Title
Frequent genic rearrangements in two regions of grass genomes identified by comparative sequence analysis

Permalink
https://escholarship.org/uc/item/4xj350q7

Journal
Comparative and Functional Genomics, 3(2)

ISSN
1531-6912

Authors
Ramakrishna, W
Jianxin, M
Sanmiguel, P
et al.

Publication Date
2002-05-27

DOI
10.1002/cfg.164

Peer reviewed
Frequent genic rearrangements in two regions of grass genomes identified by comparative sequence analysis

Wusirika Ramakrishna1*, Jianxin Ma1, Phillip SanMiguel2, John Emberton1, Jorge Dubcovsky3, Bryan A Shiloff4, Zeyu Jiang4, Nils Rostoks5, Carlos S Busso3, Matthew Ogden1, Eric Linton6, Andris Kleinhofs5, Katrien M Devos7, Joachim Messing6 and Jeffrey L Bennetzen1

1 Department of Biological Sciences, Purdue University, West Lafayette, IN 47907, USA
2 Purdue University Genomics Core, 5004 WSLR, Purdue University, West Lafayette, IN 47907, USA
3 Department of Agronomy & Range Science, University of California, Davis, 95616 CA, USA
4 National Center for Genome Resources, Santa Fe, NM 87505, USA
5 Department of Crop and Soil Sciences, Washington State University, Pullman, WA 99164, USA
6 PGRI-Waksman Institute, Rutgers University, Piscataway, NJ 08855, USA
7 John Innes Centre, Norwich Research Park, Colney, Norwich NR4 7UH, UK

* Correspondence to:
Department of Biological Sciences, Purdue University, West Lafayette, IN 47907, USA.
E-mail: wusirika@purdue.edu

Grass genomes show extensive colinearity based on comparative genetic maps, although some large chromosomal rearrangements mark particular lineages. Small rearrangements involving one or a few genes would be missed by these comparative maps. Hence, we have undertaken sequence comparisons between BACs (bacterial artificial chromosomes) that contain 80–200 kb genomic segments of several grass species.

Rpl is a complex disease resistance locus in maize that provides race-specific resistance to the leaf rust disease caused by the fungus Puccinia sorghi. Sequence analysis of maize and sorghum Rpl BACs revealed two Rpl homologues and twelve other gene-homologous sequences, of which at least ten genes were truncated in one maize segment and eight gene-homologous segments were found in a second maize segment, of which two were Rpl-related and the other six were truncated. The truncated gene segments may have arisen by break repair, probably through homologous or illegitimate recombination. A 43 kb region with a Rpl homologue, six truncated genes and three Opie retrotransposons was duplicated on two maize BACs. Estimation of divergence times for the Rpl homologues, the three Opie elements and the intervening regions between duplicated regions are consistent with the duplication having occurred within the last 200,000 years. The Retrotransposons Opie-B, Opie-C and Opie-D were inserted before this duplication. In sorghum, the sequenced region includes a cluster of five Rpl homologues, of which two are truncated with N-terminal deletions. Of the other three Rpl homologues, a stop codon is present in one and a retrotransposon is inserted in another. The Rpl-homologous region in sorghum has several genes that are either duplicated, inverted, or both. Five duplicated genes other than the Rpl homologues are present. Physical mapping revealed the presence of eleven Rpl homologues that mapped to about 400 kb in B73 maize. Six Rpl homologues mapped to about 50 kb in sorghum inbred BT x 623 to a region on linkage group H that is colinear with maize chromosome 10.

The Waxy1 gene encodes UDP-glucose starch glycosyl transferase, an enzyme that converts amylose to amylopectin. Wx1 is in syntenic locations in all of these grass species, although the maize Wx1 is within a paracentric inversion that places it near centromeric heterochromatin. Sequence analysis of
BACs containing homologous *wx1* genomic regions in six grasses (barley, maize, pearl millet, rice, sorghum, and diploid wheat) revealed several rearrangements of gene content, order and/or orientation. Some of the rearrangements appear to mark specific lineages. A cluster of five genes that are 5′ to the *Wx1* loci are in the same relative order in the lineage that gave rise to maize, sorghum and pearl millet, but are in an inverted orientation in rice. None of the genes around the *Wx1* homologues in barley or wheat are homologues of any of the genes in the other four grass species studied.

Compared to other regions that we, and others, have studied, the *Wx1* and *Rp1* orthologous segments appear to be more highly rearranged. Studies of such rapidly evolving regions provide novel insights into the numerous mechanisms that create genomic diversity.

**Acknowledgement**

This work was supported by the NSF Plant Genome Program (grants no. 9975618 and 9975793).