Regression vs. Volatility Tests of the Efficiency of Foreign Exchange Markets

Authors
Frankel, Jeffrey A.
Stock, James H.

Publication Date
1987-01-27

Peer reviewed
UNIVERSITY OF CALIFORNIA, BERKELEY

Department of Economics

Berkeley, California 94720

Working Paper 8726

REGRESSION VS. VOLATILITY TESTS
OF THE EFFICIENCY
OF FOREIGN EXCHANGE MARKETS

Jeffrey A. Frankel and James H. Stock

January 27, 1987

Key words: Variance-bounds, volatility test, exchange rates.

Abstract

Volatility tests are an alternative to regression for evaluating the joint null hypothesis of market efficiency and risk neutrality. A comparison of the power of the two kinds of tests depends on what the alternative hypothesis is taken to be. By considering tests based on conditional volatility bounds, we show that if the alternative is that one could "beat the market" using a linear combination of observable variables, then the regression tests are at least as powerful as the conditional volatility tests. If the application is to spot and forward markets for foreign exchange, then the most powerful conditional volatility test turns out to be equivalent to the analogous regression test in terms of asymptotic power.

JEL Classification: 431
ACKNOWLEDGEMENTS

The authors would like to thank Alejandra Mizala-Salces for helpful research assistance; Charles Engle, Robert Shiller, and Richard Startz for useful discussion and comments.
I. Introduction

There are two ways to go about testing the joint hypothesis of efficiency and risk neutrality in a particular financial market. First, regression tests compute conditional first moments; they look for predictability, given some information set. For example, in a forward or futures market (e.g. commodities or foreign exchange), the deviation of the next period’s realized spot rate from the current one-period forward rate should be uncorrelated with variables known currently. An analogous condition holds in a longer-term asset market (e.g. stocks or bonds): the deviation of the present discounted value, assuming it is observable, of realized future returns (dividends or coupon payments), from the current asset price should again be uncorrelated with variables known currently. Second, the volatility tests introduced by Shiller (1979) and LeRoy and Porter (1981) compute second moments; they compare variances.¹ In a forward market this would mean comparing the variance of the spot rate to the variance of the forward rate. The joint null hypothesis of market efficiency and risk neutrality implies that the forward rate is less volatile than the spot rate. In a longer term asset market it would mean comparing the variance of the return with the variance of the asset price. The hypothesis implies that the asset price is less volatile than the return, in a specific sense.

A natural question to ask is which kind of tests, the regression tests or the volatility tests, is more powerful, i.e. is better able to reject the hypothesis in the event that it is false. As is often the case with questions of power, the answer depends on what the alternative hypothesis is. In this paper we take the alternative to be a particular failure of rational
expectations or market efficiency. The alternative hypothesis is that one could "beat the market" on average, using a linear combination of data in a particular information set. We show that in all cases the regression tests are at least as powerful against this alternative as the volatility tests.

In the case of spot and forward rates a comparison of simple unconditional variances tells us very little. Empirically, the unconditional sample variance of the spot rate differs negligibly from the unconditional sample variance of the forward rate. We argue in Section II that such considerations suggest comparing the variances conditional on some particular information set, which is analogous to what one does in regression tests. Thus, we consider a class of variances bound tests that generalizes those implemented by Mankiw, Romer, and Shapiro (1985), which entail computing variance bounds for perfect foresight prices around "naive" conditional means. The most powerful such volatility test will compute a variance conditional on an optimal linear combination of known variables. One might intuitively suspect that the linear combination would be the same as the estimates one would get from a regression on the same set of variables. It is perhaps more surprising that this most powerful volatility test turns out to be equivalent to the analogous regression test in terms of asymptotic power. That is, as the number of observations becomes large, the volatility test is no more and no less likely to reject the variance inequality than the coefficients in the regression test are to differ significantly from zero. We prove this central result of the paper in Section III.

These results suggest that regression tests are often preferable to volatility tests. This is, however, not always the case. Three important
exceptions to our results stand out. First, our argument assumes that the data are correctly aligned. If they are not, as Shiller (1981a) points out, regression tests can be less powerful than volatility tests. Second, like Mankiw, Romer, and Shapiro (1985), we assume that the "perfect foresight" price (here, the future spot exchange rate; in Mankiw, Romer, and Shapiro's [1985] case, the perfect foresight stock price) is observable ex-post. Third, volatility tests that examine the present discounted valuation relation (such as Shiller's [1986b] and LeRoy and Porter's [1981] application to stock prices and dividends) can have greater power than regression tests against certain alternatives: for example, in the context of the term structure of interest rates, Stock (1982) shows that volatility tests can be expected to have greater power than regression tests when individuals prefer smooth consumption streams.

II. Volatility Bounds for Spot and Forward Rates

The rational expectations/efficient markets hypothesis is commonly stated as

\begin{equation}
S_{t+1} = F_t + \epsilon_{t+1}, \quad E_t \epsilon_{t+1} = 0
\end{equation}

where $E_t(\cdot) = E(\cdot | I_t)$ is the expectation conditional on the information set I_t. This implies a simple variance inequality:

\begin{equation}
\text{var } S_{t+1} = \text{var } F_t + \text{var } \epsilon_{t+1} + \text{cov } F_t \epsilon_{t+1} \geq \text{var } F_t
\end{equation}

-5-
since $\text{cov} \, F_t \epsilon_{t+1} = 0$ under the null hypothesis.

One might be tempted to test this bound. However, a casual glance at the sample variance for selected exchange rates (Table 1) indicates that the sample variances corresponding to (2) are almost equal; although no formal test is performed, it seems very unlikely that the inequality (2) would be rejected.2 This finding will not be surprising to anyone who has ever seen a plot of the spot and forward rate over time. The two fluctuate enormously, but in tandem. There may be a finite component of the one-period change in the spot rate that is correctly foreseen by the forward rate; but if so it is dwarfed by the magnitude of the total change in the spot rate, and the very similar magnitude of the change in the forward rate.

This observation suggests pursuing the course discussed in the introduction, that is, developing a more powerful volatility test of market efficiency. A reasonable class of tests to consider, which generalizes that based on (2), looks at deviations around a mean conditional on an available information set. This is analogous to regression tests, in which we compute means conditional on particular information sets; the larger the information set, the more powerful the test.3 Specifically, if Z_t is in I_t, then

$$\text{var}(S_{t+1} - Z_t) = \text{var}(F_t - Z_t + \epsilon_{t+1})$$
$$= \text{var}(F_t - Z_t), + \text{var}(\epsilon_{t+1}) + 2\text{cov}(F_t - Z_t, \epsilon_{t+1}).$$

Under the null hypothesis (1), $\text{cov}(Z_t, \epsilon_{t+1}) = 0$. This results in the bound:

$$(2') \quad \text{var}(F_t - Z_t) \leq \text{var}(S_{t+1} - Z_t).$$
Table 1

Variances Around the Sample Mean

June 1973 - April 1982

<table>
<thead>
<tr>
<th>Currency</th>
<th>Spot Rate</th>
<th>Forward Rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>Canadian dollar</td>
<td>.00566866</td>
<td>.00561098</td>
</tr>
<tr>
<td>French franc</td>
<td>.00046331</td>
<td>.00047980</td>
</tr>
<tr>
<td>German mark</td>
<td>.00406331</td>
<td>.00431700</td>
</tr>
<tr>
<td>Japanese yen</td>
<td>.00000036</td>
<td>.00000038</td>
</tr>
<tr>
<td>Pound sterling</td>
<td>.0637202</td>
<td>.0632473</td>
</tr>
</tbody>
</table>
Table 2
Variances Around the Lagged Spot Rate

<table>
<thead>
<tr>
<th>Currency</th>
<th>Spot Rate Mean $(S_{t+1} - S_{t-1})^2$</th>
<th>Forward Rate Mean $(F_t - S_{t-1})^2$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Canadian dollar</td>
<td>.00028153</td>
<td>.00015118</td>
</tr>
<tr>
<td>French franc</td>
<td>.00008562</td>
<td>.00004632</td>
</tr>
<tr>
<td>German mark</td>
<td>.00046910</td>
<td>.00039569</td>
</tr>
<tr>
<td>Japanese yen</td>
<td>4.40×10^{-8}</td>
<td>2.20×10^{-8}</td>
</tr>
<tr>
<td>Pound sterling</td>
<td>.00811008</td>
<td>.00376687</td>
</tr>
</tbody>
</table>
For the tests considered in the paper, we take this notion of examining deviations about a nonconstant variable Z_t one step further. From the familiar decomposition that mean square error is variance plus the square of the bias, a reasonable generalization of (2') is to consider a mean square error bound; that is, to consider a bound based on moments that in general could be noncentral, rather than the simple central moments examined so far.

We now consider noncentral moments. Since $S_{t+1} - Z_t = F_t - Z_t + \epsilon_{t+1}$ and $E_t F_t \epsilon_{t+1} - E_t Z_t \epsilon_{t+1} = 0$, we have $E_t (S_{t+1} - Z_t)^2 = E_t (F_t - Z_t + \epsilon_{t+1})^2 = E_t (F_t - Z_t)^2 + E_t \epsilon_{t+1}^2$. Thus under the null hypothesis,

\begin{equation}
(3) \quad E(F_t - Z_t)^2 \leq E(S_{t+1} - Z_t)^2.
\end{equation}

This inequality provides a basis for developing more exacting volatility tests of (1), since it explicitly employs the assumption that Z_t is in I_t.

Furthermore, the inequality (2) is a special case of (3) in which $Z_t = E(S_{t+1}) = E(F_t)$ is constant.

It is interesting to note that (3) can also be arrived at by an altogether different line of reasoning than the motivation of increasing the power of the test. An important cause for concern related to any statistical implementation of the bound (2') falls under the general rubric of nonstationarity. Nonstationarity comes in many flavors; two of the most popular among econometricians are the existence of a time-dependent mean and the nonstationarity associated with a process having unit roots, so that the variance of the process is infinite. These two variants of nonstationarity
seem particularly applicable to the foreign exchange data at hand. In the first case, the strong trends exhibited by exchange rates of the 1970s could be modeled as deterministic, although they may logically stem from nondeterministic factors such as inflation. In the second case Meese and Rogoff (1983) demonstrate that spot exchange rates cannot be modeled better than by a random walk. Even if the spot rate process in reality has finite variance -- which we formally assume -- this suggests difficulty in estimating variances of the process in any finite sample. Both of these concerns suggest deriving bounds with conditional means and computing sample moments around means that vary over the sample period; in other words, the bound (3) can be seen as a simple way to defend against the perils of nonstationarity.4

As an example of a volatility bound implied by (3) which also seems to be a reasonable correction for this possible nonstationarity, let Z_t be the lagged spot rate. Thus, assuming lagged spot rates are in the information set, (1) implies that

\begin{equation}
E(F_t^2 - S_{t-1}^2) \leq E(S_{t+1}^2 - S_{t-1}^2).
\end{equation}

The sample variances associated with this bound are presented in Table 2. For this data, the bound is satisfied in all cases considered, so no formal test of significance is necessary to see that market efficiency as embodied in (4) cannot be rejected.

Can we devise a still more exacting volatility test of market efficiency than (4)? Indeed we can. If we define the test statistic
\[R(Z) = 1 - \frac{\text{E}(S_{t+1} - Z_t)^2}{\text{E}(F_t - Z_t)^2}, \]

then (3) can be rewritten as

\[(3') \quad R(Z) \leq 0.\]

A value of the test statistic significantly above zero would constitute a rejection of the null hypothesis: forward rates would be too volatile relative to spot rates. Given the nature of the null hypothesis, a reasonable choice for \(Z_t \) (which plays the role of the conditional mean of \(S_{t+1} \)) is that \(Z_t = F_t + \beta X_t \), where \(X_t \) is a mean-zero, nonconstant, univariate series assumed to belong to \(I_t \). Since the bound \((3')\) holds for all scalar \(\beta \), we should select the value of \(\beta \) for which a test based on \((3')\) is as likely as possible to reject the null hypothesis. Letting

\[\hat{R}(Z) = 1 - \frac{\Sigma(S_{t+1} - Z_t)^2}{\Sigma(F_t - Z_t)^2}, \]

this suggests testing \((3')\) using the statistic based on the solution to

\[(5) \quad \max_{\beta} \hat{R}(F+\beta X).\]

Letting \(\beta^* \) be the value of \(\beta \) which solves \((5)\), a somewhat surprising result obtains: \(\beta^* \) is the estimated coefficient in a regression of \(X \) against the prediction error and \(\hat{R}(F+\beta^* X) \) is the regression \(R^2 \). That is,
\(\hat{\beta}(Z) = \hat{\rho}_{X_t}^2, \)

where \(\hat{\rho}_{X_t} = \frac{\sum X_t \epsilon_{t+1}}{(\sum X_t^2 \sum \epsilon_{t+1}^2)^{1/2}} \) is the sample correlation coefficient.\(^5\)

The proof of (6) is easy: since \(\hat{\beta}(F+\beta X) = 1 - \frac{\sum (\epsilon_{t+1} - \beta X_t)^2}{\beta^2 \sum X_t^2} \), to solve (5) it is merely necessary to solve:

\[
\min_{\beta} \sum (\beta^{-1} \epsilon_{t+1} - X_t)^2
\]

which has the solution \(\beta^{*-1} = \frac{\sum X_t X_t}{\sum \epsilon_{t+1}^2} \). Substituting this statistic into the definition of \(\hat{\beta}(F+\beta X) \) yields the result. It thus appears that the most discerning volatility test based on a statistic of the form \(\hat{\beta}(F+\beta X) \) is equivalent to the correlation coefficient, which arises from considering regression tests! Of course, this argument is not based on formal power considerations. However, as is shown in the next section, among this class of volatility tests the "most discerning" test is in fact asymptotically most powerful against the (local) alternative that \(X_{t+1} \) and \(\epsilon_{t+1} \) are correlated. Intuitively, the question whether the correlation coefficient is significantly different from zero is the same as the question whether the regression coefficient is significantly different from zero.\(^6\)

III. Formal Statement of the Result

In this section we examine the power of the volatility tests of the previous section against the alternative that \(\epsilon_{t+1} \) and \(X_t \) are correlated. The proof uses asymptotic statistical arguments. Specifically, it compares
asymptotic approximations to the power functions of test statistics based on $\hat{R}(F+\beta X)$, where β is permitted to be any function of data as long as β^{-1}, when standardized, has a limiting distribution with all its mass on the real line. Since the power of a test based on the statistic (6) will go to one when the covariance between X_t and ε_{t+1} is bounded away from zero, we adopt the conventional asymptotic approach of considering a local alternative under which this covariance tends towards zero as the sample size tends towards infinity.

The proof itself has two parts. First, the class of random variables β^{-1} that need to be considered is narrowed down to those which tend to zero in probability under the local alternative. Second, it is possible to appeal to the results of the previous section to show that, of the variables with this property, the solution to the maximization problem (4) does indeed yield the asymptotically most powerful test.

For the statement of the result, it is convenient to reparametrize the problem. Let the local alternative be $\sigma_{X\varepsilon}^{(T)} - T^{1/2} \delta$, where T is the number of observations and δ is some nonzero, finite fixed number. Let $\phi = \beta^{-1}$.

Let Φ be the set of all random variables ϕ which are functions of the data (possibly degenerate -- that is, possibly a constant) and are such that $T^{1/2}(\phi - \phi)$ has a limiting distribution on the real line. In making this assumption we are assuming that both X_t and S_t are stationary in the sense of not having a unit root in their autoregressive representations. Also, let ϕ^* be that element of Φ such that the one-sided test of the restriction (3) has the greatest local asymptotic power of all the tests of level α based on $\hat{R}(F+\beta^{-1}X)$. Let $Y = (\varepsilon'\varepsilon/T, \varepsilon'X/T, X'X/T)'$ and let $\mu = (\sigma^2_{\varepsilon}, \sigma_{X\varepsilon}^2, \sigma^2_X)'$, where
ϵ' denotes the transpose of the column vector formed from the observations of
ϵ_1, ϵ_2, ..., ϵ_{T-1}. Also, assume that $T^{1/2}(Y-\mu)$ has a limiting normal
distribution with positive definite covariance matrix Σ. We now have:

Proposition.

The level α test based on $\hat{R}(F+\phi^{-1}X)$ is asymptotically equivalent to the
level α test based on the t-statistic of the slope coefficient in the OLS
regression of ϵ_{t+1} on X_t. Furthermore, $\phi^* = X'/\epsilon'/\epsilon$.

Proof.

First we use the "delta method" to find the limiting distribution of the
standardized random variable based on $\hat{R}(F+\phi^{-1}X)$. Let $\phi = \text{plim} \hat{\phi}$ and let
$a = \partial \hat{R}/\partial Y|_{Y=\mu, \hat{\phi}=\phi}$. Also, let $r(\phi) = \text{plim}(\hat{R}(F+\phi^{-1}X))$, which will exist by the
assumption that Y when standardized will have a limiting distribution and
because $\hat{R}(\cdot)$ is continuous in Z. Then

\[
T^{1/2}(\hat{R}-r) \overset{\mathcal{D}}{\approx} N(0, r(\phi)^2)
\]

(7)

where $r(\phi)^2 = a'\Sigma a$ and $\phi = \text{plim} \hat{\phi}$. Since a is continuous in ϕ, $r^2(\phi)$ is
continuous in ϕ.

Since the null hypothesis is that $R<0$, we wish to find the statistic of the
form (7) that has the greatest chance of \hat{R} exceeding zero under the local
alternative. One approach to this problem is to compute $r(\phi)^2$ directly for
many statistics $\hat{\phi}$, and to compare the limiting behavior under the local
alternative. However, this would be difficult, since the candidates $\hat{\phi}$ must
be specified in advance.

This problem can be sidestepped by noting that a necessary condition for a test of the form (7) to have nonnegligible power is that \(r \geq 0 \); otherwise \(P(\hat{\beta} > 0) \to 0 \) as \(T \to \infty \) by definition of convergence in probability. Thus we can restrict our attention to those \(\hat{\beta} \) which result in \(T^{1/2} \hat{\beta} \) having a limit which is bounded in probability away from \(-\infty \).

It is easy to see that in fact \(T^{1/2} \hat{\beta} \) must be bounded in probability (be \(O_p(1) \)). By definition,

\[
T^{1/2} \hat{\beta} = T^{1/2} (1 - (\phi^2 \epsilon' \epsilon - 2 \phi \epsilon' XX' X') / XX')
\]

\[
= 2 \phi \frac{\epsilon' X / T^{1/2}}{XX'} - (T^{1/2} \phi) \frac{\epsilon' \epsilon / T}{XX'}
\]

By assumption \(\phi \in \phi, XX' / T \in \sigma^2_{\epsilon} \) and \(\epsilon' \epsilon / T \in \sigma^2_{\epsilon} \). Also, under the local alternative, \(\epsilon' X / T^{1/2} \) has a limiting law on the line. Thus, by Slutsky's Theorem, \(T^{1/2} \hat{\beta} \) is bounded above in probability for all \(\hat{\beta} \), so \(r \leq 0 \). Thus we can restrict attention to \(\hat{\beta} \) such that \(r = 0 \), i.e. such that \(T^{1/2} \hat{\beta} = O_p(1) \). But, by (8), this will occur only if \(T^{1/2} \phi = O_p(1) \) which in turn implies that \(\phi = 0 \).

The result follows from this requirement, since it implies that, for all yielding nonnegligible power against the local alternative,

\(T^{1/2} \hat{\beta} \in N(0, \tau(0)^2) \) under the null hypothesis. Furthermore, since \(\tau(\phi) \) is continuous, the variance of the limiting distribution of \(T^{1/2} \hat{\beta} \) under the local alternative will be \(\tau(0)^2 \) for all contenders \(\hat{\beta} \). Thus the problem
reduces to finding the function \(\phi \) such that \(\hat{R} \) is maximal for all \(\phi \) satisfying \(T^{1/2} \phi = O_p(1) \). Since \(\phi = \epsilon'X/\epsilon'\epsilon \) was shown to solve this problem among all functions of the data, and since under the local alternative \(T^{1/2} \epsilon'X/\epsilon'\epsilon = O_p(1) \), we have \(\phi^* = \epsilon'X/\epsilon'\epsilon \).

The asymptotic equivalence to the regression test follows from noting that, under the null hypothesis, the t-statistic for the slope coefficient of the OLS regression satisfies \(T^{-1}t^2 = (\epsilon'X)^2/(X'X)(u'u) \), where \(u = \epsilon - \hat{\gamma}X \), with \(\gamma = \epsilon'X/X'X \). However, under the local alternative, \((\epsilon'\epsilon - u'u)/T\) converges to zero in probability. Thus \(T^{-1}t^2 \) is asymptotically equivalent to

\[\frac{2}{\rho_{X\epsilon}} \hat{R}(F+\phi^*X') \]

IV. Conclusion

In this paper we examined a second moment bound based on the fact that the variance of a conditional expectation (the forward rate) is no more than the unconditional variance of the random variable (the spot rate). We find that volatility tests of this bound will do no better than conventional regression tests of market efficiency. At best, when the volatility test is appropriately modified to be conditional on available information, it does as well as regression tests with the same set of information.
1. Other papers on volatility tests include Flavin (1982), Grossman and Shiller (1981), LeRoy and LaCivita (1981), Michener (1982), Shiller (1981a, 1981b), and Singleton (1980). Geweke (1980) also examines the behavior of volatility tests against an alternative of this type. He demonstrates that there are regions of the parameter space in which regression tests will reject but volatility tests will not. Our results differ from his in two ways. First, we consider an expanded class of volatility bounds (3). Second, we demonstrate that there is a conditional volatility test with the same asymptotic power as the corresponding regression test against this particular alternative. In fact, his conclusion that regression tests dominate unconditional volatility tests is implied by the Proposition in Section III.

2. Our forward rates are 30-day forward. Both spot and forward rates are bid rates, 10 a.m., last day of the month, in dollars per national currency, obtained originally from D.R.I. Flood (1981, p. 220) comments on the "striking fact" that spot and forward exchange rates "have about the same degree of volatility." However, his computations use a measure of the conditional variance somewhat different from ours.

3. In the terminology of Fama (1970), the larger the information set, the "stronger form" is the test. For one of many such regression studies of the forward exchange market, and for references to others, see Frankel (1980).

4. Meese and Singleton (1980) point out the perils of performing naive comparisons of unconditional sample variances of exchange rates when the theoretical variances may be infinite.

5. The regression R^2 is, of course, a measure of the variability of the dependent variable which is explained by the right-hand variables in the regression. In this sense, a test of the joint significance of the explanatory variables in a regression in a "volatility test". This interpretation of regression tests as indications of excess variability (or as variability of a predictable risk premium) is noted by Stattz (1982). This paper makes precise the link between the class of volatility tests based on (3') on the one hand, and the particular "volatility tests" implemented by linear regressions on the other.

6. The results of this paper hold for the case that X_t is one-dimensional. If instead X_t is k-dimensional and β is a k-vector, then a result analogous to that of this section holds: letting $\hat{\beta}_t$ be the vector which maximizes $R(F+X\beta)$, it can be shown that $R(F+X\beta) = R^2$, where R^2 is the ratio of the explained to the total sum of squares from the ordinary least squares regression of ϵ_{t+1} on X_t. Thus our results generalize in a straightforward way to the multi-dimensional case. However, for simplicity, we limit the discussion in the paper to the one-dimensional case.
REFERENCES

Copies may be obtained from the Institute of Business and Economic Research. See the inside cover for further details.

8613 Drew Fudenberg and Jean Tirole
NONCOOPERATIVE GAME THEORY FOR INDUSTRIAL ORGANIZATION:
AN INTRODUCTION AND OVERVIEW
Nov-86.

8614 Jeffrey A. Frankel and Kenneth A. Froot
THREE ESSAYS USING SURVEY DATA ON EXCHANGE RATE EXPECTATIONS
Nov-86.

8615 Joseph Farrell
COMMUNICATION BETWEEN POTENTIAL ENTRANTS
Nov-86.

8616 Joseph Farrell and Suzanne Scotchmer
PARTNERSHIPS
Nov-86.

8617 Wan-Jin Kim
ON THE RATE OF CONVERGENCE OF THE CORE
Dec-86.

8618 Joseph Farrell and Nancy T. Gallini
SECOND-SOURCING AS A COMMITMENT: MONOPOLY INCENTIVES TO ATTRACT COMPETITION
Dec-86.

8619 Roger L. Ransom and Richard Sutch
TONTINE INSURANCE AND THE ARMSTRONG INVESTIGATION: A CASE OF STIFLED INNOVATION IN THE AMERICAN LIFE INSURANCE INDUSTRY, 1868-1905
Dec-86.
Copies may be obtained from the Institute of Business and Economic Research. See the inside cover for further details.

8620 Joseph Farrell and Robert Gibbons
 CHEAP TALK IN BARGAINING GAMES
 Dec-86.

8621 Robert M. Anderson
 CORE ALLOCATIONS AND SMALL INCOME TRANSFERS
 Dec-86.

8722 Joseph Farrell
 COMPETITION WITH LOCK-IN
 Jan-87.

8723 Pranab Bardhan and Nirvikar Singh
 MULTINATIONAL RIVALRY AND NATIONAL ARBITRAGE: SOME THEORETICAL CONSIDERATIONS
 Jan-87.

8724 Albert Fishlow
 LESSONS OF THE 1890S FOR THE 1980S
 Jan-87.

8725 Jeffrey A. Frankel
 THE SOURCES OF DISAGREEMENT AMONG INTERNATIONAL MACRO MODELS, AND IMPLICATIONS FOR POLICY COORDINATION
 Jan-87.

8726 Jeffrey A. Frankel and James H. Stock
 REGRESSION VS. VOLATILITY TESTS OF THE EFFICIENCY OF FOREIGN EXCHANGE MARKETS
 Jan-87.