Title
FULLY STRIPPED HEAVY ION YIELD VS ENERGY FOR Xe AND Au IONS

Permalink
https://escholarship.org/uc/item/4v18n5wv

Author
Thieberger, P.

Publication Date
1985-05-01

FULLY STRIPPED HEAVY ION YIELD VS ENERGY FOR Xe and Au IONS

May 1985

TWO-WEEK-LOAN COPY
This is a Library-Circulating Copy which may be borrowed for two weeks.

Prepared for the U.S. Department of Energy under Contract DE-AC03-76SF00098
DISCLAIMER

This document was prepared as an account of work sponsored by the United States Government. While this document is believed to contain correct information, neither the United States Government nor any agency thereof, nor the Regents of the University of California, nor any of their employees, makes any warranty, express or implied, or assumes any legal responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by its trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof, or the Regents of the University of California. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof or the Regents of the University of California.
FULLY STRIPPED HEAVY ION YIELD VS ENERGY FORXE AND AU IONS

P. Thieberger and H.E. Wegner
Brookhaven National Laboratory, Upton, NY 11973

J. Alonso, L. Gould, and C. Hugger
Lawrence Berkeley Laboratory, Berkeley, CA 94720

R. Anholt and W.E. Meyerhof
Stanford University, Stanford, CA 94305

Introduction

Synchrotrons designed originally for proton acceleration are now being modified for heavy ion acceleration. Their vacuum which is suitable for good proton operation is usually too poor for the acceleration of fractionally charged heavy ions, and consequently, they can only be used to accelerate fully stripped or bare ions. Some kind of injector accelerator must provide the necessary fully stripped ions with adequate intensity for the planned research program which means that the yields of fully stripped ions from various kinds of stripping foils must be known as a function of energy.

The Bevalac is now capable of accelerating 238U ions to approximately 1 GeV/amu and measurements have shown that fully stripped 238U ions are produced with good yield at these energies. However, knowing the stripping yields at different energies for 238U does not allow an accurate prediction for other, lower Z projectiles. Consequently, extensive stripping yield measurements were made for 197Au and 129Xe ions.

In addition to the stripping measurements from the direct Bevalac beam, pickup measurements were also made with specially prepared bare, one electron, and two electron ions. Since many research groups are considering heavy ion storage rings and/or synchrotrons, the pickup cross section for bare ions is important to estimate beam lifetime in terms of the average machine vacuum. Since the Mylar target provides a pickup probability similar to air, a preliminary analysis of the 197Au and 129Xe data will be presented along with predictions for other ions ranging down to Fe56.

Experimental Procedure

Heavy ion beams of 197Au$^{61+}$ at 200, 800, 8000, and 900 MeV/amu; and 129Xe$^{54+}$ at 85, 850, 8500, and 300 MeV/amu were provided by the Bevalac and directed into the B40 experimental area shown in Fig. 1. Various thickness foils or targets made of Be, Mylar, Al, O, Ag, and Au can be inserted by remote control into the focused beam passing down the beam line. The resulting stripped ion groups are then refocused by a quadrupole $(B40, Q2A, Q2B)$ onto a position sensitive ionization chamber after passing through two large bending magnets $(B40, M2, M3)$ which disperse the charge states. The focussed charge groups are approximately 5 millimeters wide and separated from each other by approximately 3 centimeters. These charge state distributions are accumulated in a computer based multichannel analyzer for display, storage and ultimate area analysis. A complete study was made for all charge states from the incident beam charge state up to the fully stripped or bare ion state; however, this paper will only discuss the bare ion yields.

Atomic Theory Calculations

With the three sets of measurements for U, Au, and Xe ions the data can be parameterized with atomic theoretical calculations so that other projectile stripping characteristics can be fairly reliably predicted. Predictions of bare ion yields for 71La, 63Zn, 3He, and 26Fe were calculated so that accelerator designers may interpolate from the figures for any projectile Z desired.

The yield of charge fractions of relativistic ions penetrating through foils is determined by a competition between electron stripping ("ionization") and pickup ("capture"). Ionization occurs if the electric field of the target atom transfers sufficient momentum to a projectile electron to eject it from its shell. Ionization cross sections vary approximately proportional to Z^2, where Z is the target atomic number. For direct capture to occur, the target electron must "run along" with the relativistic projectile. In light target ions, this is unlikely, and capture is accompanied by emission of a photon ("radiative electron capture", or "inverse photoelectric effect")

Fig. 1 Schematic diagram of the experimental apparatus (see text).

to conserve momentum and energy. In heavy target atoms, direct ("non-radiative") capture dominates. The cross section for radiative capture varies proportional to Z_t, that for non-radiative capture approximately proportional to Z_t^5. The target thickness (t) dependence of the yield of a particular ion species with n electrons is fairly complicated, but after a sufficient thickness (t_{eq}) is traversed, the yield becomes independent of t. At that point, there is an equilibrium between stripping and pickup of electrons. If the equilibrium yields of ions with $n>2$ are negligible, one can show that the equilibrium yields of ions with $n=0, 1$ and 2 are, respectively:

$$F_0 = [1 + (p_0/s_1) (1 + p_1/s_2)]^{-1},$$

$$F_1 = (p_0/s_1) F_0, \quad F_2 = (p_1/s_2) F_1,$$

where p_0 is the pickup and s_n is the stripping cross section for an n-electron ion. One can also show, that to a good approximation the equilibrium thickness is given by

$$t_{eq} = 4.6/[n_0 (s_1 + p_0/2)],$$

where n_0 is the number of target atoms per unit volume.

In Fig. 2 the equilibrium yields F_0 in mylar, Al and Cu, computed for various projectiles as a function of projectile energy is shown. Comparisons are made with these measurements and others. For the stripping cross sections, relativistic plane wave Born approximation calculations of Anholt were used. Expressions based on relativistic eikonal calculations by Eichler were used for the pickup cross sections. Arrows on the figures indicate the calculated minimum energy that must be reached in order to obtain an 80% yield of bare ions. Table I lists the corresponding equilibrium thicknesses. For a particular projectile-target combination, t_{eq} is not very energy dependent above 300 MeV/N. Hence, Table I can be used as a guide for different projectile energies.

As previously discussed, it is important to compute the electron pickup probability for a bare ion ($=n_{pick}$) traversing large distances in an accelerator vacuum. The pickup cross section p_0 in mylar, which has a Z_t composition similar to air is shown in Fig. 3. Here, at higher energies, capture is nearly all radiative, and there should be no disagreement with measured cross sections, since the theory (inverse photo-electric effect) is well understood. The disagreements found may point to some difficulties in the measurements.
TABLE I

<table>
<thead>
<tr>
<th>Stripping Foil</th>
<th>Mylar</th>
<th>Aluminum</th>
<th>Copper</th>
</tr>
</thead>
<tbody>
<tr>
<td>E (MeV/N)</td>
<td>t_e (mg/cm²)</td>
<td>E (MeV/N)</td>
<td>t_e (mg/cm²)</td>
</tr>
<tr>
<td>26Fe</td>
<td><50</td>
<td><50</td>
<td>60</td>
</tr>
<tr>
<td>93Nb</td>
<td>70</td>
<td>110</td>
<td>140</td>
</tr>
<tr>
<td>54Xe</td>
<td>160</td>
<td>150</td>
<td>210</td>
</tr>
<tr>
<td>63Cu</td>
<td>310</td>
<td>240</td>
<td>300</td>
</tr>
<tr>
<td>71Cu</td>
<td>530</td>
<td>370</td>
<td>380</td>
</tr>
<tr>
<td>79Au</td>
<td>760</td>
<td>570</td>
<td>500</td>
</tr>
<tr>
<td>232U</td>
<td>>1000</td>
<td>>1100</td>
<td>>360</td>
</tr>
</tbody>
</table>

*These thicknesses are well beyond the "knee" of the bare ion yield vs. thickness curve. In order to minimize multiple Coulomb scattering in good accelerator design, 1/2 of the above thicknesses will still provide a 65-70% bare ion yield.

Future Measurements

Since the technique of preparing 0.1, or 2 electron ions has now been demonstrated for Xe, similar methods may be used in the future for U ions where all of the pickup phenomena will be under the most extreme conditions. In addition, plans are being made to check these cross sections in a few gases as well as the solids used in this work. Direct measurements in H₂ will be important for all of the ultra high vacuum heavy ion storage rings which end up with a residual tiny quantity of hydrogen as a background.

Acknowledgements

We would like to thank the Rilac and especially the Bevalac operations groups for the expeditious way in which the difficult beam transport tuning was carried out for these new kinds of charge state cross section measurements.

*This work was supported in part by the National Science Foundation under Grant No. PHY 83-13676 and by the U.S. Department of Energy under Contracts No. DE-AC03-76SF00098 and DE-AC02-76CH00016.

References

10. J. Eichler, to be published.
This report was done with support from the Department of Energy. Any conclusions or opinions expressed in this report represent solely those of the author(s) and not necessarily those of The Regents of the University of California, the Lawrence Berkeley Laboratory or the Department of Energy.

Reference to a company or product name does not imply approval or recommendation of the product by the University of California or the U.S. Department of Energy to the exclusion of others that may be suitable.