Lawrence Berkeley National Laboratory
Recent Work

Title
A STUDY OF TWO-PHASE CONCURRENT FLOW OF STEAM AND WATER IN AN UNCONSOLIDATED POROUS MEDIUM

Permalink
https://escholarship.org/uc/item/4tk8f6qg

Author
Verma, A.K.

Publication Date
1985-04-01
To be presented at the 23rd ASME/AIChE National Heat Transfer Conference, Denver, CO, August 4-7, 1985

A STUDY OF TWO-PHASE CONCURRENT FLOW OF STEAM AND WATER IN AN UNCONSOLIDATED POROUS MEDIUM

April 1985

TWO-WEEK LOAN COPY

This is a Library Circulating Copy which may be borrowed for two weeks.
Disclaimer

This document was prepared as an account of work sponsored by the United States Government. While this document is believed to contain correct information, neither the United States Government nor any agency thereof, nor the Regents of the University of California, nor any of their employees, makes any warranty, express or implied, or assumes any legal responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by its trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof, or the Regents of the University of California. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof or the Regents of the University of California.
A STUDY OF TWO-PHASE CONCURRENT FLOW OF STEAM AND WATER IN AN UNCONSOLIDATED POROUS MEDIUM

Earth Sciences Division
Lawrence Berkeley Laboratory
University of California
Berkeley, California 94720

ABSTRACT

A combined experimental and numerical study of two-phase steam/water flow in porous media was carried out. An experiment consisting of steady state, two-phase concurrent flow of steam and water was conducted to obtain a set of relative permeability and capillary pressure curves. The experimental relative permeability and the capillary pressure curves were included in a numerical code, MULCOM, and the experiment was simulated. A good agreement between the numerical results and the experimental data was found, thus confirming the results. Upon comparing these results with gas/oil and oil/water relative permeabilities obtained by other investigators, it was found that while the wetting phase relative permeabilities in all cases are about the same, the vapor phase relative permeability is larger than the non-wetting phase relative permeabilities in gas/oil or oil/water flows. It is suggested that the phenomenon of enhanced vapor phase relative permeability is caused by channeling and/or phase transformation effects.

NOMENCLATURE

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>A, A_d</td>
<td>core cross-sectional area, cross-sectional area of the core holder</td>
</tr>
<tr>
<td>D_d</td>
<td>molecular diffusivity of vapor</td>
</tr>
<tr>
<td>f</td>
<td>dynamic quality (\left(m_v/m_w + m_w \right))</td>
</tr>
<tr>
<td>g</td>
<td>acceleration of gravity</td>
</tr>
<tr>
<td>h</td>
<td>specific enthalpy</td>
</tr>
<tr>
<td>h_v</td>
<td>(h_v = h_v - h_w)</td>
</tr>
<tr>
<td>I_d</td>
<td>(I_d) Y-ray beam intensity through dry sample</td>
</tr>
<tr>
<td>I_w</td>
<td>(I_w) Y-ray beam intensity through fully saturated sample</td>
</tr>
<tr>
<td>k</td>
<td>intrinsic permeability of the sample</td>
</tr>
<tr>
<td>k_r</td>
<td>relative permeability</td>
</tr>
<tr>
<td>m</td>
<td>mass flow rate</td>
</tr>
<tr>
<td>N</td>
<td>number of counts from Y-ray densitometer</td>
</tr>
<tr>
<td>P</td>
<td>pressure</td>
</tr>
<tr>
<td>r</td>
<td>modified Peclet number (\left(m_v/m_w \right) d)</td>
</tr>
<tr>
<td>s</td>
<td>in-place saturation</td>
</tr>
<tr>
<td>S_r</td>
<td>immobile water saturation</td>
</tr>
<tr>
<td>S_m</td>
<td>water saturation at which the water phase is fully mobile</td>
</tr>
<tr>
<td>T</td>
<td>temperature</td>
</tr>
<tr>
<td>V</td>
<td>specific volume</td>
</tr>
<tr>
<td>z</td>
<td>linear distance along the core holder</td>
</tr>
<tr>
<td>l_i</td>
<td>thermal conductivity</td>
</tr>
<tr>
<td>(\gamma)</td>
<td>absolute viscosity</td>
</tr>
<tr>
<td>(\Psi)</td>
<td>Gibb's free energy per unit area of interface</td>
</tr>
<tr>
<td>(\rho)</td>
<td>density of fluid</td>
</tr>
<tr>
<td>(\nu)</td>
<td>liquid island enhancement factor</td>
</tr>
<tr>
<td>(\phi)</td>
<td>porosity</td>
</tr>
<tr>
<td>(\alpha)</td>
<td>tortuosity factor</td>
</tr>
</tbody>
</table>

SUBSCRIPTS

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>c</td>
<td>capillary</td>
</tr>
<tr>
<td>d</td>
<td>diffusive component</td>
</tr>
<tr>
<td>o</td>
<td>condition at the inlet of the test sample</td>
</tr>
<tr>
<td>v</td>
<td>vapor phase</td>
</tr>
<tr>
<td>w</td>
<td>water phase</td>
</tr>
<tr>
<td>(\infty)</td>
<td>infinite radius of curvature</td>
</tr>
</tbody>
</table>

INTRODUCTION

Two-phase flow of steam and water in porous media is encountered in many energy-related problems involving, for example, geothermal reservoirs, heat pipes, chemical distillation, and nuclear waste disposal. Simulation studies of these problems require knowledge of the relative permeability and capillary pressure functions for the porous matrix. Much information is available on relative permeabilities for water-oil and oil-gas systems, but steam-water relative permeabilities are poorly known, in spite of considerable theoretical and experimental
efforts during the last decade. Since no conclusive results exist, many investigators have used ad hoc parameterizations, or have adopted results obtained from flow of gas and oil (Corey, 1954). It has been shown by Heda and Eaton (1980) that this can lead to serious deficiencies. Effects of the relative permeability curves on predicted mass flow rate and flow enthalpy into geothermal wells have been studied by many investigators (e.g., Boddawson et al., 1980; Heda and Eaton, 1980; and Sun and Ershaghil, 1979). It can be concluded from these studies that the behavior of two-phase steam-water flow depends greatly on the relative permeability curves used. Hence, there exists a need for obtaining reliable relative permeability functions.

Most of the past efforts towards determining the relative permeability functions have been directed towards flow of two-component, two-phase fluids, such as oil-water or immiscible gas-fluid in porous media. It was found that the relative permeabilities depend primarily on phase saturations, but also on many other factors, such as: (i) viscosity ratio of the fluids (e.g., Downie and Crane, 1961; Odeh, 1959; Schneider and Owens, 1980; and Lefebvre du Frey, 1973); (ii) wetting characteristics of the two phases (e.g., Coley et al., 1954; Donaldson et al., 1960; Owens and Archer, 1978; McCaffery and Bennon, 1974; Heiba et al., 1983); (iii) interfacial tension, or more generally, the capillary number (e.g., Bordon and Longeron, 1980; Polcher et al., 1983; Lavert et, 1939; and Taber, 1969); (iv) saturation history (e.g., Johnson et al., 1959; and Naar, et al., 1962).

While rationales have been advanced for some of these factors, a satisfactory theory of relative permeability has not yet been developed (Heiba et al., 1982). However, extensive experimental investigations have produced some reliable relative permeability curves for two-phase-two-component fluid flow through some typical porous media (e.g., Corey, 1954; Brooks and Corey, 1954; Osoba et al., 1971; Hausenberg and Zaslavsky, 1963). Applicability of these curves to a single-component two-phase flow, such as steam-water, is questionable because of the possibility of phase transformation in the flow channels. Phase change provides an additional degree of freedom in a single-component, two-phase system, which may be expected to have a significant effect on the nature of the relative permeability curves.

The present paper reports on a combined experimental and numerical study of two-phase steam-water flow through porous media which yielded information on relative permeability functions and capillary pressure curves at elevated temperatures. A numerical study was initially made using the three-dimensional, two-phase steam-water flow code, MULKOM, to arrive at the best experimental design and parameters (Verma et al., 1983). The numerical method used in MULKOM involves simultaneous solution of a highly nonlinear system of discretized equations describing two-phase mass and heat flow including phase transitions, taking all coupling terms into account. Newton-Raphson iteration is performed to handle the nonlinearities arising from phase transformation and from nonlinear material properties (Pruess, 1983).

The numerical results indicated that the capillary discontinuities at the ends of the flow column could cause a very large saturation gradient near the ends which would make it difficult to interpret data in this regime for the purpose of obtaining relative permeability and capillary pressure functions. End effects were minimized in the experiments by using a rather long (100 cm) insulated column packed with beads of 10 micron grain size (Fig. 1.) Double-deionized, deoxygenated water was pumped into the column at a controlled rate. Upon entering the column, a fraction of the water was flashed into steam by means of electrical resistance heaters causing two-phase concurrent flow in the column. Temperature, vapor pressure, and liquid pressure were measured at regular intervals along the column. Saturation readings were obtained with the aid of a Y-ray densimeter. From the experimental data we obtained relative permeability and capillary pressure as a function of saturation for the porous medium. These functions were subsequently used in the numerical model to simulate temperature, pressure, and saturation along the entire column. Good agreement with the experimental results was found, thus confirming the relative permeability functions and capillary pressure curves obtained.

Upon comparing these results to the curves obtained by other investigators (Corey, 1954; Osoba et al., 1951; and Johnson et al., 1959) for gas and oil flow through porous media we find that while the liquid phase (also the wetting phase) relative permeabilities are nearly the same, the measured steam relative permeabilities are considerably higher than the gas relative permeabilities obtained in two-component flow experiments. Also, the sum of the relative permeabilities ($k_{g} + k_{w}$) for steam and water is higher than the same for gas and oil. Some of the phenomena that could cause these effects are discussed in this paper, but further studies are needed before any conclusive results can be drawn.

Fig. 1. Schematic of the experimental setup.
THEORETICAL CONSIDERATIONS

The theoretical considerations involved in analyzing the experimental data have been presented by Reza and Katon (1981), so that they need not be discussed in detail here. The only major departure from their method is that while they neglect the capillary pressure and associate the measured pressure with both the liquid and the vapor phases, we measure the pressures in the two phases separately and obtain capillary pressures at different cross-sections.

We consider a steady-state, one dimensional, vertical forced convection of steam and water through an insulated cylindrical test sample (Fig. 1). Conservation of mass and energy is considered in order to interpret the experimental data for the steam/water relative permeabilities of the porous medium. The equation for flowing steam quality, f, and water and vapor relative permeabilities k_r and k_v are, respectively, (see Appendix A)

$$ f = \frac{m(h - h_w) + Q - q}{m h_w} $$

(1)

$$ k_r = \frac{A_a}{\frac{M_w}{d_z} + \frac{F_w}{P_w \cdot g z}} $$

(2)

$$ k_v = \frac{f m h_w}{A_a} $$

(3)

$$ P_c = P_v - P_w $$

(4)

Here q represents the conductive heat flow along the flow direction given by

$$ q = -\frac{\partial T}{\partial z} \left[\lambda_a + \left(1-\phi \right) \lambda_w \right] $$

$$ + \phi \left(S_{w1} + \left(1-S_{w1} \right) \lambda_w \right) $$

(5)

where λ_a, λ_w, λ_v and λ_c represent the thermal conductivities of the core holder, the matrix, water, and steam respectively. A_a is the cross-sectional area of the core-holder wall. Other notations have their usual meaning.

The right hand side of Equations 1-4 consist of quantities which are either known or can be measured from the experiment. Hence, Equations 2-4 can be used to obtain the relative permeabilities and the capillary pressure.

Effect of Vapor Diffusion

Vapor flux, a quantity needed to calculate the vapor phase relative permeability, is not a directly measurable quantity but it is derived from conservation of mass and energy. The quantity thus derived, the total vapor flux (m_v), represents the sum of advective vapor flux and diffusive vapor flux. Therefore, use of total vapor flux in Equation 3 will overestimate the vapor relative permeability.

The effect of self diffusion on vapor flux can be represented in terms of a modified Peclet number $Pe = m_v / m_v$ which for the present case is given by (Appendix B)

$$ Pe = \frac{k_k P_h h_w}{P_g a v D (h_w - RT)} $$

(6)

where R denotes the gas constant; D is the molecular diffusivity of the vapor phase; a is the empirical tortuosity factor allowing for extra path length, v is the liquid island enhancement factor (Walker et al., 1981); ϕ denotes porosity and other notations have the usual meanings defined previously.

SYSTEM DESIGN AND OPERATING CONDITIONS

The optimum design parameters and operating conditions were obtained with the aid of numerical modeling. It was speculated that the effects of capillary pressure, and the end effects resulting from it, could be very significant. To study these effects various capillary pressure curves were incorporated into a geothermal reservoir simulation code, MULKOM (Pruess, 1983), and test runs were simulated for a 100 cm long column. A typical result of the simulation with the end effects is shown in Figure 2, and for the purpose of comparison, a typical result without the end effects is shown in Figure 3. From these figures we can see that, while the four parameters of interest, P_g, P_c, T, and S_g, vary monotonically with more or less constant gradient in Figure 3, the end effects cause a very sharp gradient at the exit end (Fig. 2). We found that in a moderately permeable medium ($k = 6.41 \times 10^{-13}$ m2) the end effects can extend up to 20 cm even at moderate flow rates (1.32×10^{-2} g/cm2 sec).

Readings taken in this region would be difficult to interpret to yield the relative permeabilities.

We also considered the effects of matrix properties, and boundary conditions on the experiment. Results of the numerical studies showed that for the test samples under consideration it is possible to obtain a region of almost constant saturation over an extended length in a 100 cm long column. Readings taken in this region can be analyzed directly to yield relative permeabilities.
The inside diameter of the test column was chosen such that the maximum attenuation of the γ-ray beam due to water was approximately 20 percent (i.e., \(\frac{I_2}{I_1} \sim 0.8 \)). For most materials under consideration an I.D. of 7.5 cm (3 in.) was found to be optimum.

The flow rates were chosen such that, while the flow remains laminar, it produces a measurable pressure drop over a 20 cm segment of the test column. In the present case the flow rate was held constant at \(\frac{0.2944 g}{sec} \).

INSTRUMENT CALIBRATION AND PERFORMANCE

All the measuring instruments were calibrated prior to and again immediately after the experiment to ensure the reliability of the readings obtained. The thermocouples were calibrated against a master platinum resistance thermometer and all the readings were within \(\pm 0.1^\circ C \) in the range of 80° to 120°C. All the probes worked satisfactorily and no failure was detected during the experiment.

The absolute pressure transducers and the differential pressure transducers were calibrated over the entire range of working temperatures (80° - 120°C). They were checked for drift, hysteresis, repeatability and linearity. Since the differential pressure transducers showed some fluctuations during the experiment, all the pressure readings were taken with the aid of the absolute pressure transducers. These transducers were found to be accurate within 0.005 bars in the entire range of interest (0-3 bars absolute). Therefore, both the pressure drop and the capillary pressure readings are believed to be accurate within 0.002 bars.

The γ-ray densitometer was checked and calibrated for possible errors due to change in detector temperature, electronic drift and statistical error in evaluating γ-ray beam intensity (details in Verma, 1985). The overall accuracy was checked by evaluating the adsorption coefficients of aluminum and brass (70% Cu, 30% Zn) and comparing them to those reported elsewhere. In both cases agreement was within 4%. A second test was conducted to determine if it was possible to accurately measure 10% water saturation change within \(\pm 2\% \). A set of 1.59 mm (1/16") lucite plates in series with a 5 cm thick aluminum plate were used to simulate γ-ray attenuation by water. Nine plates were used in series, so that a removal of one plate would simulate 99% saturation. Two plates removed would simulate 78% saturation etc. Additional tests were conducted to determine if the arrangement of the lucite plates would make a measurable difference, i.e., if the first plate was removed near the source or near the detector. The results of this study are plotted in Figure 4. The error of each measurement, \(\frac{1}{N} \), is included on the graph. The results indicate that it was possible to measure these small changes accurately. A second run was made where the plates were removed in the opposite order and the results were found to be within the error bars of the first experiments.

In the case of the present experiment the errors at the lower saturation (\(S_w = 0.4 \)) are within \(\pm 3\% \) and those for the higher saturation readings (\(S_w = 0.8 \)) are within \(\pm 5\% \).

EXPERIMENTAL APPROACH

The schematic of the experimental setup is presented in Figure 1. The test cell consists of a high temperature epoxy tube (7.62 cm I.D. x 100 cm length) packed with 150 μm pyrex glass beads. The beads are held in place by an inlet-head and an exit-head mounted at opposite ends of the tube. The inlet head also serves as a boiling chamber where a controlled fraction of the incoming water was flashed by electric resistance heaters to achieve a desired flow quality in the test section. The outer surface of the test-cell was made adiabatic with the aid of guard heaters wrapped around it at regular intervals.

At regular intervals there are instrument ports for temperature, liquid pressure, and vapor pressure probes. Pressures at the ports and pressure drop between the two neighboring ports are measured with the aid of absolute pressure transducers and differential pressure transducers, respectively. Vapor pressure and liquid pressures at each cross section were measured in separate ports (Fig. 5). Internal surfaces of all the tubes connecting the vapor...
pressure transducers to the ports were coated with Teflon and both the tubes and the pressure transducers were maintained at a temperature of 1-2°C above the local vapor temperatures with the aid of guard heaters. These precautions were taken to eliminate errors in vapor pressure measurements due to liquid condensation in the tubes and the pressure transducers. (The error in vapor pressure readings due to intentional increase in temperature is expected to be negligible.) On the other hand, all tubes connecting liquid pressure transducers to the test sample were filled with cotton wicks in contact with the porous matrix. The tubes and the transducers were kept cooler than the saturation temperature to prevent evaporation in the liquid pressure measurement unit. The temperature readings were taken with the aid of copper-constantan thermocouples sheathed inside 1/16 in. stainless steel tubes.

The test cell was mounted vertically, to avoid flow stratification, on an indexing table capable of accurate vertical movement. Double-deionized, degassed water was pumped into the inlet head with the aid of a dual-cylinder, constant flow-rate pump (accurate within 1%). Upon entering the chamber, a fraction of the water was flashed into steam by means of electric resistance heaters, causing two-phase concurrent flow in the test column. Temperature, vapor pressure, and liquid pressure were measured at regular intervals along the column. Saturation readings at different cross-sections were taken with the aid of a γ-ray densitometer by moving the indexing table while the γ-ray source and the detector remained fixed to a rigid frame.

Upon leaving the exit head, steam was condensed in a heat exchanger and condensate was discharged through a constant head tank to maintain constant exit pressure.

RESULTS AND DISCUSSION

The experiment resulted in a set of relative permeability and capillary pressure curves shown in Figures 6a and b. The readings presented cover only a limited range of saturation (0.38 < S < 0.8) because (i) the readings taken at saturations above 0.8 are not accurate because of the difficulties involved in evaluating the flow quality (Verma, 1985); and (ii) the lower limit (S = 0.38) represents very nearly the irreducible water saturation. An attempt to reduce this saturation further was abandoned because the system temperature rose beyond the operating temperature of the differential pressure transducers.

Figure 6a shows that the measured values of the relative permeabilities can be represented by:

\[k_{rw} = \frac{S}{S_m} \]

and

\[k_{rv} = 1.2964 - 1.9832 S - 0.7432 S^2 \]

where

\[S_e = \frac{S - S_m}{S_m - S_r} \]

Figure 6b shows that the experimental capillary pressure curve.
Since the limits S_r and S_m of the mobile saturation range for the liquid phase are not measured in the present experiment, but obtained by curve fitting ($S_r = .2$, $S_m = .95$), they should be considered approximate. Since the irreducible steam saturation could not be measured accurately it was assumed that there is no irreducible steam saturation for the present experimental configuration where the liquid water flows towards lower thermodynamic pressure and temperature (Verma, et al., 1983). This assumption was invoked in curve fitting to obtain equation 8.

A typical set of simulated results along the entire column using the experimental relative permeability and capillary pressure curves is presented in Figure 7. These are compared against the experimental data and a good agreement is found, thus confirming our analysis of experimental data. The flow quality along the flow path for this test-run is presented in Figure 8. It indicates that the flow quality in the region of interest is very nearly constant.

It is interesting to note that Equation 7 for wetting phase relative permeability has been suggested independently by many investigators, including: (i) Irnay (1954), semi-empirical study of flow in unsaturated soils; (ii) Hausenberg and Zaslavsky (1961), experimental study on well sorted sand; (iii) Brooks and Corey (1964), semi-empirical study.

Brooks and Corey (1964) also suggested that for a well sorted sand, the relative permeability to the non-wetting phase could be represented by

$$k_{nw} = (1 - S_m)^3$$ (10)

However, upon comparing the experimental vapor phase relative permeability to Equation 10 (Fig. 6a), we find that the measured values are much larger than the ones given by Equation 10. Similar differences are found upon comparing the present results to those of other investigators (e.g. Osoba et al., 1951; and Johnson et al., 1959). These comparisons are plotted in Figure 9. Johnson et al. conducted their studies on flow of oil and water through a packed column (permeability = 11.5 Darcies) of glass beads, and Osoba et al.'s studies were conducted on oil and gas through consolidated rock cores of permeability = 4.16 Darcy. Figure 9 also shows that over the entire two-phase zone ($0 < S_m < 1$), the sum of the relative permeabilities ($k_{nw} + k_{rnw}$) are larger in case of steam and water flow, suggesting a more efficient advection of the two phases. The enhancement of vapor phase relative permeability cannot be attributed to self-diffusion of vapor in the flow channels, because the Peclet numbers in our experiment are very large ($Pe > 10^3$, cf. Appendix B). A possible cause for enhanced vapor permeability is channeling of vapor phase where vapor forms preferential channels causing a reduction in pressure gradient compared to homogeneous two-phase flow. These channels could be formed either along the contact surfaces between the glass beads and the confining tube and/or within the porous medium itself (Udell, 1985). The possibility of preferential channeling within the porous medium in our experiment is very small, however, because our saturation readings at three different locations along the flow direction change consistently with changing flow quality. In presence of preferential channeling this could happen only if the channel formed within the porous medium was intersected by the γ-ray beam.

![Fig. 7. Comparison of experimental data with numerical simulation for Run-4 ($S_m = 0.557$).](image-url)

![Fig. 8. Plot of flow quality (f) for Run-4.](image-url)

![Fig. 9. Measured steam/water relative permeabilities compared with results for oil/gas and oil/water flow.](image-url)
Since the γ-ray beam covers only about 5% of the cross-sectional area of the porous medium, the probability of the beam encountering the same channel(s) at three different locations, where saturation readings are taken, is very low.

The effects of channeling along the boundary could not be quantified at this stage. This is under investigation and shall be reported later by Verma (1975). We believe that the observed permeability enhancement for vapor is caused by phase transformation effects specific to single-component, two-phase systems. Enhancements of vapor mobility have been observed in unsaturated soils, where they have been attributed to condensation-vaporization effects with fluid "short-circuiting" at liquid islands (Walker et al., 1981). It is likely that the enhancement of steam relative permeability observed in our experiments is caused by similar mechanisms. A quantitative evaluation of this effect is currently underway.

SUMMARY

An experimental facility to measure steam-water relative permeability was constructed and a set of results was obtained. These results are compared against numerical simulation, and good agreement was found, thus confirming the experimental results. Upon comparing our results with oil-water and gas-oil relative permeabilities reported in the literature, we find an approximate agreement for the wetting phase relative permeabilities. However, steam relative permeability is substantially larger than the peening phase relative permeabilities of gas-oil and oil-water flows. We suggest that this enhancement of non-wetting phase permeability is caused by phase transformation in water/steam flow. However, more studies are needed before quantitative, conclusive results can be drawn.

ACKNOWLEDGEMENT

This work was supported through U.S. Department of Energy Contract No. DE-AC03-76SF00988 by the Assistant Secretary for Conservation and Renewable Energy, Office of Renewable Technology Division of Geothermal and Hydropower Technologies.

REFERENCES

Reda, D. C., and Eaton, R.R., 1981, "Definition of a Facility for Experimental Studies of Two-Phase Flows and Heat Transfer in porous materials",.
APPENDIX A

Analysis of the Relative Permeability Experiment

We consider a one-dimensional, steady-state, adiabatic flow of steam and water in a porous medium (Fig. 1). The conservation of mass is expressed by

$$m = m_v + m_w$$ \hspace{1cm} (A.1)

where m is the known input mass flow rate, and m_v and m_w are the mass flow rates of steam and liquid water, respectively.

The potential energy and kinetic energy effects are negligible for the conditions of the experiment, so that the energy equation is

$$m_h + q = m_v h_v + m_w h_w$$ \hspace{1cm} (A.2)

where q is the energy input to the boiling chamber and q is the conductive heat flux at any cross section (cf Eq. B.1). Other notations have their usual meaning.

Assuming Darcy's Law, the momentum equations for the liquid and the vapor phases are given by

$$m_v = -k \frac{k_v}{\mu_v} \frac{dP_v}{dz}$$ \hspace{1cm} (A.3)

and

$$m_v = -k \frac{k_v}{\mu_v} \frac{dP_v}{dz}$$ \hspace{1cm} (A.4)

The flowing steam quality is defined as

$$f = \frac{m_v}{m_v + m_w}$$ \hspace{1cm} (A.5)

combining Equations A.1 and A.5

$$1-f = \frac{m_w}{m}$$ \hspace{1cm} (A.6)

Substituting Equations A.5 and A.6 into the energy equation A.2, and solving for f yields

$$f = \frac{m_v (h_v - h_w) + q - q}{m_v (h_v - h_w)}$$ \hspace{1cm} (A.7)

Equations for k_{rv} and k_{rw} are obtained by substituting for m_w from Equation A.5 into Equation A.4 and for m_v from Equation A.6 into Equation A.3. Solving for k_{rw} and k_{rv} we obtain (Reda and Eaton, 1981).

$$k_{rv} = \frac{(f + 1) m_v h_v}{kA h_w}$$ \hspace{1cm} (A.8)

and

$$k_{rw} = \frac{-f m_v h_v}{kA h_w}$$ \hspace{1cm} (A.9)

APPENDIX B

Self-diffusion of vapor in flow channels

The diffusive mass flux in flow channels is given by (Walker et al., 1981)

$$m_{v,d} = -\psi_{v,d} = \frac{D_v}{V} \nabla \Phi_v$$ \hspace{1cm} (B.1)

Assuming

(i) local thermodynamic equilibrium,

(ii) vapor behaves as perfect gas,

(iii) effect of capillary pressure on vapor phase reduction is negligible,

(iv) P_w and T are correlated according to Clusius-Clapeyron equation

$$\frac{dP_w}{dT} = \frac{h_w}{T(V_w - V_v)}$$ \hspace{1cm} (B.2)

(v) $V_w \gg V_v$, and,

(vi) one dimensional flow,

the vapor density gradient can be expressed as

$$\frac{dP_w}{dx} = \frac{P_w}{k_w} \left(\frac{h_w}{R^2} - 1 \right) \frac{dT}{dx}$$ \hspace{1cm} (B.3)

From Equation (B.1) and (B.3) we have for diffusive mass flux

$$m_{v,d} = -\psi_{v,d} \frac{P_w}{k_w} \frac{h_w}{R^2} \left(\frac{h_w}{R^2} - 1 \right) \frac{dT}{dx}$$ \hspace{1cm} (B.4)

the advective component of vapor flux is given by

$$m_v = \frac{-k_{rv} P_v}{\mu_v} \frac{dP_v}{dx}$$ \hspace{1cm} (B.5)
From Equations (8.5) and (8.2)

\[m_v = \frac{-k k_{TV} P_s h_w P_v}{P_v \rho_v \gamma \rho_v} \frac{\partial T}{\partial x} \]

(8.6)

Defining a modified Peclet number

\[\text{Pe} = \frac{m_v}{a_{v,d}} \]

(8.7)

For the present calculations we take both \(v \) and \(a = 1 \) because our test sample is well-sorted and value of \(v \) is unknown.
This report was done with support from the Department of Energy. Any conclusions or opinions expressed in this report represent solely those of the author(s) and not necessarily those of The Regents of the University of California, the Lawrence Berkeley Laboratory or the Department of Energy.

Reference to a company or product name does not imply approval or recommendation of the product by the University of California or the U.S. Department of Energy to the exclusion of others that may be suitable.