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The spherical harmonics (PN) method is a radiative transfer equation solver, which
approximates the radiative intensity as a truncated series of spherical harmonics. For
general 3-D configurations, NðNþ1Þ=2 intensity coefficients must be solved from a system
of coupled second-order elliptic PDEs. In 2-D axisymmetric applications, the number of
equations and intensity coefficients reduces to ðNþ1Þ2=4 if the geometric relations of the
intensity coefficients are taken into account. This paper presents the mathematical details
for the transformation and its implementation on the OpenFOAM finite volume based CFD
software platform. The transformation and implementation are applicable to any arbitrary
axisymmetric geometry, but the examples to test the new formulation are based on a
wedge grid, which is the most common axisymmetric geometry in CFD simulations,
because OpenFOAM and most other platforms do not have true axisymmetric solvers. Two
example problems for the new axisymmetric PN formulation are presented, and the results
are verified with that of the general 3-D PN solver, a Photon Monte Carlo solver and exact
solutions.

& 2015 Elsevier Ltd. All rights reserved.
1. Introduction

The study of radiative heat transfer in high-
temperature applications with a strongly varying partici-
pating medium has become increasingly important in
various practical applications like combustion, manufac-
turing and environmental systems. The Radiative Transfer
Equation (RTE) is an integro-differential equation in six
independent variables (3 spatial and 2 directional, and
wavenumber) [1], which is exceedingly difficult to solve.
As a result, approximate solution methods to the RTE, such
as the spherical harmonics method (SHM), discrete ordi-
nates method (DOM), the finite volume method (FVM), or
the Monte Carlo method are frequently employed to solve
radiation problems. Each of these approximate methods
odest).
has their well-known advantages and drawbacks. The
SHM offers an approximate solution to the radiative
transfer equation (RTE) by transforming the RTE into a
system of elliptic PDEs. This method approximates the
radiative intensity as a truncated series of spherical har-
monics that decouple the directional and spatial variations
of the intensity field. The SHM has been widely applied to
particle transport problems [2–4], and some of the deriva-
tions for cylindrical geometries have been presented in
[5,6].

For axisymmetric problems, physical quantities such as
temperature, heat flux, radiative intensity, and chemical
species concentrations vary only radially and axially and
are, therefore, two-dimensional. As a result, for many of
these applications, the transport equations are solved on a
2-D or a thin wedge 3-D computational domain in order to
reduce the computational effort. Like the development of
the general PN method [7,8], the application of axisym-
metric formulations of PN method were limited [9,10]
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Fig. 1. Illustration of the invariance of intensity with respect to azimuthal
angle ψ at different locations for axisymmetric conditions.
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because of the cumbersome mathematics. Recently, the
general PN (up to P7) equations and boundary conditions
for 3-D geometries have been formulated [11–13] and
solved [14] for various cases including a full cylinder with
variable radiative properties and a real flame.

In this paper, the 2-D axisymmetric version of PN and
its boundary conditions are deduced from the 3-D PN
formulation. The 2-D axisymmetric formulation is imple-
mented in OpenFOAM [15] Cþþ open source libraries.
OpenFOAM provides the mesh generator, the numerical
PDE solvers and the input/output handlers for the example
problems shown in this paper. It also includes various CFD
calculation modules, which the radiation module can be
directly coupled with. Like other modern CFD codes,
OpenFOAM uses the finite-volume method with unstruc-
tured mesh topology. A wedge is the most common way to
represent an axisymmetric full cylinder in the finite-
volume CFD simulation. Thus, the 2-D axisymmetric
example cases in this paper are based on a 3-D finite-
volume wedge. Demonstration problems presented here
are the 3-D wedge versions of axisymmetric cases pre-
sented in [14]. The results of high-order PN are found to be
very close to the exact solution of the RTE, and the results
are also verified against those of the 3-D PN solver.

2. Formulation

Axisymmetric conditions: The radiative transfer
equation (RTE) is an integro-differential equation with
spatial and directional dependence [1],

ŝ �∇τ Iþ I¼ 1�ωð ÞIbþ
ω
4π

Z
4π
I ŝ 0
� �

Φ ŝ � ŝ 0� �
dΩ0 ð1Þ

where τ ¼ R
βr dr is an optical coordinate, and βr is the

radiative extinction coefficient; Ib is the blackbody radia-
tive intensity (Planck function); and ω is the scattering
albedo. The PN approximation is based on approximating
the radiative intensity field Iðτ; ŝÞ as a series of products of
intensity coefficients In

m
and spherical harmonics Yn

m
,

whereby the spatial and the directional (ŝ) dependencies
are decoupled:

Iðτ; ŝÞ ¼
XN
n ¼ 0

Xn
m ¼ �n

Imn ðτÞYm
n ðŝÞ ð2Þ

Spherical harmonics satisfy Laplace's equation in spherical
coordinates and are defined here as

Ym
n ¼

cos ðmψ ÞPm
n ð cosθÞ for mZ0

sin ðjmjψ ÞPm
n ð cosθÞ for mo0

(
ð3Þ

and Pm
n ð cosθÞ are associated Legendre polynomials. The

position-dependent intensity coefficients Imn ðτÞ are deter-
mined by applying the series approximation to the RTE.

The radiative intensity depends on position rðr;ϕ; zÞ
and direction ŝðθ;ψ Þ where θ is the polar angle (measured
from the z-axis), and ψ is the azimuthal angle (measured
counter-clockwise from the x-axis). If the physical system
is axisymmetric, then the radiative intensity varies radially
with r and axially with z, but not azimuthally with ϕ. Fig. 1
illustrates several location–direction combinations, which
have identical intensities for axisymmetric conditions. At a
fixed location rðr;ϕ1; zÞ the radiative intensity in the
direction ŝðθ;ψþϕ1Þ is equal to the radiative intensity at
some other location rðr;ϕ2; zÞ in the direction ŝðθ;ψþϕ2Þ,
which has the same deflection angle relative to its position
vector r. One may conclude from Fig. 1 that

Iðr;ϕ; z;θ;ψþϕÞ ¼ Iðr;0; z;θ;ψ Þ ð4Þ
for any ϕ, as long as the problem is axisymmetric. When
ϕ¼0, the radiative intensity is evaluated along the x-axis.
Considering the general case at some arbitrary ϕ and a
reference case when ϕ¼0, the radiative intensity as
approximated by the spherical harmonic series expansion
equation (2) yields, for a given n, the equality

I0nðr;ϕ; zÞP0
nðθÞþ

Xn
m ¼ 1

Imn ðr;ϕ; zÞ½ cosmψ cosmϕ

� sinmψ sinmϕ�Pm
n ðθÞ

þ
Xn
m ¼ 1

I�m
n ðr;ϕ; zÞ½ sinmψ cosmϕþ cosmψ sinmϕ�Pm

n ðθÞ

¼ I0nðr;0; zÞP0
nðθÞþ

Xn
m ¼ 1

Imn ðr;0; zÞ cosmψPm
n ðθÞ

þ
Xn
m ¼ 1

I�m
n ðr;0; zÞ sinmψPm

n ðθÞ ð5Þ

By comparing the In
0
terms, it follows that for m¼0

I0nðr;ϕ; zÞ ¼ I0nðr;0; zÞ ð6Þ
which implies that the intensity coefficients with m¼0
must be functions of r and z only and are thus axisym-
metric. Now comparing other like terms, cosmψPm

n ð cosθÞ
and sinmψPm

n ð cosθÞ in Eq. (5), yields the following rela-
tions for intensity coefficients with m40:

Imn ðr;0; zÞ ¼ Imn ðr;ϕ; zÞ cosmϕþ I�m
n ðr;ϕ; zÞ sinmϕ ð7aÞ

I�m
n ðr;0; zÞ ¼ � Imn ðr;ϕ; zÞ sinmϕþ I�m

n ðr;ϕ; zÞ cosmϕ ð7bÞ
Inverting these relations to express Imn ðr;ϕ; zÞ and
I�m
n ðr;ϕ; zÞ in terms of the Imn ðr;0; zÞ and I�m

n ðr;0; zÞ gives
Imn ðr;ϕ; zÞ ¼ Imn ðr;0; zÞ cosmϕ� I�m

n ðr;0; zÞ sinmϕ ð8aÞ

I�m
n ðr;ϕ; zÞ ¼ Imn ðr;0; zÞ sinmϕþ I�m

n ðr;0; zÞ cosmϕ ð8bÞ
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Also, by symmetry at ϕ¼0, Iðr;0; z;θ;ψ Þ ¼ Iðr;0; z;θ; �ψ Þ,
or

Xn
m ¼ 1

Imn ðr;0; zÞYm
n ðψ ;θÞ ¼

Xn
m ¼ 1

Imn ðr;0; zÞYm
n ð�ψ ;θÞ ð9Þ

which leads to I�m
n ðr;0; zÞ ¼ 0 for any m. Thus, according to

Eqs. (8), the intensity coefficients for arbitrary ϕ are
related to the same r and z-dependent variable Imn ðr;0; zÞ as

Imn ðr;ϕ; zÞ ¼ Imn ðr;0; zÞ cosmϕ ð10aÞ

I�m
n ðr;ϕ; zÞ ¼ Imn ðr;0; zÞ sinmϕ ð10bÞ
For axisymmetric problems, the dependence on ϕ of
intensity coefficients with m40 are trigonometric factors
(sines and cosines with periodicity equal to m) that multi-
ply the same axisymmetric variable Imn ðr;0; zÞ. Hereafter,
this axisymmetric variable will be denoted as Î

m
n ðr; zÞ. From

Eqs. (10), it can be seen that the number of intensity
coefficient variables of the PN-approximation is reduced
from NðNþ1Þ=2 to ðNþ1Þ2=4.

Governing equations: As formulated in [11] and sim-
plified for isotropic scattering in [13], a set of NðNþ1Þ=2
second-order elliptic PDEs result after applying Eq. (2) to
the RTE, with the same number of dependent variables In

m
.

Each PDE is associated with a spherical harmonic Ym
n and

the differential operators are originally in Cartesian coor-
dinates. To obtain the transformation of the PDEs for
cylindrical coordinates, the relations of the differential
operators are employed:

Lx ¼
1
βr

∂
∂x

¼ cosϕ
βr

∂
∂r
� sinϕ

βrr
∂
∂ϕ

ð11aÞ

Ly ¼ 1
βr

∂
∂y

¼ sinϕ
βr

∂
∂r
þ cosϕ

βrr
∂
∂ϕ

ð11bÞ

Lz ¼ 1
βr

∂
∂z

ð11cÞ

Together with the coordinates transformation, the
ðNþ1Þ2=4 governing equations of the 2-D, axisymmetric
formulation of the PN-approximation can be derived from
the general 3-D PN governing equations with the axisym-
metric relations of the intensity coefficients. Substituting
Eqs. (10) for the I7m

n of the 3-D PN governing equations,
after considerable algebra, leads to a transformed set of
PDEs for axisymmetric variables Î

m
n as:

For each Ym
n :n¼ 0;2;4;…; ðN�1Þ and m¼ 0;1;2;…;n:

X3
k ¼ 1

(
1þδm2
� �

anmk cosmϕ Lrr�
2m�3
βrr

Lr

�

þmðm�2Þ
β2
r r2

�m�2
r

Lr
1
βr

� �#
Î
m�2
nþ4�2k

þ 1þδm1
� �

bnmk cosmϕ LrzþLzr�
2ðm�1Þ
βrr

Lz

�

�m�1
r

Lz
1
βr

� ��
Î
m�1
nþ4�2k

þδm1

2
cnmk cosϕ Lrrþ

1
βrr

Lr�
1

r2β2
r

þ1
r
Lr

1
βr

� �" #
Î
m
nþ4�2k
þdnmk cosmϕ LrzþLzrþ2ðmþ1Þ
βrr

Lzþmþ1
r

Lz
1
βr

� �� �
Î
mþ1
nþ4�2k

þenmk cosmϕ Lrrþ
2mþ3
βrr

Lrþ
mðmþ2Þ
β2
r r2

þmþ2
r

Lr
1
βr

� �" #
Î
mþ2
nþ4�2k

þcnmk cosmϕ Lrrþ
1
βrr

Lr�
m2

β2
r r2

�2Lzz

 !
Î
m
nþ4�2k

)

þ cosmϕ Lzz�ð1�ωδ0nÞ
� 	

Î
m
n ¼ �ð1�ωÞIbδ0n ð12Þ

where anmk ; bnmk ; cnmk ;dnmk , and ek
nm

are constant coefficients
given in [1,13], and δij is the Kronecker delta function. The
differential operators in cylindrical coordinates are defined
as

Lr ¼ 1
βr

∂
∂r

ð13aÞ

Lrr ¼
1
βr

∂
∂r

1
βr

∂
∂r

� �
ð13bÞ

Lrz ¼
1
βr

∂
∂r

1
βr

∂
∂z

� �
ð13cÞ

Lzr ¼
1
βr

∂
∂z

1
βr

∂
∂r

� �
ð13dÞ

and Lrð1=βrÞ is a material property calculated from
Eq. (13a) as

Lr
1
βr

� �
¼ � 1

β3
r

∂βr

∂r
ð14Þ

It is noted that each term contains cosmϕ, which may,
therefore, be canceled (including the case of m¼0, for
which cosmϕ¼1). Each Y �m

n ðm¼ 1;2;…;nÞ returns the
same equation as the corresponding Ym

n , but with sinmϕ
in each term instead of the cosmϕ. Thus, the set of
governing equations, like the number of unknown Î

m
n , are

reduced to:
For each Ym

n :n¼ 0;2;…;Nþ1 and m¼ 0;1;2;…;n:

X3
k ¼ 1

(
1þδm2
� �

anmk Lrr�
2m�3
βrr

Lr

�

þmðm�2Þ
β2
r r2

�m�2
r

Lr
1
β

� �#
Î
m�2
nþ4�2k

þ 1þδm1
� �

bnmk LrzþLzr�2ðm�1Þ
βrr

Lz

�

�m�1
r

Lz
1
βr

� ��
Î
m�1
nþ4�2k

þδm1

2
cnmk Lrrþ

1
βrr

Lr�
1

r2β2
r

þ1
r
Lr

1
βr

� �" #
Î
m
nþ4�2k

þdnmk LrzþLzrþ
2ðmþ1Þ
βrr

Lzþ
mþ1
r

Lz
1
βr

� �� �
Î
mþ1
nþ4�2k

þenmk Lrrþ
2mþ3
βrr

Lrþ
mðmþ2Þ
β2
r r2

þmþ2
r

Lr
1
βr

� �" #
Î
mþ2
nþ4�2k

þcnmk Lrrþ
1
βrr

Lr�
m2

β2
r r2

�2Lzz

 !
Î
m
nþ4�2k

)

þ Lzz�ð1�ωδ0nÞ
� 	

Î
m
n ¼ �ð1�ωÞIbδ0n ð15Þ



W. Ge et al. / Journal of Quantitative Spectroscopy & Radiative Transfer 156 (2015) 58–66 61
Boundary conditions: ðNþ1Þ2=4 boundary conditions
are required and are derived from the 3-D PN formulation
of Marshak's boundary conditions [13]. The boundary
conditions are expressed in terms of local coordinates x,
y (tangential to the surface) and z (along surface normal
n̂), and a rotation function Δð�γ; �β; �αÞ [13] is utilized
to rotate local coordinates back to global coordinates for
the calculation of boundary conditions, where the α, β and
γ are Euler angles [16].

Fig. 2 shows both the arrangements of the global and
local coordinates for a general 2-D axisymmetric geome-
try. β can be calculated from surface normal n̂ as

β¼ cos �1ðnzÞ ð16Þ
The tangential directions of the boundary surfaces are

defined in such a way that one tangential direction (t̂x or
x) is within the r–z plane and perpendicular to the r-axis,
and t̂y (or y) is perpendicular to the r–z plane. Therefore,
the Eulerian angle α is related to the azimuthal angle ϕ,
Fig. 2(a), as

α¼ πþϕ ð17Þ
In order to keep t̂y (or y) in the r–ϕ plane, γ¼0. With

the above conditions, the relationship between the local
Cartesian coordinates and the global cylindrical coordi-
nates are

n̂ ¼ � sinβr̂þ cosβẑ ð18aÞ

t̂x ¼ � cosβr̂� sinβẑ ð18bÞ

t̂y ¼ �ϕ̂ ð18cÞ
from which the derivatives are found to be

∂
∂z

¼ � sinβ
∂
∂r
þ cosβ

∂
∂z

ð19aÞ

∂
∂x

¼ � cosβ
∂
∂r
� sinβ

∂
∂z

ð19bÞ

∂
∂y

¼ �1
r

∂
∂ϕ

ð19cÞ

As an example for the most common case of a fixed-radius
cylinder (or wedge), for the vertical wall faces the Eulerian
angle β¼ π=2, and from Eq. (18),
Fig. 2. Schematic of the global coordinate system and the local coor-
dinate system in a general axisymmetric geometry. (a) r–ϕ plane and
(b) r–z plane.
n̂ ¼ � r̂ ð20aÞ

t̂x ¼ � ẑ ð20bÞ

t̂y ¼ �ϕ̂ ð20cÞ

Eq. (18) is also consistent for the bottom and top bound-
aries of the wedge, where the Eulerian angle β equals 0
and π, respectively.

In order to derive the boundary conditions for the 2-D
axisymmetric formulation from the NðNþ1Þ=2 boundary
conditions of the 3-D formulation [13], the Δð�γ; �β; �αÞ
¼Δð0; �β;π�ϕÞ in their expanded form [13] are substi-
tuted into the full set of Marshak's boundary conditions.
In addition, Eqs. (6) and (10) are employed, and the deri-
vatives in the y�direction are evaluated with Eq. (19c).
After tedious derivation, it is found that all Y

�m
n related

boundary conditions become zero identities, which
reduces the total number of equations from NðNþ1Þ=2 to
ðNþ1Þ2=4. The ðNþ1Þ2=4 remaining boundary conditions
are associated with the local spherical harmonics Y

m
n , for

certain combinations of m and n indices, i.e.,

m¼
0;1;…;n; n¼ 1;3;…;N�2
0;2;…;n�1; n¼N

(
ð21Þ

For example, the boundary conditions for axisymmetric
P3 (where ðNþ1Þ2=4¼ 4) are associated with the local
spherical harmonics Y

0
1;Y

0
3;Y

1
1 and Y

2
3.

The complete set of axisymmetric PN boundary condi-
tions then become

Iwp00;n ¼
XðN�1Þ=2

l ¼ 0

X2l
m0 ¼ 0

pm2l;nD
2l
jmjjm0 j �β

� �
Î
m0

2l

� 1
βrr

XðN�1Þ=2

l ¼ 0

X2l
m0 ¼ 0

δ�
m um

li B
2l
jm�1jjm0 j �β

� �


þvmli B
2l
jmþ1jjm0 j �β

� ��
Î
m0

2l

� ∂
∂τx

XðN�1Þ=2

l ¼ 0

X2l
m0 ¼ 0

δþ
m um

li D
2l
jm�1jjm0 j �β

� �


�vmli D
2l
jmþ1jjm0 j �β

� ��
Î
m0

2l

� ∂
∂τz

XðN�1Þ=2

l ¼ 1

X2l
m0 ¼ 0

wm
li D

2l
jmjjm0 j �β

� �
Î
m0

2l ð22Þ

where i¼ ðnþ1Þ=2, δ7
m ¼ ð17δm1Þð1�δm0Þ, and the con-

stant coefficients uli
m
, vli

m
, wli

m
, and pm2l;n are the same as in

the 3-D formulation, and the Dn
jmjjm0 jðβÞ and Bn

jmjjm0 jðβÞ are

Dn
jmjjm0 jðβÞ ¼ ð�1Þm0

dnjmj;jm0 jðβÞþdnjmj;�jm0 jðβÞ ð23aÞ

Bn
jmjjm0 jðβÞ ¼m0½ð�1Þm0

dnjmj;jm0 jðβÞ�dnjmj;�jm0 jðβÞ� ð23bÞ

where the d are Wigner coefficients as given by the 3-D
Marshak formulation in [11,13]. The partial derivatives in
these boundary conditions are expressed in local optical
coordinates as

∂
∂τx

¼ 1
βr

∂
∂x

ð24aÞ



Fig. 3. The mesh of 101 wedge for 2-D axisymmetric PN testing.
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∂
∂τz

¼ 1
βr

∂
∂z

ð24bÞ

3. Implementation

The solution of the coupled ðNþ1Þ2=4 simultaneous
PDEs and their boundary conditions is found iteratively by
the finite volume based software OpenFOAM similar to the
OpenFOAM implementation of the 3-D PN [14].

For each Yn
m
PDE, in order to use the Laplacian operator

of OpenFOAM, the derivatives of Î
m
n are arranged as

δm1

2
cnm2 Lrrþ

1
βrr

Lr�
1

β2
r r2

þ1
r
Lr

1
βr

� �" #
Î
m
n

þcnm2 Lrrþ 1
βrr

Lr� m2

β2
r r2

�2Lzz

" #
Î
m
n

þ Lzz� 1�ωδ0n
� �� 	

Î
m
n

¼ an

nm∇ � 1
βr
∇Î

m
n

� �
þbn

nmÎ
m
n þcnnmLzzÎ

m
n ð25Þ

where

an

nm ¼ cnm2
1þδm1=2

βr
ð26aÞ

bn

nm ¼ cnm2
δm1=2

r
Lr

1
βr

� �
�m2þδm1=2

β2
r r2

 !
� 1�ωδ0n
� �

ð26bÞ

cnnm ¼ 1�ð3þδm1=2Þcnm2 ð26cÞ

All terms other than the Î
7m
n are updated before each

iteration. The preconditioned conjugate gradient (PCG)
[17] algorithm is used to solve each PDE sequentially until

Î
0
0 is converged to prescribed criteria.

The boundary conditions expressed in Eq. (22) cannot
be directly implemented if the governing equations are
solved iteratively. In the OpenFOAM implementation of the
axisymmetric PN formulation, the boundary conditions are
transformed to Robin-type form to make sure that indivi-
dual Robin-type boundary conditions can be explicitly
associated with each governing equation, i.e.,

Î
m
n þk

∂Î
m
n

∂τz
¼ f

∂Î
m
n

∂τx
;
∂Î

m
n

∂τy
;
∂Î

m0

n0

∂τx
;
∂Î

m0

n0

∂τy
;
∂Î

m0

n0

∂τz

 !
ð27Þ

where k is a scalar constant and f is a function of partial
derivatives of other intensity coefficients, including the
tangential derivatives of Î

m
n .

The boundary conditions are rearranged into matrices
and vectors the same way as described in [14]:

Q � Iþ 1
βr
Q r � IþQ x �

∂I
∂τx

þQ z �
∂I
∂τz

¼ Iwp ð28Þ

where the 1=βrðQ r � IÞ is the second term on the right-
hand side of Eq (22). Since Q r is a purely geometric
quantity, it is better to leave the 1=βr outside the matrix.
Then in the CFD calculation, just like other matrices in
Eq. (28), Q r only needs to be calculated once. Eq. (28) can
be converted to N2 ¼ ðNþ1Þ2=4 Robin-type boundary
conditions,

βrþRj;j
� �

IjþZj;j
∂Ij
∂z

¼ δj;1Iw�
XN2

k ¼ 1

Xj;k
∂Ik
∂x

þ 1�δj;k
� �

Zj;k
∂Ik
∂z

þRj;kIk

� �� �
ð29Þ

where X, Z and R are defined as

X¼Q �1 � Q x

Z¼Q �1 � Q z

R¼Q �1 �Q r ð30Þ
and are evaluated through LU decomposition [18] of Q. A
similar stabilizer as in [14] for the 3-D formulation is also
defined for the 2-D axisymmetric PN for optically thin
simulations.

4. Results and discussion

Two example problems are presented to explore the
accuracy and computational efficiency of the axisymmetric
PN for fields with strongly varying temperatures and
absorption coefficients. Although isotropic scattering adds
no additional complexity or effort to PN (as opposite to
DOM), all the examples are limited to nonscattering media
in this study simply to reduce parameters needed for
presentation. In radiative heat transfer problems the
“radiative heat source” (or negative divergence of radiative
flux) is of greatest interest, which provides the contribu-
tion of radiation to the overall energy equation. Physically,
the radiative heat source is the difference between local
absorption and emission, and the former is quantified by
the “incident radiation” G, where

�∇ � q¼ �κð4πIb�GÞ; G¼
Z
4π
IðŝÞ dΩ¼ 4πI00 ð31Þ

Wedge enclosure with variable radiative properties:
Many combustion problems in a cylinder are axisymmetric,
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Fig. 4. Incident radiation G and radiative heat source ∇ � q for a wedge enclosure with variable radiative properties. (a) G at z¼0.71, (b) G at z¼1.60, (c)
∇ � q at z¼0.71 and (d) ∇ � q at z¼1.60.
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but CFD codes rarely have cylindrical coordinates and/or
axisymmetric capability. In those cases generally a wedge
mesh instead of the full cylinder is usually chosen to
expedite the computation. The first test case is a wedge
with strongly varying absorption coefficient and tempera-
ture field as shown in Eq. (32), where κ is the absorption
coefficient, and βr ¼ κ for non-scattering case. In order to
compare with the results from a 3-D cylinder, the mesh
shown in Fig. 3 is a 101 piece of the cylinder and the
radiative properties are the same as in the cylinder test case
[14]. The wedge has 84 cells along the radius and 40 cells
along the axis, while the tip of the wedge is cut off to avoid
mathematical singularity points. The walls are taken as
black cold walls and the center-line is taken as a symmetry
plane:

Ib ¼ 1þ20

R4r
2 R2�r2

 �

ð32aÞ

κ ¼ Ck 1þ15

R4 ðR
2�r2Þ2

� �
ð32bÞ

Ck ¼ 0:3þz; 0rrrR¼ 0:5;0rzr2:5 ð32cÞ

τD ¼ 2
Z R

0
κ dr¼ 7:5Ck ð32dÞ

The results at two heights are shown in Fig. 4. The results
from P3 to P7 are very close to the exact solution, while P1
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has certain levels of discrepancies with the exact solution
and the discrepancy decreases with increasing optical
thickness. Also the incident radiation G and the radiative
heat source ∇ � q from P5 and P7 correctly catch the sharp
gradient near the cylinder wall. It is also verified that for
this case the axisymmetric PN results overlap the 3-D
results, Fig. 5, to within a maximum discrepancy of 2%
close to the center-line of the wedge/cylinder. The differ-
ence is due to the square cuboid block mesh at the center of
the cylinder and the interpolation between two different
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grids. An exact solution for this problem is calculated by
direct integration of the RTE [1], which are shown by the
black solid lines in the figures.

Scaled flame with nongray radiative properties: The
axisymmetric PN implementation is applied to an axisym-
metric methane jet flame. The flame is a four-times scaled
Sandia Flame D [19] with temperature and concentration
fields strongly varying in both radial and axial directions.
The wedge has 84 cells along the radius and 95 cells along
the axis, and the walls are taken as black and cold and the
center-line is taken as a symmetry plane. Fig. 6 shows the
temperature and concentration fields for the quasi-steady
flame, which are used as input parameters. The absorption
coefficients κ of the participating gases are nongray and
are calculated using the Full Spectrum Correlated-k (FSCK)
model [20,21] requiring a set number of evaluations of the
spectral RTE (corresponding to quadrature points in the
FSCK scheme). In the present implementation, eight quad-
rature points are used. The radiative heat source, �∇ � q, is
shown in Fig. 7 for two axial locations. Location z¼1.0 m is
where water vapor has the highest mass fraction, while
the maximum mass fraction of carbon dioxide is at
z¼1.43 m. The results calculated by P1 to P7 together with
the FSCK spectral model on the cylindrical mesh are com-
pared to line-by-line (LBL) P1 calculations and LBL-PMC
calculations. The error incurred by FSCK can be evaluated
by comparing the FSCK-P1 results with the LBL-P1 results,
Fig. 7. Radiative source for Sandia FlameD�4 at two axial locations as calcu

Table 1
Comparison of PN computation cost for different test cases.

Computation cost of PN method Number of cells P

Case I: 3-D Cylinder 131 400 1
Case I: 2-D Wedge 3360 0
Case II: Flame(3-D, 1 quadrature) 957 600 7
Case II: Flame(2-D, 1 quadrature) 7980 0
and is essentially negligible for most regions. The LBL-PMC
results presented here are calculated on a different
streamline-shape wedge mesh [22], and while this is a
source of error, major differences between the FSCK-PN
solutions and LBL-PMC results are errors attributable to
the PN methods. As shown in Fig. 7, with the increase of
the order of PN, the results get closer to the LBL-PMC
results, and P5 and P7 successfully match the PMC results
in most regions. The results prove that even under extre-
mely alternating temperature fields and gas concentra-
tions as in real combustion applications, the precision of
the FSCK-P5 and FSCK-P7 are on the same level as LBL-PMC.

Computation time comparison: A CPU time compar-
ison for different orders of PN for the above cases is given
in Table 1. All calculations were carried out on a single
Intel (R) Xeon (R) CPU X7460 running at 2.66 GHz. The P1
approximation solves a single PDE; P3, P5 and P7 consist of
4, 9 and 16 strongly coupled PDEs with numerous cross-
derivatives, respectively. The computation time of the 3-D
PN formulation on the cylinder mesh for both cases is also
shown in Table 1. Comparing with the 3-D formulation,
the axisymmetric formulation significantly reduces the
computing time, which makes P5 and P7 competitive for
practical applications.

The computation time is strongly related to the number
of outer iterations required, which in turn depends on
radiative properties. For optically thin cases, a boundary
lated with various PN approximations. (a) z¼1.00 m and (b) z¼1.43 m.

1 (s) P3 (s) P5 (s) P7 (s)

.01 90.49 269.29 727.08

.02 0.57 5.88 11.66

.36 1323.53 2566.52 6817.02

.031 0.73 8.53 14.92
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condition stabilizer is utilized for high-order PN, which will
also slow down the convergence.

5. Summary and conclusion

A 2-D axisymmetric version of the spherical harmonics
PN model (up to P7) is formulated and implemented in
OpenFOAM. The number of PDEs and intensity coefficients
for the PN-approximation is reduced from NðNþ1Þ=2 to
ðNþ1Þ2=4 by employing axisymmetric relations. The
coupled ðNþ1Þ2=4 simultaneous PDEs and their boundary
conditions are solved iteratively by the PCG method. Two
example problems were tested for the 2-D axisymmetric
PN formulation. The new formulation was verified by
comparing computations to the intensity coefficients from
the 3-D PN formulation, exact solutions and PMC results.
The comparison shows that the 2-D formulation provides
an accurate and faster approach for axisymmetric pro-
blems. The system of simultaneous PDEs are solved itera-
tively in the current implementation. Further development
could employ a block-coupling approach [23] to improve
the stability and computation efficiency.
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