Coexistence of keloids and pilomatricoma in a patient with Rubinstein-Taybi syndrome

Yosuke Yagi¹,², Yutaka Kuwatsuka¹, Misachi Asai¹, Mai Honda¹, Atsushi Utani¹

Affiliations: ¹Department of Dermatology, Graduate School of Medicine, Nagasaki University, Nagasaki, Japan, ²Osaka Red Cross Hospital, Osaka, Japan

Corresponding Author: Osaka red cross hospital, 5-30 Fudegasaki, Ten-nohji Ward, Osaka 543-8555, Japan, E-mail: yskysk@kuhp.kyoto-u.ac.jp

Abstract
Rubinstein-Taybi syndrome (RTS) is an autosomal-dominant hereditary disease, which contains many skeletal and organ anomalies as well as mental retardation. Although high incidence of keloids in RTS is known, it is difficult to find a detailed report on the clinical features of keloids. In the following letter, we report an RTS patient fulfilling diagnostic criteria who suffered from both keloids and pilomatricoma. We also performed a literature search, which identified the possible involvement of the Wnt/β-catenin signaling pathway in the pathogenesis of these two skin lesions.

Keywords: Rubinstein-Taybi syndrome, keloids, pilomatricoma, Wnt/β-catenin

Introduction
Rubinstein-Taybi syndrome (RTS) is an autosomal-dominant hereditary disease, first described in 1963 by Rubinstein and Taybi, which contains many skeletal and organ anomalies as well as mental retardation. Diagnosis is made on the clinical criteria consisting of the presence of mental retardation associated with three major symptoms such as broad thumbs or first toes, columella show, and thick eyebrows or long eyelash (Japan Intractable Disease Information Center). DNA sequence or FISH reveals mutation of cAMP response element-binding protein (CREB) binding protein (CBP) [1], in 50-70% of patients, which can be used as supporting data for diagnosis. Although a high incidence of keloids in RTS is known, detailed reports on the clinical features of keloids are rare. Herein, we report an RTS patient fulfilling diagnostic criteria who suffered from both keloids and pilomatricoma [2].

Case Synopsis
A 35-year-old man exhibited mental retardation, short stature, down slant of the palpebral fissures, strabismus, thick eyebrows and long eyelash, beaked nose (Figure 1A), and broad thumbs (Figure 1B). He was referred to our hospital with an ulcerative nodule (~15 mm in diameter) on his right shin (Figure 1C). He also had multiple, flat-topped, reddish, elastic hard nodules on the sternal and deltoid areas, for which the diagnosis of keloids was made clinically (Figure 1D). Histopathological examination of the totally excised nodule revealed ghost cells, calcifications, and multinucleated giant cells (Figures 1E, F), indicative of pilomatricoma.

Discussion
The majority of RTS is caused by gene mutations in CBP in RTS [1] and less often by those in p300, also a regulator of CREB activity. CBP functions as a transcriptional cofactor or regulates transcription through histone acetyltransferase activity for various target molecules involving cell proliferation, differentiation, and apoptosis. In the present RTS case, the patient had both pilomatricoma and keloids, which are the most often associated cutaneous symptoms. As for pilomatricoma, activating mutation of catenin-β1 in the Wnt/β-catenin signaling pathway has been found in humans [3]. In keloids, augmentation of Wnt-3a [4] and Wnt-5a signaling pathways have been reported.

CBP is known to regulate multiple target gene expression. The development of keloids is triggered by one or some of the CBP target molecules. Alternatively, since it was reported that Wnt-3a activation resulted in suppression of CBP function.
It may be possible to explain the development of pilomatricoma and keloids in RTS by considering an interaction between Wnt/β-catenin and CBP.

Conclusion

Genetic predisposition of keloids is strongly suspected by the presence of familial cases. However, until now, gene mutations in keloids have not been clarified, including any association with CBP/p300 and Wnt/β-catenin. Therefore, it seems to be very intriguing to explore a possibility that CBP/p300 function and the Wnt/β-catenin pathway may be involved in keloid development, as RTS is the only human disorder with keloids as a characteristic feature.

References

