Title
Advanced synthesis techniques and routes to new single-phase multiferroics

Permalink
https://escholarship.org/uc/item/4xk498ww

Journal
Current Opinion in Solid State and Materials Science, 16(5)

ISSN
1359-0286

Authors
Martin, LW
Schlom, DG

Publication Date
2012-10-01

DOI
10.1016/j.cossms.2012.03.001

Peer reviewed
Advanced synthesis techniques and routes to new single-phase multiferroics

Lane W. Martin a,⇑, Darrell G. Schlom b

Abstract

We review recent developments and advances in the synthesis of thin-film multiferroic and magnetoelectric heterostructures. Driven by the promise of new materials with built-in useful phenomena (i.e., electric field control of ferromagnetism), extensive research has been centered on the search for and characterization of new single-phase multiferroic materials. In this review we provide a brief overview of recent developments in the synthesis of thin film versions of these materials. Advances in modern film growth processes have provided access to high-quality materials for in-depth study. We highlight the use of epitaxial thin-film strain to stabilize metastable phases, drive multiferroic properties, and produce new structures and properties in materials including case studies of EuTiO3 and BiFeO3.

1. Introduction

1.1. Overview

Complex oxides represent a broad class of materials that have a wide range of crystal structures and properties. Among them, the study of magnetic, ferroelectric, and, more recently, multiferroic properties has stimulated considerable interest. This work has been driven, in part, by the development of new thin-film growth techniques and the access to high-quality materials that has resulted. In this review, we focus on the synthesis of thin films of these materials and routes to control these properties with special attention to the use of epitaxial thin-film strain. Such epitaxial strain can give rise to complex and diverse physical phenomena that result from the coupling of lattice, orbital, spin, and charge degrees of freedom.

Creating novel materials is thus a critical component that enables the exploration of such fascinating phenomena. The power of advanced materials synthesis has been repeatedly demonstrated in materials science. For example, in semiconductor epitaxy, advanced thin-film synthesis has led to not only a large range of technologies, but has also led to several Nobel prizes. Researchers in oxide and multiferroic science have taken a page from the semiconductor lexicon and consequently, materials synthesis plays a critical role in enabling the study of such novel materials. In this article, recent advances in the synthesis of epitaxially strained multiferroic and magnetoelectric oxide materials (in particular systems such as EuTiO3 and BiFeO3) are reviewed. We highlight the importance of advanced synthesis techniques and the interplay between synthesis, theory, and experimental probes [2].

1.2. Multiferroic materials systems

Metal oxide materials have been the focus of much research based on the broad range of structures, properties, and exciting phenomena that are manifested in these materials [3,4]. The perovskite structure, which has the chemical formula ABO3 (e.g., CaTiO3, SrRuO3, BiFeO3) (Fig. 1), is made up of corner-sharing octahedra with the A-atom coordinated with twelve oxygen ions and the B-cation with six. The structure can easily accommodate a wide range of valence states on both the A- and B-sites (i.e., A\(^{+2}\)B\(^{5+}\)O\(_3\), A\(^{+3}\)B\(^{4+}\)O\(_3\), A\(^{+4}\)B\(^{3+}\)O\(_3\)) and can exhibit complex defect chemistry (including accommodation of a few percent of cation non-stoichiometry, large concentrations of oxygen vacancies, and exoctic charge accommodation modes ranging from disproportionation to cation ordering) [5]. Selection of the appropriate A- and B-site cations can dramatically impact structural, electronic, magnetic, polar, and other properties. In the end, the electronic structure and coordination chemistry of the cationic species control the wide range of physical phenomena manifested in these materials.

1.2.1. Multiferroics – definition

Over the past several years, the exploration of these individual functional responses has evolved into the exploration of coupled order, namely the existence of multiple order parameters, as exemplified by multiferroics. By definition, a single-phase multiferroic...
[6] is a material that simultaneously possesses two or more of the so-called “ferroic” order parameters: ferroelectricity, ferromagnetism, and/or ferroelasticity (note that the current trend is to extend the definition to include materials possessing the corresponding antiferroics as well, e.g., antiferromagnetic ferroelectrics such as BiFeO3, as there are so few ferromagnetic ferroelectrics). Magnetoelectric coupling typically refers to the linear magnetoelectric effect manifested as an induction of magnetization by an electric field or polarization by a magnetic field [7]. Only a small subgroup of all magnetically and electrically polarizable materials are either ferromagnetic or ferroelectric and fewer still simultaneously exhibit both order parameters (Fig. 2) [8]. The ultimate goal for device functionality is a single-phase multiferroic with strong coupling between ferroelectric and ferromagnetic order parameters enabling electric field control of magnetism.

1.2.2. Scarcity of and pathways to multiferroism

Multiferroics are a rather rare set of materials. The scarcity of multiferroics can be understood by investigating a number of factors including symmetry, electronic properties, and chemistry. First, only 13 of the Shubnikov–Heesch point groups (out of 122) are compatible with multiferroic behavior. Specifically, these are 1, 2, 2’, m, m’, 3, 3m’, 4, 4m’, mm2, m’mm, 2, 6, and 6m m’ [6]. Additionally, ferroelectrics by definition are insulators and in 3d transition metal oxides, typically possess B-cations that have a formal d electronic state, while itinerant ferromagnets possess unpaired electrons (even in double exchange ferromagnets such as the manganites, magnetism is mediated by incompletely filled 3d shells). Thus there exists a seeming contradiction between the conventional mechanism of off-centering in a ferroelectric and the formation of magnetic order, which explains the scarcity of ferromagnetic–ferroelectric multiferroics [9]. There are a number of pathways, however, that have been observed to give rise to multiferroic properties (Table 1 briefly summarizes some examples). In general, multiferroics can be divided into one of two groups [10]. Type I multiferroics are materials in which ferroelectricity and magnetism have different sources and appear largely independent of one another as is the case in BiFeO3 [11], YMnO3, and LiFeO2 [13]. On the other hand, Type II multiferroics are materials in which magnetism causes ferroelectricity–implying a strong coupling between the two order parameters. The prototypical examples of this sort of behavior are TbMnO3 [14] and TbMn2O5 [15].

1.2.3. Alternative pathways to magnetoelectricity

Because of the rare nature of multiferroism, researchers have investigated alternative pathways by which to achieve the sought-after effects made possible by these materials including considerable work in the area of composite magnetoelectric systems. A complete treatment of this rich field is beyond the scope of this manuscript, but here we highlight a few of major discoveries. For a thorough treatment of this field the reader is directed to Refs. [16–18]. Composite magnetoelectric operate by coupling the magnetic and electric properties between two materials, generally a ferroelectric material and a ferrimagnetic material, via strain. An applied electric field creates a mechanical strain in the ferroelectric via the converse piezoelectric effect, which produces a corresponding strain in the ferrimagnetic material and a subsequent change in magnetization or the magnetic anisotropy via the piezomagnetic effect. Work started in the field several decades ago using bulk composites [19–21]. Experimental magnetoelectric voltage coefficients were far below those calculated theoretically [22]. This suggested the possibility for strong magnetoelectric coupling in a multilayer (2–2) configuration [23] – an ideal structure to be examined by the burgeoning field of complex oxide thin-film growth [24]. In this spirit, researchers experimentally tested a number of materials in a laminate thick-film geometry, including ferroelectrics such as Pb(ZrxTi1−x)O3 [25–30], Pb(Mg0.33Nb0.67)O3–PbTiO3 (PMN–PT) [31], and ferromagnets such as Tb Dy2Fe2 (Terfenol-D) [25], NiFe2O4 [26,28], CoFe2O4 [30], Ni0.8Zn0.2Fe2O4 [27], La0.5Sr0.5MnO3 [29], La0.7Ca0.3MnO3 [29], and others. These experiments showed great promise and magnetoelectric voltage coefficients up to ΔE/ΔH = 4680 mV/cm Oe have been observed. In general, however, it is thought that the in-plane magnetoelectric interface of such heterostructures limits the magnitude of the coupling coefficient due to the clamping effect of the substrate on the ferroelectric phase [32]. Since the amount of strain that can be imparted by the ferroelectric phase is limited via this in-plane interfacial geometry, the magnetoelectric voltage coefficient can be reduced by up to a factor of five.

This has, in turn, lead to the study of vertical nanostructures to enhance coupling. A seminal paper by Zheng et al. [33] showed that magnetoelectric materials could also be fabricated in a nanostructured columnar fashion by selecting materials that spontaneously separate due to immiscibility, such as spinel and perovskite phases [22]. This results in nanostructured phases made of pillars of one material embedded in a matrix of another. In this initial paper, researchers reported structures consisting of CoFe2O4 pillars embedded in a BaTiO3 matrix. The large difference in lattice parameter between these phases leads to the formation of pillars with dimensions on the order of tens of nanometers, which ensures a high interface-to-volume ratio, an important parameter when attempting to couple the two materials via strain. These nanostructures, in which the interface is perpendicular to the substrate, remove the effect of substrate clamping and allow for better strain-induced coupling between the two phases. Nanostructured composites with combinations of a number of perovskite (BaTiO3 [34], PbTiO3 [35], Pb(ZrxTiy)1−x)O3 [36,37], and BiFeO3 [38,39]) and spinel (CoFe2O4 [36,37], NiFe2O4 [33,38], and γ-Fe2O3 [39]) or corundum (α-Fe2O3 [39]) structures have been investigated.
2. Advances in the growth of multiferroic thin films

The re-emergence of interest in multiferroics has been driven, in part, by the development of thin-film growth techniques that allow for the production of non-equilibrium phases of materials and strain engineering of existing materials [40,41]. Thin films offer a pathway to the discovery and stabilization of a number of new multiferroics in conjunction with the availability of high quality materials that can be produced with larger lateral sizes than single crystal samples. In turn, this has offered researchers unprecedented access to new phases and insight about these materials. In this section we discuss recent advances in the growth of multiferroic thin films.

2.1. The power of epitaxial thin-film strain

For at least 400 years mankind has studied the effect of pressure (hydrostatic strain) on the properties of materials [42]. In the 1950s it was shown that biaxial strain, where a film is clamped to a substrate, but free in the out-of-plane direction, can alter the transition temperatures of superconductors [43] and ferroelectrics [44]. What has changed in recent years is the magnitude of the biaxial strain that can be imparted. Bulk multiferroic oxides are brittle and will crack under moderate tensile strains, typically 0.1%. Under compressive strains they begin to plastically deform (or break) under comparable strains [45]. One way around this limitation is the approach of bulk crystal chemists: to apply “chemical pressure” through isovalent cation substitution. A disadvantage of such a bulk approach, however, is the introduction of disorder and potentially unwanted local distortions. Epitaxial strain, the trick of the thin-film chemist, provides a potentially disorder-free route to large biaxial strain and has been used to greatly enhance the most perfect single crystals of these same materials.

The perfection of the substrate, the best of which are single crystal perovskite and perovskite-related substrates. Testing these predictions requires substrates that can impart the needed biaxial strain. Fortunately for the case of perovskite multiferroics many isostructural substrates exist with a broad range of lattice parameters to impart a desired strain state into the overlying film. The substrate situation for non-perovskite multiferroics is not nearly as favorable. The status of which perovskite single crystals are available commercially with substrate sizes of at least 10 mm × 10 mm together with the pseudocubic lattice parameters of multiferroic and related perovskite phases of interest is shown in Fig. 3. These single crystal perovskite and perovskite-related substrates are LuAlO3 [76,77], YAlO3 [78], LaSrAlO3 [79], NdAlO3 [80], LaAlO3 [81,82], LaSrGaO4 [83], NaLaO$_3$$_{3.19}$–SrAl$_{2.19}Ta_{2.19}O_{12.19}$ (NSAT) [84], NdGaO$_3$ [85,86], (LaAlO$_3$)$_{3.29}$–(SrAl$_{2.19}$Ta$_{2.19}$O$_{12.19}$)$_{0.71}$ (LSAT) [84,87], LaGaO$_3$ [88], SrTiO$_3$ [89–92], Sr$_3$(AlGa)TaO$_6$ (SAGT), DyScO$_3$ [93], TbScO$_3$ [94], GdScO$_3$ [95], EuScO$_3$, SmScO$_3$ [93], Y$_3$O$_2$O$_7$ [95], NdScO$_3$ [93], and PrScO$_3$ [96]; many of these substrates can be produced with structural perfection rivaling that of conventional semiconductor. The perfection of the substrate, the best of which are grown by the Czochralski method (which is not applicable to most multiferroics because they do not melt congruently), can be passed on to the film via epitaxy. This has led to the growth of epitaxial films of BiFeO$_3$ [97], BiMnO$_3$ [98], and strained EuTiO$_3$ [59] with rocking curve full width at half maximum (FWHM) < 11 arcsec (0.003°)—values within instrumental error identical to those of the commercial substrates upon which they are grown and significantly narrower (indicative of higher structural perfection) than the most perfect single crystals of these same materials.

For the growth of high quality multiferroic films with a desired strain state, not only are appropriate substrates needed, but also methods to prepare smooth and highly perfect surfaces with

<table>
<thead>
<tr>
<th>Pathway to</th>
<th>Mechanism for multiferroism</th>
<th>Examples</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type I</td>
<td>A-site driven</td>
<td>BiFeO$_3$, BiMnO$_3$</td>
</tr>
<tr>
<td></td>
<td>Geometrically driven</td>
<td>YMnO$_3$, BaNiF$_4$</td>
</tr>
<tr>
<td></td>
<td>Charge ordering</td>
<td>LuFe$_2$O$_4$</td>
</tr>
<tr>
<td>Type II</td>
<td>Magnetic ordering</td>
<td>TbMnO$_3$, DyMnO$_3$, TbMn$_2$O$_4$</td>
</tr>
</tbody>
</table>

Author's personal copy
2.2. Thin-film growth techniques

2.2.1. Molecular beam epitaxy

MBE is a vacuum deposition method in which well-defined thermal beams of atoms or molecules react at a crystalline surface to produce an epitaxial film. It was originally developed for the growth of GaAs and (AlGa)As [109], but due to its unparalleled ability to control layering at the monolayer level and compatibility with surface-science techniques to monitor the growth process as it occurs, its use has expanded to other semiconductors as well as metals and insulators [110,111]. Epitaxial growth, a clean ultrahigh vacuum (UHV) deposition environment, in situ characterization during growth, and the notable absence of highly-energetic species are characteristics that distinguish MBE from other methods used to prepare thin films of complex oxides and multiferroics. These capabilities are key to the precise customization of complex oxide heterostructures at the atomic layer level. MBE is renowned for its unparalleled structural control in the growth of compound semiconductor microstructures where MBE has provided nanoscale thickness control and exceptional device characteristics for decades. Examples of the thickness control achieved in semiconductors include interspersing layers as thin as one monolayer (0.28 nm) of AlAs at controlled locations into a GaAs film [137] and alternating monolayers of GaAs and AlAs to make a one-dimensional superlattice [138]. This nanoscale control has enabled tremendous flexibility in the design, optimization, and manufacturing of new devices, especially those making use of quantum effects [139]. Such control has also been demonstrated by MBE for the synthesis of complex oxide superlattices with atomic-scale thickness control and abrupt interfaces [41,140–148] and the construction of new complex oxide phases with atomic layer precision [41,142,149–151]. These advances in thin film deposition technology have made it possible to customize oxide heterostructures with sub-nanometer precision.

Fig. 3. A number line showing the pseudotetragonal or pseudocubic a-axis lattice constants in angstroms of some perovskites and perovskite-related phases of interest including multiferroics (above the number line) and of some of the perovskite and perovskite-related substrates that are available commercially (below the number line). The photos of exemplary single crystals used as substrates are from Ref. [96].
Additional advantages of MBE are (1) completely independent control of the sequence in which the elemental constituents are supplied to the substrate, (2) the availability of high purity elemental source materials, (3) no boundary layers or complicated precursor reaction chemistries, and (4) it is a very low energy, gentle deposition process in which neutral depositing species arrive at the substrate with energies well under 1 eV from the thermally generated molecular beams. The literature of film growth is riddled with examples in which bombardment by high energy species results in extrinsic film properties [152–157]. MBE is a thin film preparation technique for complex oxides that allows their intrinsic properties to be explored.

The controlled growth of multicomponent oxides is crucially dependent on accurate composition control. Inadequate composition control has been a major problem for previous oxide molecular beam epitaxy (MBE) work [142]. Although improvements in flux measurement methods continue to occur, an advantage of many multiferroics is that they contain volatile species (e.g., bismuth) and can be grown in an adsorption-controlled regime where composition control is automatic. This thermodynamically established process is responsible for the precise composition achieved in films of GaAs and other compound semiconductors by MBE and MOCVD, despite their being immersed in a huge over-pressure of arsenic-containing species during growth. Thermodynamic calculations have aided the identification of the growth window for the adsorption-controlled growth of BiFeO$_3$ [97,158], BiMnO$_3$ [98], and their solid solution [159]. In the case of multiferroic oxides containing a volatile constituent, oxygen background pressure and substrate temperature are the parameters that define the growth window where stoichiometric film deposition occurs.

2.2.2. Pulsed-laser deposition

No other single advance in the synthesis of oxide materials has had as deep an impact as the wide-spread implementation of laser-ablation-based growth techniques. The reader is directed to a number of excellent books and thorough reviews on the history and evolution of this process [160–162]. Pulsed-laser deposition (PLD) moved complex oxide synthesis from work focused on bulk single crystals and powder samples, to high-quality thin films. Additionally, PLD is a far from equilibrium process and, with careful control, can preserve complex stoichiometry from target to film. It is also a flexible, high-throughput process, ideal for the research laboratory where rapid prototyping of materials and investigating a wide array of phase space is necessary.

Briefly, PLD is a rather simple thin film growth process that can be carried out in reactive environments, like that for oxides where a partial pressure of oxygen, ozone, or atomic oxygen is carefully controlled. One of the aspects of PLD that makes it such a versatile growth process is that the deposition is achieved by vaporization of materials by an external energy source – the laser.

There have been a number of recent advances in PLD and great strides have been made in utilizing the unique features of PLD to create new multiferroics. One example is the automation of systems to enable alloy formation from multiple targets which has been used to make multiferroics such as Bi$_2$(Fe$_{1-x}$Cr$_x$)$_3$O$_9$. Using new hardware, PLD can also be used to synthesize precisely controlled interfaces in materials that rival the capabilities of MBE. This has been particularly aided by the development of differentially pumped reflection high-energy electron diffraction (RHEED) systems that have allowed researchers to monitor growth processes in high partial pressures of gases (>200–300 mTorr in some cases) [164,165], has enabled sequential growth of binary oxide materials [166], and has allowed highly controlled layer-by-layer growth [167–169]. Such advances have enabled increased study of interfacial properties and interactions in complex oxides and multiferroics. Additionally, advances have been made in obtaining information from RHEED studies including a technique known as RHEED-TRAXS (total-reflection-angle X-ray spectroscopy) [170]. In this process, incident RHEED electrons collide with the atoms in the sample, knocking secondary electrons out of their shells. Electrons in the outer shells drop into the empty inner shells, emitting X-rays whose energies are characteristic of the species of atoms in the growing film. The RHEED beam that strikes the sample thus creates a spectrum of X-rays and collecting and analyzing the emitted X-rays provides details about the species of atoms in the growing film and surface stoichiometry. Other in situ characterization of oxide materials can be done via time-of-flight ion scattering and recoil spectroscopy (ToF-ISARS) [171–174]. ToF-ISARS is a non-destructive, in situ, real-time probe of thin film composition and structure which does not interfere with the growth process. An review of the technique is given in Ref. [171], but briefly it utilizes a low-energy (5–15 keV) pulsed ion beam surface analysis process that can give information on surface composition, the atomic structure of the first few monolayers, trace element detection, lattice defect density, mean vibrational amplitude, and information on thickness and lateral distribution of the growth region. Recent studies have relied on ToF-ISARS to characterize the nature of interfaces with sub-unit-cell precision [175].

There has also been a recent push to integrate other characterization techniques with PLD (and MBE) growth systems. This includes combining X-ray photoelectron spectroscopy (XPS), scanning probe measurements systems (including atomic force microscopy (see work by the Twente group) [176], piezoresponse force microscopy, magnetic force microscopy, scanning tunneling microscopy, etc.), and synchrotron-based techniques with growth chambers. At the Photon Factory in Tsukuba, Japan researchers have created a high-resolution synchrotron-radiation angle-resolved photoemission spectrometer (ARPES) combined with a combinatorial RHEED-assisted PLD system [177], time-resolved X-ray diffraction studies of the PLD process have also been completed at the Advanced Photon Source [178,179], and other similar systems have since been constructed at the European Synchrotron Radiation Facility in Grenoble, France [180] and at the Cornell High Energy Synchrotron Source (CHESS) [181].

2.2.3. Others techniques: sputtering, MOCVD, and ALD

Recently a number of other growth techniques have been used to synthesize multiferroic thin films. Sputtering is a widely used deposition technique for large-scale production. With the advent of multi-source deposition, significant advances in sputtering of complex chemical composition materials have been obtained [182]. Sputtering has been used to grow multiferroics such as YMnO$_3$ [183], BiFeO$_3$ [184], and others. Metal–organic chemical vapor deposition (MOCVD) is also of great importance for large-scale production of oxide thin films [185]. With the advent of new metal–organic precursors for elements with high atomic number (which typically have limited vapor pressure at room temperature) access to multiferroic materials has been demonstrated. This was especially important in the development of MOCVD grown BiFeO$_3$. The reader is directed a review of recent work on the deposition of multiferroics from metalorganics [187]. More recently, the use of atomic layer deposition (ALD) has become important for the controlled synthesis of oxide films. ALD relies on two self-limiting reactions between gas-phase precursor molecules and a solid surface and differs from standard CVD or MOCVD, where there is mixing and thus reaction of precursor gases prior to the substrate. ALD lends itself to more precisely grown films due to the ability to control the order in which gases arrive. Early work has demonstrated the promise of this technique for the growth of complex oxides PbZr$_{1-x}$Ti$_x$O$_3$ [188] and select manganites [189]. As of submission of this manuscript, few reports of
the ALD growth of multiferroics are available [190,191] including extensive investigation of some manganites [192].

3. Changing the materials landscape – heteroepitaxy of single-phase multiferroics

3.1. Thin-film multiferroics

A number of multiferroic thin films have been synthesized and studied, but a detailed treatment of this extensive work is beyond the scope of this manuscript. Here we recap some of the work on thin-film multiferroics in the last few years. The earliest multiferroic thin films to be studied were the rare-earth manganites (RE-MnO3) which are an intriguing system because depending on the size of the RE ion the structure takes on either orthorhombic (RE = La–Dy; only RE = Dy, Tb, and Gd are multiferroic and have very low c/a (~20–30 K); ferroelectric ordering temperatures [134,193]) or hexagonal (RE = Ho–Lu, as well as Y; all exhibit multiferroic behavior with relatively high ferroelectric ordering temperatures and relatively low magnetic ordering temperatures [194]) structures [195]. Recently the REMn2O9 (RE = rare earth, Y, and Bi) family of materials has also received attention as thin films for the first time [196]. Researchers have investigated ferroelectric stability in ultra-thin layers of these materials [197], have used such multiferroic manganites to demonstrate electric field control of exchange coupled multiferroics [198], and have investigated the effects of non-stoichiometry and solubility limits [199].

BiMnO3, which has also received considerable attention, is not a stable phase at 1 atm pressure and its synthesis in bulk form requires high pressure and high temperatures (on the order of 6 GPa at around 1100 K) [200–202]. An alternative approach to synthesize BiMnO3 is to use epitaxial stabilization and lattice misfit strain and interfacial energies to favor the desired metastable phase over the equilibrium phase. Utilizing epitaxial stabilization BiMnO3 thin films were first grown on SrTiO3 (001) single crystal substrates using PLD [203]. Bulk BiMnO3 has been reported to belong to polar space group C2 below ~450 K and undergoes an unusual orbital ordering leading to ferromagnetism at ~105 K [204] while films exhibit a substrate-dependent ferromagnetic transition temperature [205]. BiMnO3 has been used as the foundation for a four-state memory concept [206] and has been shown to exhibit large magnetodielectric effects [207]. Recent first-principles calculations [208] and structural refinements [209], however, find that non-stoichiometric BiMnO3 belongs to the centrosymmetric C2/c space group. If correct, this would mean that BiMnO3 is neither ferroelectric nor multiferroic.

There are a number of other candidate multiferroic materials that have been studied as thin films. BiCrO3 has been predicted to be multiferroic [210] and thin films of BiCrO3 have been grown on a variety of substrates and have been shown to be antiferromagnetic (with weak ferromagnetism) with an ordering temperature of ~120–140 K. Early reports suggested that these films showed piezoelectric response and a tunable dielectric constant at room temperature [211] while others suggested that the films were antiferroelectric as predicted in theory [212]. Bulk work on BiCrO3 [213] and theoretical predictions of giant electronic polarization of more than 150 μC/cm² [214] have driven researchers to attempt creating films of this phase. To date, however, only solid solutions of BiFeO3–BiCrO3 have been grown [215,216]. Another phase of interest is PbVO3 [217]. PbVO3 films were grown on a range of substrates and were found possess a highly tetragonal perovskite phase with a c/a lattice parameter ratio of 1.32 (Fig. 4). Further analysis of this material using second harmonic generation and X-ray dichroism measurements revealed that PbVO3 is both a polar, piezoelectric and likely antiferromagnetic below ~130 K [218]. There has also been attention given to double-perovskite structures such as Bi2NiMnO6 which have been shown to be both ferromagnetic (TC ~ 100 K) and ferroelectric with spontaneous polarization of ~5 μC/cm² [219].

3.2. Recent advances – strain-induced effects in multiferroics

3.2.1. Strain-induced multiferroics

Recently, Fennie and Rabe proposed a new route to ferroelectric ferromagnets [71]—transforming magnetically ordered insulators that are neither ferroelectric nor ferromagnetic, of which there are many, into ferroelectric ferromagnets using epitaxial strain. The work investigated EuTiO3 which was predicted to simultaneously exhibit strong ferromagnetism (Ms ~ 7 μB/Eu) and strong ferroelectricity (Pc ~ 10 μC/cm²) under sufficiently large biaxial strain [71]. These values are orders of magnitude higher than any known ferroelectric ferromagnet and rival the best materials that are solely ferroelectric or ferromagnetic. To test these predictions, commensurate EuTiO3 films were grown on three substrates: (001) LSAT, (001) SrTiO3, and (110) DyScO3 to impart ~0.9%, 0%, and ~1.1% biaxial strain, respectively. Experimental measurements (Fig. 5) confirmed that the EuTiO3/DyScO3 was simultaneously ferromagnetic and ferroelectric, while on the other substrates it was not. This work demonstrated that a single experimental parameter, strain, simultaneously controls multiple order parameters and is a viable alternative tuning parameter to composition for creating multiferroics.

The physics behind this discovery makes use of spin-phonon coupling as an additional parameter to influence the soft mode of an insulator on the verge of a ferroelectric transition. Appropriate materials are those (1) with a ground state in the absence of strain that is antiferromagnetic and paraelectric, (2) on the brink of a ferroelectric transition (incipient ferroelectrics), and (3) with a large spin-phonon coupling [71]. EuTiO3 meets these three criteria and has much in common with SrTiO3 except that EuTiO3 magnetically...
orders at 5 K due to the existence of localized 4f moments on the Eu\(^{2+}\) site [220,221]. Similar to SrTiO\(_3\), strain can be used to soften the soft mode and drive it to a ferroelectric instability. In contrast to SrTiO\(_3\), which is diamagnetic, the permittivity of bulk EuTiO\(_3\) is strongly coupled with its magnetism, showing an abrupt decrease in dielectric constant at the onset of the antiferromagnetic Eu\(^{2+}\) ordering [222]. This indicates that the soft mode frequency hardens when the spins order antiferromagnetically; conversely it will soften if the spins order ferromagnetically. This extra interaction provides the coupling favoring a simultaneously ferroelectric and ferromagnetic ground state under sufficient strain in EuTiO\(_3\).

Although testing this prediction seems straightforward, the groups who first tested it ran into an unforeseen complication: no matter what substrate they deposited the EuTiO\(_3\) on it was ferromagnetic! With its identical lattice constant (both are 3.905 Å at room temperature), SrTiO\(_3\) is an obvious substrate for the growth of unstrained epitaxial EuTiO\(_3\) films. Surprisingly, as-grown EuTiO\(_3\)/C\(_0\) thin films synthesized by PLD on (001) SrTiO\(_3\) substrates exhibit expanded out-of-plane spacings (0.4–2% longer than bulk EuTiO\(_3\)) [223–226] and are ferromagnetic with a Curie temperature of about 5 K [224,225]. Further, the negligible (<0.5%) variation in the cubic lattice constant of oxygen deficient EuTiO\(_3\)–\(\delta\) over its wide single phase field [227,228], up to the EuTiO\(_3\)–\(\delta\) limit [227] of the perovskite EuTiO\(_3\)–\(\delta\) structure, is insufficient to explain the 2% variation in out-of-plane lattice spacings observed in epitaxial EuTiO\(_3\)–\(\delta\) films grown on (001) SrTiO\(_3\) by PLD [224–226].

One possibility is that the ferromagnetism observed in epitaxial EuTiO\(_3\) films prepared by PLD on SrTiO\(_3\) arises from extrinsic effects. Extrinsic effects are known to occur in thin films, particularly for deposition technologies involving energetic species, which can induce defects. For example, some homoepitaxial SrTiO\(_3\) films grown by PLD have been reported to be ferroelectric [229] in striking contrast to the intrinsic properties of SrTiO\(_3\), which is not ferroelectric at any temperature [230]. Homoepitaxial SrTiO\(_3\) films grown by PLD are also known to exhibit lattice spacings that deviate significantly from the SrTiO\(_3\) substrates they are grown on [154,156,157], although SrTiO\(_3\)–\(\delta\) itself exhibits negligible variation in its cubic lattice constant up to the SrTiO\(_3\)–\(\delta\) limit [231,232] of the perovskite SrTiO\(_3\)–\(\delta\) structure in bulk. The sensitivity of EuTiO\(_3\) that makes it an appropriate material to transmute via strain into a multiferroic also makes it quite sensitive to defects. To overcome this issue and see the intrinsic effect of strain on EuTiO\(_3\), a more delicate deposition technique was needed.

Until very recently, only SrTiO\(_3\) films grown by MBE [233] exhibited bulk behavior and none of the unusual effects reported in SrTiO\(_3\) films grown by PLD [154,156,157,229], but recent PLD studies have demonstrated bulk-like structure, dielectric response, and thermal properties through careful control of film composition in PLD growth [234]. Indeed unstrained, stoichiometric EuTiO\(_3\) thin films grown by MBE on (001) SrTiO\(_3\) have the same lattice constant as bulk EuTiO\(_3\) and are antiferromagnetic [235]. EuTiO\(_3\) films deposited by MBE led to the results shown in Fig. 5 and, in agreement with theory, produced the strongest multiferroic material known today [59].

3.2.2. Strain-induced effects in BiFeO\(_3\)

No other multiferroic thin-film material has received as much attention as BiFeO\(_3\) which is essentially the only single-phase

Fig. 5. Observation of ferromagnetism by MOKE and ferroelectricity by SHG in strained EuTiO\(_3\) grown on (110) DyScO\(_3\), confirming predictions that under sufficient biaxial strain EuTiO\(_3\) becomes multiferroic. Control samples with zero (EuTiO\(_3\)/SrTiO\(_3\)) or opposite (EuTiO\(_3\)/LSAT) strain are consistent with the theoretically predicted strain phase diagram for EuTiO\(_3\). Elemental maps of Eu and Dy as observed by STEM-EELS on the same EuTiO\(_3\)/DyScO\(_3\) film, confirming an abrupt EuTiO\(_3\)/DyScO\(_3\) interface with the correct oxidation states (from Ref. [59]).
multiferroic that simultaneously possesses both magnetic and ferroelectric order at and above room temperature. Although first studied in the late 1950s [236] and extensively developed during the subsequent decades, BiFeO₃ has invigorated the scientific community in the last decade. BiFeO₃ has a rhombohedral unit cell characterized by two distorted perovskite blocks connected along their body diagonal (\([111]\)) where the two oxygen octahedra of the two cells are rotated clockwise and counterclockwise around the \([111]\) by \(\pm 13.8(3)\)° and the Fe-ion is shifted by 0.13 Å along the same axis [237]. BiFeO₃ is a robust ferroelectric (saturation polarization of 90–100 μC/cm², \(T_c \approx 1103 \text{K}\) [11,238]) and antiferromagnetic (G-type, Néel temperature \(\approx 673 \text{K}\) [239]) with a cycloidal spin structure with a period of \(\approx 620 \text{Å}\) [240]. The symmetry also permits a small canting of the moments in the structure resulting in a weak canted ferromagnetic moment of the Dzyaloshinskii–Moriya type [241,242].

Spurred on by a 2003 paper focusing on the growth and properties of thin films of BiFeO₃ [11] dramatic advances in the study and understanding of this material have occurred. Here we will recap advances in the last few years. Thin-film samples of BiFeO₃ has been grown by just about every conceivable thin-film growth technique on a wide range of substrates including traditional perovskite oxide substrates (with lattice parameters ranging from 3.71 to 4.01 Å, covering a range from 7% compressive strain to 1.3% tensile strain) as well as Si and GaN. The ability to synthesize and manipulate these materials as thin films has provided a fine-level of control of properties. This includes the ability to change the easy direction of magnetization in BiFeO₃ thin films by changing the sign of thin-film strain [243] and controlling domain structures in BiFeO₃. By balancing elastic and electrostatic energy considerations, researchers have demonstrated 1-dimensional nanoscale domain arrays [244] (which possess excellent room temperature ferroelectric properties) [245], deterministic control of polarization variants [246], and generation of equilibrium domain structures [247] (Fig. 6) that had been predicted nearly a decade earlier [248].

At the same time, the availability of high-quality thin-film samples of these materials has made possible a range of exciting observations. Researchers have observed a systematic dependence of the ferroelectric domain structure in BiFeO₃ films as a function of the growth rate [249] with stripe-like and mosaic-like varieties possessing different types and densities of domain walls. The presence of certain types of domain walls has, in turn, been related to the overall magnetic moment observed in BiFeO₃ and to exchange bias between BiFeO₃ and metallic ferromagnets [249]. Taking this idea one step further, Darakchiev et al. [250,251] used a thermodynamic (Landau-type) model to examine whether the domain walls in BiFeO₃ can be magnetic and, if so, to what extent they might contribute to the observed enhancement of magnetization. They found that when the polarization goes from \(+P\) to \(-P\), it is energetically more favorable for the domain wall energy trajectory not to go through the center of the landscape (\(P = 0, M = 0\)), but to take a diversion through the saddle points at \(M = 0\), thus giving rise to a finite magnetization. Thus it is possible for a net magnetization to appear in the middle of ferroelectric walls even when the domains themselves are not ferromagnetic. Recent magnetotransport studies by He et al. [252] have demonstrated that certain types of domain walls (i.e., 109° walls) can exhibit strong temperature- and magnetic field-dependent magnetoresistance (as large as 60%) which is thought to be the result of local symmetry breaking at domain walls and the formation of magnetic moments (Fig. 7). This work builds off of prior work [249] that demonstrated that samples possessing 109° domain walls show significantly enhanced circular dichroism that is consistent with collective magnetic correlations, while samples with only 71° domain walls show no measurable circular dichroism.

At the same time, detailed scanning probe-based studies of domain walls in BiFeO₃ have resulted in the discovery of unanticipated room temperature electronic conductivity at domain walls (Fig. 8) [233]. From combined local conductivity measurements, electron microscopy analysis, and density functional theory calculations it has been suggested that an increased carrier density (arising from the formation of an electrostatic potential step at the wall) and a decrease in the band gap within the wall and corresponding reduction in band offset with the scanning-probe tip could be responsible for the phenomenon. Such concepts are consistent with calculation of a similar potential step at 90° domain walls in PbTiO₃ [254] that would enhance the electrical conductivity by causing carriers in the material to accumulate at the domain wall to screen the polarization discontinuity. It is likely that both effects (which arise for similar reasons) may be acting simultaneously, since they are not mutually exclusive. Recently additional effects from oxygen vacancies have been reported in domain walls in BiFeO₃ [255], tunable conductivity and memristive effects from oxygen vacancies have been reported in PbTiO₃ [254] that would enhance the electrical conductivity. These effects could be responsible for the phenomenon. Such concepts are consistent with calculation of a similar potential step at 90° domain walls in PbTiO₃ [254] that would enhance the electrical conductivity by causing carriers in the material to accumulate at the domain wall to screen the polarization discontinuity. It is likely that both effects (which arise for similar reasons) may be acting simultaneously, since they are not mutually exclusive. Recently additional effects from oxygen vacancies have been reported in domain walls in BiFeO₃ [255], tunable conductivity and memristive effects from oxygen vacancies have been reported in PbTiO₃ [254] that would enhance the electrical conductivity. These effects could be responsible for the phenomenon. Such concepts are consistent with calculation of a similar potential step at 90° domain walls in PbTiO₃ [254] that would enhance the electrical conductivity by causing carriers in the material to accumulate at the domain wall to screen the polarization discontinuity. It is likely that both effects (which arise for similar reasons) may be acting simultaneously, since they are not mutually exclusive. Recently additional effects from oxygen vacancies have been reported in domain walls in BiFeO₃ [255], tunable conductivity and memristive effects from oxygen vacancies have been reported in PbTiO₃ [254] that would enhance the electrical conductivity. These effects could be responsible for the phenomenon. Such concepts are consistent with calculation of a similar potential step at 90° domain walls in PbTiO₃ [254] that would enhance the electrical conductivity by causing carriers in the material to accumulate at the domain wall to screen the polarization discontinuity. It is likely that both effects (which arise for similar reasons) may be acting simultaneously, since they are not mutually exclusive. Recently additional effects from oxygen vacancies have been reported in domain walls in BiFeO₃ [255], tunable conductivity and memristive effects from oxygen vacancies have been reported in PbTiO₃ [254] that would enhance the electrical conductivity. These effects could be responsible for the phenomenon. Such concepts are consistent with calculation of a similar potential step at 90° domain walls in PbTiO₃ [254] that would enhance the electrical conductivity by causing carriers in the material to accumulate at the domain wall to screen the polarization discontinuity. It is likely that both effects (which arise for similar reasons) may be acting simultaneously, since they are not mutually exclusive. Recently additional effects from oxygen vacancies have been reported in domain walls in BiFeO₃ [255], tunable conductivity and memristive effects from oxygen vacancies have been reported in PbTiO₃ [254] that would enhance the electrical conductivity. These effects could be responsible for the phenomenon. Such concepts are consistent with calculation of a similar potential step at 90° domain walls in PbTiO₃ [254] that would enhance the electrical conductivity by causing carriers in the material to accumulate at the domain wall to screen the polarization discontinuity. It is likely that both effects (which arise for similar reasons) may be acting simultaneously, since they are not mutually exclusive. Recently additional effects from oxygen vacancies have been reported in domain walls in BiFeO₃ [255], tunable conductivity and memristive effects from oxygen vacancies have been reported in PbTiO₃ [254] that would enhance the electrical conductivity. These effects could be responsible for the phenomenon. Such concepts are consistent with calculation of a similar potential step at 90° domain walls in PbTiO₃ [254] that would enhance the electrical conductivity by causing carriers in the material to accumulate at the domain wall to screen the polarization discontinuity. It is likely that both effects (which arise for similar reasons) may be acting simultaneously, since they are not mutually exclusive. Recently additional effects from oxygen vacancies have been reported in domain walls in BiFeO₃ [255], tunable conductivity and memristive effects from oxygen vacancies have been reported in PbTiO₃ [254] that would enhance the electrical conductivity. These effects could be responsible for the phenomenon. Such concepts are consistent with calculation of a similar potential step at 90° domain walls in PbTiO₃ [254] that would enhance the electrical conductivity by causing carriers in the material to accumulate at the domain wall to screen the polarization discontinuity. It is likely that both effects (which arise for similar reasons) may be acting simultaneously, since they are not mutually exclusive. Recently additional effects from oxygen vacancies have been reported in domain walls in BiFeO₃ [255], tunable conductivity and memristive effects from oxygen vacancies have been reported in PbTiO₃ [254] that would enhance the electrical conductivity. These effects could be responsible for the phenomenon. Such concepts are consistent with calculation of a similar potential step at 90° domain walls in PbTiO₃ [254] that would enhance the electrical conductivity by causing carriers in the material to accumulate at the domain wall to screen the polarization discontinuity. It is likely that both effects (which arise for similar reasons) may be acting simultaneously, since they are not mutually exclusive. Recently additional effects from oxygen vacancies have been reported in domain walls in BiFeO₃ [255], tunable conductivity and memristive effects from oxygen vacancies have been reported in PbTiO₃ [254] that would enhance the electrical conductivity. These effects could be responsible for the phenomenon. Such concepts are consistent with calculation of a similar potential step at 90° domain walls in PbTiO₃ [254] that would enhance the electrical conductivity by causing carriers in the material to accumulate at the domain wall to screen the polarization discontinuity. It is likely that both effects (which arise for similar reasons) may be acting simultaneously, since they are not mutually exclusive. Recently additional effects from oxygen vacancies have been reported in domain walls in BiFeO₃ [255], tunable conductivity and memristive effects from oxygen vacancies have been reported in PbTiO₃ [254] that would enhance the electrical conductivity. These effects could be responsible for the phenomenon. Such concepts are consistent with calculation of a similar potential step at 90° domain walls in PbTiO₃ [254] that would enhance the electrical conductivity by causing carriers in the material to accumulate at the domain wall to screen the polarization discontinuity. It is likely that both effects (which arise for similar reasons) may be acting simultaneously, since they are not mutually exclusive. Recently additive...
mixed-phase structures and have revealed a complex temperature- and thickness-dependent evolution of phases in the BiFeO3/LaAlO3 system. A thickness-dependent transformation from the monoclinically distorted tetragonal-like phase to a complex mixed-phase structure likely occurs as the consequence of a strain-induced spinodal instability. Additionally, a breakdown of this strain-stabilized metastable mixed-phase structure to non-epitaxial microcrystals of the parent rhombohedral structure of BiFeO3 is observed to occur at a critical thickness of ≈ 300 nm. Other reports have demonstrated routes to stabilize these structures\[269\]. At the same time, electric field dependent studies to these mixed-phase structures has also revealed the capacity for large electromechanical responses (as large as 4–5%). In situ TEM studies coupled with nanoscale electrical and mechanical probing suggest that these large strains result from the motion of boundaries between different phases \[270\]. Despite this work, a thorough understanding of the complex structure of these phase boundaries in BiFeO3 remained incomplete until 2011.

A perspective by Scott\[271\] discussed the symmetry and thermodynamics of the phase transition between these two phases as well as a number of other model iso-symmetric phase transitions in other crystal systems. Soon after, a very detailed thermodynamic and elastic domain theory analysis of the mixed-phase structure was completed by Ouyang et al.\[272\]. In that treatment, a balance of interdomain elastic, electrostatic, and interface energies was analyzed and compared to provide an anticipated low-energy structural configuration. Subsequent studies by Damodaran et al. \[273\] helped uniquely identify and examine the numerous phases present at these phase boundaries and resulted in the discovery of an intermediate monoclinic phase in addition to the previously observed rhombohedral- and tetragonal-like phases. Further analysis determined that the so-called mixed-phase regions of these films were not mixtures of the parent rhombohedral- and tetragonal-like phases, but were mixtures of highly-distorted monoclinic phases with no evidence for the presence of the rhombohedral-like parent phase. This work helped confirm the mechanism for the enhanced electromechanical response and provide a model for how these phases interact at the nanoscale to produce large surface strains (Fig. 10). By undertaking local electric field switching studies and navigating the hysteretic nature of...
electric field response in this material, a number of important features were revealed: (1) the large surface strains (4–5%) occur any time the material transforms from a mixed-phase structure to the highly-distorted monoclinic phase, (2) transformations between these two states are reversible, and (3) there are numerous pathways to achieve large electromechanical responses in these materials – including ones that do not need ferroelectric switching. The key appears to be the ability to transform between the different phases through a diffusion-less phase transition (akin to a martensitic phase). Similar discussions of the nature of the electric field driven phase transformation have also been reported [274].

This report additionally included single-point spectroscopic studies that suggest the tetragonal-like to rhombohedral-like transition is activated at a lower voltage compared to a ferroelectric switching of the tetragonal-like phase and the formation of complex rosette domain structures that have implications for future devices.

A number of additional studies on these strain-induced phases have been reported in recent months. This includes considerable discussion on magnetic and magnetoelectric properties of these materials. Researchers have investigated the emergence of an enhanced spontaneous magnetization in the so-called mixed phase structures [275]. Using X-ray magnetic circular dichroism-based photoemission electron microscopy coupled with macroscopic
magnetic measurements, the researchers found that the spontaneous magnetization of the new intermediate monoclinic phase is significantly enhanced above the expected moment of the parent phase as a consequence of a piezomagnetic coupling to the adjacent tetragonal-like phase. Soon after this report, researchers suggested that the magnetic Néel temperature of the strained BiFeO3 is suppressed to around room temperature and that the ferroelectric state undergoes a first-order transition to another ferroelectric phase at about 373 K in the highly distorted tetragonal-like phase. This has strong implications for room temperature magnetoelectric applications. This observation builds off of a detailed neutron scattering study of a nearly phase-pure film of the highly distorted tetragonal-like phase which confirms antiferromagnetism with largely G-type character and a $T_N = 324$ K, a minority magnetic phase with C-type character, and suggests that the co-existence of the two magnetic phases and the difference in ordering temperatures from the bulk phase can be explained through simple Fe–O–Fe bond distance considerations [277]. At the same time, other reports suggest the possibility of a reversible temperature-induced phase transition at about 373 K in the highly distorted tetragonal-like phase as studied by temperature-dependent Raman measurements [278]. Similar results have been reported from temperature dependent X-ray diffraction studies that reveal a structural phase transition at ~ 373 K between two monoclinic structures [279]. Finally there are reports of a concomitant structural and ferroelectric transformation around 360 K based on temperature-dependent Raman studies. This work suggests that the low-energy phonon modes related to the FeO$_6$ octahedron tilting show anomalous behavior upon cooling through this temperature — including an increase of intensity by one order of magnitude and the appearance of a dozen new modes [280]. Truly this is an exciting and fast-moving field of study today. Such electric field and temperature induced changes of the phase admixture are also reminiscent of the CMR manganites or the relaxor ferroelectrics and is accompanied by large electromechanical strains, but there appears to be much more to these mixed-phase structures. Such structural softness in regular magnetoelectric multiferroics — i.e., tuning the materials to make their structure strongly reactive to applied fields — makes it possible to obtain very large magnetoelectric effects [281].

4. Future directions and conclusions

The purpose of this review was to highlight some of the exciting new developments in the field of thin-film multiferroics and magnetoelectrics. This field remains highly active and new developments are occurring at a rapid pace that shine light onto the complexities inherent to these materials. Dramatic advances in thin-film growth technology and know-how has been a key enabler fueling these discoveries as has been demonstrated here. As we look forward at the field of thin film multiferroics there are numerous opportunities for development.

Thin film techniques have had a major impact on perovskite multiferroics with BiFeO$_3$ being the prime example. The discoveries that BiFeO$_3$ has a huge spontaneous polarization and that it can be morphed into various polymorphs and polymorphic mixtures were all made using epitaxial films. Yet there are many other fascinating multiferroic oxides — YMnO$_3$, LuFe$_2$O$_4$, and hexaferrites like Sr$_3$Co$_2$Fe$_{24}$O$_{41}$ [282] to name a few — that are comparatively ignored by the thin film community and are the focus of the single crystal multiferroic community. Why is this? We think the issue is the lack of suitable substrates for these latter structures that is the main roadblock; removing this barrier is an opportunity for the future. Once high quality films can be made, the technological advantage of a thin-film geometry to lower switching voltages and enable integration into more sophisticated heterostructures, as is now common for BiFeO$_3$, can be exploited.

Imagine the opportunities that substrates for the non-perovskite multiferroic systems would bring. Substrates for YMnO$_3$ would enable more variants of hexagonal manganite multiferroics to be constructed. These variants include not only known materials, but more interestingly enhanced variants of known materials using strain engineering, metastable multiferroic polymorphs (e.g., LuFe$_2$O$_4$ that is isostructural to YMnO$_3$ rather than its stable centrosymmetric perovskite form) [283,284] by utilizing lattice
misfit strain energies and interfacial energies to favor the desired metastable phase over the equilibrium phase [285–288], or the prospect of interfacial multiferroicity that has been predicted to emerge in superlattices between centrosymmetric components [289]. Similarly substrates with the LiNbO\textsubscript{3} structure would enable the growth of the LiNbO\textsubscript{3}-polymorph of FeTiO\textsubscript{3} and related multiferroics [290,291]. A range of appropriate substrates, like the range of substrates available for perovskites shown in Fig. 3, for each multiferroic system of interest would allow the powerful toolbox of the epitaxial engineer to be freely applied to a much larger set of multiferroic building blocks. These tools include strain engineering, epitaxial stabilization, polarization engineering [145,292], and superlattice formation.

Looking forward there are a number of challenges that face the multiferroics/magnetoelectrics community. First, although excitement has been riding high for nearly 30 years about the promise of complex, functional oxide materials such as high-temperature superconductivity, ferroelectrics, colossal magnetoresistance materials, and now multiferroics, transforming the fundamental properties of materials discoveries into real products has remained difficult. Although there are some exciting success stories, the complexity of these materials is compounded by the many steps involved in fabrication scalable devices. With current funding opportunities from the United States government meant to address manufacturing and the process of scaling materials from basic science to product, the outlook will hopefully be very positive.

Nonetheless, one of the biggest challenges facing the field of multiferroics today is the need for room temperature function. Thus, it is essential that the field works to include both thin-film heterostructure and bulk synthesis methods and broadens the search for new candidate multiferroics. This additionally relies on the interplay of theoretical approaches, advanced growth techniques, and characterization. As this mini-series of articles highlights, these concepts have found a home in multiferroics. As the field progresses, it is expected that thin films with appropriately designed and controlled heteroepitaxial constraints (such as strain, clamping, and possibly surface termination) are important variables that will provide additional control of properties and a challenging set of interdisciplinary condensed matter research problems.

To address these challenges, the community will need to attack a number of limitations. One example of an area ripe for development is the synthesis of substrates that would enable production and fine-level epitaxial control of non-perovskite multiferroic systems (e.g., LaFeO\textsubscript{3}, YMnO\textsubscript{3}, hexaferrites such as Sr\textsubscript{2}Co\textsubscript{2}Fe\textsubscript{24}O\textsubscript{41}, and materials with the LiNbO\textsubscript{3} structure such as the LiNbO\textsubscript{3}-polymorph of FeTiO\textsubscript{3} and related multiferroics [290,291]). At the same time, taking the approach of an epitaxial engineer, it would be interesting to examine new routes to develop additional variants of hexagonal ferrites using a superlattice layering approach – in essence asking if we can extend our unit-cell level control beyond basic perovskite structures – as opposed to the atomic substitution approach of a solid state chemist. Such advances would allow the techniques of the epitaxial engineer including strain engineering, epitaxial stabilization of metastable multiferroic poly- morphs (e.g., LuFeO\textsubscript{3} that is isostructural to YMnO\textsubscript{3} rather than a its stable centrosymmetric perovskite form) [283,284], and superlattice formation to be applied to these exciting multiferroics.

Yet another pathway to overcome the limitations in room-temperature functionality is to move to composite heterostructures that make use of exchange biased structure. One possible solution is to utilize heterostructures of existing multiferroic materials and to take advantage of two different types of coupling in materials – intrinsic magnetoelectric coupling as demonstrated in single-phase multiferroic materials which will allow for electrical control of antiferromagnetism (as in the case of BiFeO\textsubscript{3}) and the extrinsic exchange coupling between ferromagnetic and antiferromagnetic materials – to create new functionalities in materials. By utilizing these different types of coupling we can then effectively couple ferroelectric and ferromagnetic order at room temperature and create an alternative pathway to electrical control of ferromagnetism. Among the earliest work in this area was a study of heterostructures of the soft ferromagnet permalloy on YMnO\textsubscript{3} [293] that demonstrated that a multiferroic layer could be used as an antiferromagnetic pinning layer that gives rise to exchange bias and enhanced coercivity. Subsequently Marti et al. [294] reported the observation of exchange bias in all-oxide heterostructure of the ferromagnet SrRuO\textsubscript{3} and the antiferromagnetic, multiferroic YMnO\textsubscript{3} (albeit only at very low temperatures). Around the same time, studies using BiFeO\textsubscript{3} as the multiferroic, antiferromagnetic layer by Dho et al. [295] showed the existence of exchange bias in spin-valve structures based on permalloy and BiFeO\textsubscript{3} at room temperature and Béa et al. [296] extended this idea to demonstrate how BiFeO\textsubscript{3} films could be used in first generation spintronics devices. In turn, Martin et al. [297] reported the growth and characterization of exchange bias and spin valve heterostructures based on Co\textsubscript{0.9}Fe\textsubscript{0.1}/BiFeO\textsubscript{3} heterostructures on Si substrates. These initial studies established, was that exchange bias with antiferromagnetic multiferroics was possible in a static manner, but these studies had not yet demonstrated dynamic control of exchange coupling in these systems.

In this spirit, Borisov et al. [298] reported that they could affect changes on the exchange bias field in Cr\textsubscript{2}O\textsubscript{3} (1 1 1)/(Co/Pt) heterostructures by using the magnetoelectric nature of the substrate (Cr\textsubscript{2}O\textsubscript{3}) and a series of different cooling treatments with applied electric and magnetic fields. Dynamic switching of the exchange bias field with an applied electric field, however, remained elusive until a report by Laukhin et al. [299] focusing on YMnO\textsubscript{3} at 2 K. Studies focused again on BiFeO\textsubscript{3}-based heterostructures illustrated the importance of domains and domain walls in controlling the magnetic coupling in these structures [249,300]. In addition to identifying the importance of 109° domain walls in creating exchange bias, this work served as the foundation for the observation of room temperature electric field control of ferromagnetic domain structures. Using high quality Co\textsubscript{0.9}Fe\textsubscript{0.1}/BiFeO\textsubscript{3}/SrRuO\textsubscript{3}/SrTiO\textsubscript{3} (001) heterostructures, researchers have been able to deterministically change the direction of ferromagnetic domains in the Co\textsubscript{0.9}Fe\textsubscript{0.1} by 90° upon application an applied electric field to the BiFeO\textsubscript{3} [301]. Recently attention has turned back Cr\textsubscript{2}O\textsubscript{3} and exciting work in electric field control of ferromagnetism. Using a combination of modern thin film growth techniques, magnetometry, spin-polarized photoemission spectroscopy, symmetry arguments, and first-principles He et al. [302] studied Pd/Co multilayers deposited on (0001) surface of the antiferromagnet Cr\textsubscript{2}O\textsubscript{3} and demonstrated reversible, room temperature isothermal switching of the exchange bias field from positive to negative values by reversing the electric field under a constant magnetic field. Still further, all-oxide interfaces have been examined including La\textsubscript{0.7}Sr\textsubscript{0.3}MnO\textsubscript{3}/BiFeO\textsubscript{3} epitaxial heterostructures where the formation of a novel ferromagnetic state in the antiferromagnet BiFeO\textsubscript{3} at the interface was reported [303].

In the end, as we look back at the development of complex oxide research we see a series of exciting discoveries from high T\textsubscript{c} superconductivity to multiferroism have propelled the greater field of oxides to the forefront of condensed matter physics. The diverse functionality of oxide materials means that this breakthrough could drive the field towards many of the major scientific questions that face us today – from energy, to medicine, to communications, and beyond.

Acknowledgements

L.W.M. acknowledges the support of the Army Research Office under Grant W911NF-10-1-0482 and the Samsung Electronics...
Co., Ltd. under Grant 919 Samsung 2010-06795. D.G.S. acknowledges the support of the U.S. Department of Energy, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering under Award #DE-SC0002334. Both authors have benefited from the numerous collaborations, within programs at UIUC, UC Berkeley, LBNL, Cornell, Penn State, as well as numerous other valued collaborators around the world.

References

Belik AA, Karpinnen M. Extensive series of hexagonal and orthorhombic RMO$_3$ (R = Y, La, Sm, Tb, Yb, Lu) thin films by atomic layer deposition. Chem Mater 2011;23:1835–40.

[Ricinschi D, Yun KY, Okuyama M. A mechanism for the 150 μC cm−2 polarization of BiFeO3 films based on first-principles calculations and new structural data. J Phys Condens Matter 2006;18:L97–L105.]

[Flynn CP. Strain-assisted epitaxial growth of new ordered compounds. Phys Rev Lett 2011;105:037204.]

[Author’s personal copy]