NEURODYNAMICS OF CATEGORY LEARNING: TOWARDS UNDERSTANDING THE CREATION OF MEANING IN THE BRAIN
MATTHIAS DELIANO, FRANK W. OHL
DOI: 10.1142/S1793005709001192
The implications of these findings for the construction of interactive cortical sensory neuroprosthesis are discussed. Physical stimulus attributes (e.g., stimulus representation) and subjectively relevant information (meaning) about stimuli, respectively, recordings of electrocorticograms in rodents. These data suggest the coexistence of separate coding principles for representing category learning using high-density multi-channel electrophysiology. The formation and use of categories (e.g., equivalence classes of meaning) is an elemental function of cognition. We report an approach to study the physiological mechanisms underlying category learning using high-density multi-channel electrophysiology. To whom correspondence should be addressed, Leibniz Institute for Neurobiology, Brünneckestraße 6, Magdeburg, D-39118, Germany.

Keywords: Cortical dynamics, category learning, neuroprosthesis.