Title
Functional testing guide for air handling systems: From the fundamentals to the field

Permalink
https://escholarship.org/uc/item/4w4400cm

Authors
Sellers, David
Friedman, Hannah
Haasl, Tudi
et al.

Publication Date
2003-05-01
Functional Testing Guide for Air Handling Systems: From the Fundamentals to the Field

Element 5—Integrated Commissioning and Diagnostics
Project 2.1 Commissioning and Monitoring for New Construction

Developed by:

David Sellers, Hannah Friedman, Tudi Haasl
Portland Energy Conservation, Inc.
1400 SW 5th Avenue, Suite 700
Portland, OR 97201

Norman Bourassa and Mary Ann Piette
Lawrence Berkeley National Laboratory
1 Cyclotron Road
Berkeley, CA 94720

May 2003
Table of Contents:
Functional Testing Guide

1. How to Use the Functional Testing Guide
2. Functional Testing Basics
3. Outdoor Air Intake
4. Fan Casing
5. Economizer and Mixed Air
6. Filtration
7. Preheat
8. Cooling
9. Humidification
10. Reheat
11. Warm-Up
12. Fans and Drives
13. Distribution
14. Terminal Equipment
15. Return, Relief and Exhaust
16. Scrubbers
17. Management and Control of Smoke and Fire
18. Integrated Operation and Control

Appendix A - Overview of the Commissioning Test Protocol Library (CTPL)
Appendix B – Resources
Appendix C – Calculations
Acknowledgements

This work has been supported by:


Special thanks to Martha Brook (CEC) and David Hansen (DOE). Ken Gillespie of Pacific Gas and Electric Company led the development of the Commissioning Test Protocol Library, to which the Functional Testing Guide is linked. Appreciation is extended to Marti Frank of PECI for her assistance.

Technical review was provided by the following experts:

- Gretchen Coleman, P.E., Engineering Economics, Inc. (EEI)

- Jay Santos, P.E., Facility Dynamics Engineering

- Karl Stum, P.E., CH2M HILL

- Treasa Sweek, P.E., CTG Energetics, Inc.
DISCLAIMER

This document was prepared as an account of work sponsored by the United States Government. While this document is believed to contain correct information, neither the United States Government nor any agency thereof, nor The Regents of the University of California, nor any of their employees, makes any warranty, express or implied, or assumes any legal responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by its trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof, or The Regents of the University of California. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof, or The Regents of the University of California.

This report was prepared as a result of work sponsored by the California Energy Commission (Commission). It does not necessarily represent the views of the Commission, its employees, or the State of California. The Commission, the State of California, its employees, contractors, and subcontractors make no warranty, express or implied, and assume no legal liability for the information in this report; nor does any party represent that the use of this information will not infringe upon privately owned rights. This report has not been approved or disapproved by the Commission nor has the Commission passed upon the accuracy or adequacy of the information in this report.

ERNEST ORLANDO LAWRENCE BERKELEY NATIONAL LABORATORY
IS AN EQUAL OPPORTUNITY EMPLOYER.