Lawrence Berkeley National Laboratory
Recent Work

Title
n- ABSORPTION IN D2 AND THE N-N FORCE

Permalink
https://escholarship.org/uc/item/4rh489zs

Authors
Asmodt, R. Lee
Panofsky, Wolfgang K.H.
Phillips, R.

Publication Date
1951-06-21
TWO-WEEK LOAN COPY

This is a Library Circulating Copy which may be borrowed for two weeks. For a personal retention copy, call Tech. Info. Division, Ext. 5545
DISCLAIMER

This document was prepared as an account of work sponsored by the United States Government. While this document is believed to contain correct information, neither the United States Government nor any agency thereof, nor the Regents of the University of California, nor any of their employees, makes any warranty, express or implied, or assumes any legal responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by its trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof, or the Regents of the University of California. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof or the Regents of the University of California.
ABSORPTION IN D$_2$ AND THE N-N FORCE

R. Lee Aamodt, Wolfgang K. H. Panofsky, and R. Phillips

June 21, 1951

Berkeley, California
ABSORPTION IN D₂ AND THE N-N FORCE

R. Lee Aamodt, Wolfgang K. H. Panofsky, and R. Phillips

Radiation Laboratory, Department of Physics,
University of California, Berkeley, California

June 21, 1951

Watson and Stuart have recently published detailed theoretical calculations concerning the gamma ray spectrum from the process \(\pi^- + D \rightarrow 2\pi^- + \gamma \) previously observed. The resultant spectrum is clearly sensitive to the n-n interaction at low energies. Since the analysis was based on unpublished data it appears advisable here to state the experimental status concerning this spectrum. The present data allow considerable latitude regarding the n-n interaction parameters. It is clear, however, that a not immeasurable improvement of the data could lead to quite conclusive evidence concerning the stability of the di-neutron.

When the curves of Watson and Stuart are "folded" into the resolving power of the pair spectrometer used in the absorption experiments the resultant curves for various values of the n-n interaction show a negligible difference in shape but are effectively displaced along the energy scale. Fig. 1 shows a curve of this effective displacement plotted against the binding energy of a hypothetical di-neutron, real or virtual. Fig. 2 shows the theoretical spectrum, with the resolution folded in, of the curve corresponding to zero binding. Marked on the abscissa is the value of

\[
E_0 = \left[\left(\pi^- + p \right)^2 - n^2 \right] / 2(\pi^- + p); \quad \text{here} \quad \pi^-, p, \text{and} \ n \text{ are the rest}
\]

1 K. M. Watson and R. N. Stuart, Phys. Rev. 82, 738 (1951)
2 Panofsky, Aamodt, and Hadley, Phys. Rev. 81, 565 (1951)
energies of the particular particles. \(E_0 \) is thus the expected value of the gamma ray from the process \(\pi^- + p \rightarrow n + \gamma \). Measurement of the gamma ray process in \(H \) on the same spectrometer will thus determine the value of \(E_0 \) without specific reference to the \(\pi^- \) mass. Plotted on Fig. 2 also is the theoretical shape of the gamma ray line from \(\pi^- + p \rightarrow n + \gamma \), i.e., the resolution of the instrument. The value of the binding energy will then simply result by comparing the separation of the gamma ray peaks of the two processes with that plotted in Fig. 2 and then reading \(E_B \) of Fig. 1. Fig. 3 shows the experimental hydrogen and deuterium data. On comparing Fig. 2 and Fig. 3 we estimate that the D data are displaced by an amount of 0.8 Mev \(\pm 1.5 \) Mev toward lower energy, i.e., virtual binding. Accordingly, the nominal value of the lowest state of the \(n-n \) system is 1.2 Mev virtual; in terms of these data the probability is 25 percent that a real di-neutron of binding energy greater than 10 Kev exists; the probability is only 10 percent that the binding is in excess of 150 Kev.

This work was performed under the auspices of the Atomic Energy Commission.
Figure Captions

Fig. 1 Plot of effective displacement of theoretically computed spectra\(^1\) resulting from the process \(\pi^- + D \rightarrow 2n + \gamma\) as a function of the binding energy \(E_B\) of the lowest level of the n-n system.

Fig. 2 Theoretical \(\gamma\) spectra of the processes: \(\pi^- + D \rightarrow 2n + \gamma\) and \(\pi^- + H \rightarrow n + \gamma\); these spectra include the resolution.

Fig. 3 Experimental data on the processes \(\pi^- + D \rightarrow 2n + \gamma\) and \(\pi^- + H \rightarrow n + \gamma\). The theoretical curves giving the best fit are also given.
FIG. I

\[\infty (\text{NO INTERACTION}) \]

-3 MEV
-2 MEV
-1 MEV

500 KEV
400 KEV
300 KEV
200 KEV
100 KEV

-100 KEV
-200 KEV

MEV DISPLACEMENT

REAL
VIRTUAL

FIG. 1
THEORETICAL SPECfRUM FOR \(\pi^+ + d \rightarrow 2\pi n \mbox{ FOR ZERO BINDING} \)

FIG. 2