good agreement with previous observations.

When these same values for the diffuse-well parameters were used, it was not possible to fit the data for \(\sigma_R \) from the heavy-ion reactions. By minimal variation of \(r_0, V_0, \) and \(d \), best fits to the data were obtained; they are shown in Fig. 4. For all systems except Ne\(^{20} + \text{U}^{238} \), reasonably good agreement at all energies was obtained with the parameters given in Table IV. The \(\text{B}^{11} \) results agreed with either of the two sets of values listed, although that with \(r_0 = 1.23f \) was slightly better.

We found that \(V_0 \) was the least sensitive of the parameters in the calculation of \(\sigma_R \), and therefore, it was held constant. This left the nuclear
Fig. 3. Excitation function for the sum of the $(\alpha, fission)$, (α, xn), (α, pxn), and $(\alpha, \alpha' n)$ reactions from ^{238}U compared with parabolic approximation to the real part of the optical potential for $r_0 = 1.17f$, $V_0 = -66.6$ Mev, and $d = 0.574f$.
Fig. 4. Best fits for the parabolic approximation to the real part of the optical potential (solid line) to the excitation functions for fission of U^{238} with B^{11}, C^{12}, N^{14}, O^{16}, and Ne^{20}. (Parameters for calculation are given in Table IV.)
TABLE IV. Parameters for parabolic approximation to the real part of the optical potential giving best fit to the experimental results.

<table>
<thead>
<tr>
<th>Ion</th>
<th>He4</th>
<th>B11</th>
<th>C12</th>
<th>N14</th>
<th>O16</th>
<th>Ne20</th>
</tr>
</thead>
<tbody>
<tr>
<td>r_0 (f)</td>
<td>1.17</td>
<td>{1.23}</td>
<td>1.24</td>
<td>1.24</td>
<td>1.25</td>
<td>1.26</td>
</tr>
<tr>
<td>V_0 (Mev)</td>
<td>-66.6</td>
<td>-70</td>
<td>-70</td>
<td>-70</td>
<td>-70</td>
<td>-70</td>
</tr>
<tr>
<td>d (f)</td>
<td>0.574</td>
<td>{0.50}</td>
<td>0.48</td>
<td>0.48</td>
<td>0.48</td>
<td>0.44</td>
</tr>
</tbody>
</table>

radius parameter r_0 and the diffuseness parameter d for variation. As the mass of the projectile increases, it is necessary to use larger values of r_0 and smaller values of d in order to fit the data. This in effect reduces the diffuseness of the nuclear surface; i.e., the nuclear potential becomes more like that of a square well.

Although other values of r_0, V_0, and d or the use of an energy-dependent V_0 may provide as good a fit to the data as that shown here, at present no attempt is being made to explore these values. The data will be analyzed further by using an optical-model potential with an imaginary part and a finite nuclear charge distribution incorporated into the calculations.

IV. CONCLUSIONS

Although the parabolic approximation generally describes the experimental excitation functions much better than the square well, it is still difficult to match the data at the maximum and minimum energies with that 5 to 15 Mev above the minimum. This effect is noticeable in the O16 results and is quite marked with Ne20 (Fig. 4). This difficulty stems from too rapid a decrease in the calculated σ_R near the barrier.

A possible explanation for this effect may reside in the fact that the calculation of the Coulomb potential in this model assumes the two interacting
nuclei to be point charges. Use of a Coulomb potential accounting for nuclei with finite charge distributions such as those of Hill and Ford31 should decrease the slope of σ_R near the barrier somewhat, by lowering the Coulomb barrier. A second possibility is that we may be observing fission reactions resulting from Coulomb excitation near the barrier.

Because Coulomb excitation is an electromagnetic interaction, it is not included in the calculation of σ_R. The large charges of the projectile and target enhance the probability for such reactions. We have calculated the cross section for E1 and E2 Coulomb excitation32 to a level necessary for fission to proceed—about 6 Mev above the ground state. Using single-particle transition probabilities, we estimate the cross section for Ne20 + U238 at 103 Mev to be 10μb for E1 excitation and 50μb for E2 excitation. The observed cross section at this energy is 5 mb, so that, unless the transition probabilities are two orders of magnitude too small, Coulomb excited fission should be small here.

The parameters derived from fitting the experimental data for the various heavy ions should be useful in calculating total reaction cross sections and average angular momenta for heavy-ion bombardment of other targets. However, it should be stressed that any quantitative interpretation of heavy-ion reactions must take into account the perturbations created by nuclear surface reactions.

For example, the effect of surface reactions upon the calculated average angular momentum for 125-Mev C12 bombardment of U238 is quite strong. It is known that a minimum of 13% of the fission in this reaction is initiated by fragments of $A = 4$ or less.6 Assuming that 13% of the cross section is taken up by the partial sections for the highest l-wave impact parameters, a recalculation of the angular momentum lowers 7 from 43.1 to 35.9. This calculation can be patched up somewhat by assuming that the transfer reactions...
involve an alpha particle having the angular momentum corresponding to an energy of $A/4$ of the target energy. Nonetheless, for interpretation of fission-fragment angular distributions from lighter targets in which surface reactions do not lead to fission, \mathcal{L} is quite certainly lower than the calculated value. This same problem hinders the treatment of data from isomer ratios for metastable states formed from different systems.

ACKNOWLEDGMENTS

The authors are indebted to Albert Ghiorso for his interest and many helpful discussions concerning this work. We are grateful to Homer E. Conzett, Richard M. Diamond, George J. Igo, T. Darrah Thomas, and Bruce D. Wilkins for their assistance in the interpretation of these results. Robert M. Latimer and Walter F. Stockton prepared the excellent silicon detectors, and Charles A. Corum designed the fission chamber. We also thank Roberta B. Garrett and Suzanne M. Hargis for their valuable aid in processing the data.
FOOTNOTES AND REFERENCES

* This work done under the auspices of the U. S. Atomic Energy Commission.

12. Torbjørn Sikkeland, Lawrence Radiation Laboratory, unpublished data.

This report was prepared as an account of Government sponsored work. Neither the United States, nor the Commission, nor any person acting on behalf of the Commission:

A. Makes any warranty or representation, expressed or implied, with respect to the accuracy, completeness, or usefulness of the information contained in this report, or that the use of any information, apparatus, method, or process disclosed in this report may not infringe privately owned rights; or

B. Assumes any liabilities with respect to the use of, or for damages resulting from the use of any information, apparatus, method, or process disclosed in this report.

As used in the above, "person acting on behalf of the Commission" includes any employee or contractor of the Commission, or employee of such contractor, to the extent that such employee or contractor of the Commission, or employee of such contractor prepares, disseminates, or provides access to, any information pursuant to his employment or contract with the Commission, or his employment with such contractor.