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Abstract· 

Topics in the Structure of Hadronic Systems 

by 

Richard Felix Lebed 

Doctor of Philosophy in Physics 

University of California at Berkeley 

Professor Mahiko Suzuki, Chair 

In this dissertation we examine a variety of different problems in the 

physics of strongly-bound systems. Each is elucidated by a different standard 

method of analysis developed to probe the properties of such systems. 

We begin with' an examination of the properties and consequences of the 

current algebra of weak currents in the limit of heavy quark spin-flavor symmetry. In 

particular, we examine the assumptions in the proof of the Ademollo-Gatto theorem 

in general and for spin-flavor symmetry, and exhibit the constraints imposed upon 

matrix elements by this theorem. 

Then we utiijze the renormalization-group method ~o create composite 

fermions in a three-generation electroweak model. Such a model is found to re

produce the same low energy behavior as the top-condensate electroweak model, 

although in general it may have strong constraints upon its Higgs sector. 

Next we uncover subtleties in the nonrelativistic quark model that drasti

cally alter our picture of the physical origins of meson electromagnetic and hyperfine 

mass splittings; in particular, the explicit contributions due to (md- mu) and elec

trostatic potentials may be overwhelmed by other effects. Such novel effects are used 

to explain the anomalous pattern of mass splittings recently measured in bottom 
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mesons. 

Finally, we consider the topic of baryon masses in heavy fermion chiral 

perturbation theory, including both tree-level and loop effects. V\Te find that certain 
\ 

mass relations holding at second-order in symmetry breaking (O(m~) arid O(Q;)) 

have finite, computable, and numerically small loop corrections within the theory. 

The numerical values of these corrections are fo~nd to be in excellent agreement with 

experiment. \~1e also find that, with!n chiral perturbation theory, the experimentally 

measured baryon masses alone are not enough to place stringent constraints upon 

~he light quark masses. 
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Introduction 

Every student of particle physics can attest to the brilliant successes of 

the Standard Model. We have seen the level of agreement between theory and 

experiment for the electron magnetic moment pushed· to forty parts in a trillion; 

weak neutral currents and the weak gauge bosons themselves were predicted long. 

before their discovery, based on the parameters of low-energy interactions; limits on 

the size of Standard Model loop corrections predicted a top quark with a mass less 

than 200 Ge V, and it is believed that the announcement of evidence for the top is 

imminent, perhaps even before this dissertation is filed. At the time of this writing 

there is no serious discrepancy between the results of countless experiments and 

predictions of the theory using only eighteen input parameters in its most minimal 

form. 

One path to further knowledge is to assume that nature is truly minimal, 

and that somehow these eighteen parameters must ultimately be related through 

some heretofore undiscovered symmetry. The practitioners of SUSY, GUTs, strings, 

and other theories clamber up the hierarchy of energy scales to propose new and 

beautiful symmetries, many of which could not be experimentally observed in our 

lifetimes, but in the spirit of pure science (or mathematics!) are well worth deeper 

investigation. 

But there are still some serious gaps in our knowledge even at the lowest 

energy scales. What the Standard Model can predict, it can predict extremely well; 

when the assumption ofperturbativity from free particle states is valid, perturbative 

calculations with the standard renormalization techniques lead to accurate and often 

astonishing predictions. But if systems are strongly bound, the standard methods 
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fail us, and we must resort to another ~pproach. Exact field-theoretic methods for 

treating such systems, such as the Bethe-Salpeter equation, are cumbersome and 

have provided only limited results despite decades of effort. No one really knows 

how to build a proton with a mass of 1 Ge V with nothing but three quarks of mass 

5 MeV and their interactions. 

In the Standard Model, we have managed to hide our ignorance by claim

ing that everything we do not understand about the strong interaction is somehow 

a.consequence of QCD. We believe this gauge theory is correct because it explains 

some crucial phenomena, like the pattern of asymptotic freedom and _the apparent 

threefold degeneracy of quarks, as well as providing some hints why we have only 

seen two kinds of hadron and why they appear in approximately degenerate mul

tiplets. But our current understanding of QCD is not yet good enough to explain 

the quantitative details of the very interesting phenomena of confinement or chiral 

symmetry breaking. 

But the particular case of QCD is not the end of the story. Even if some 

clever person uncovered a method of completely solving the theory of QCD tomor

row, we would probably still find the same situation to be repeated every time a 

new strong interaction were discovered at higher energy scales. The lesson is that 

techniques that lead to a predictive understanding of strongly-bound systems in 

general may have implications far beyond the problems to which they are currently 

being applied. 

The purpose of my own doctoral research gradually developed into a study 

of approaches designed to obtain insight about these systems that do not will

ingly yield their secrets. The specific problems described in this dissertation are, 

in themselves, unrelated. But the methods-heavy quark spin-flavor symmetry, 

renormalization-group methods, potential models, chiral Lagrangians, and others

are connected by the philosophy described above. In the future I hope to add to 

this list of novel and insightful approaches. 
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Chapter 1 

Current Algebra and 0(1/m) 

Corrections in Heavy Quark 

Spin-Flavor Symmetry 

1.1 Introduction 

The idea of spin-flavor symmetry of a flavor multiplet of N 1 quarks, namely, 

enlarging the separate symmetries of spin SU(2) and flavor SU(N,) to the symme

try SU(2N1) in order to increase the predictive power of the theory, is quite old. 

It was applied to light quarks [1] almost immediately after the development of the 

flavor SU(3) model of strong interactions from which it originated. However, the 

various no-go theorems of the late 1960's, culminating in the Coleman-Mandula 

theorem [2], showed that the light-flavor SU(6) cannot be an exact symmetry be

cause of problems arising from mixing internal (flavor) symmetry with the Poincare 

symmetry induced by the inclusion of spin angular momentum. 

Nevertheless, spin-flavor symmetry made a comeback in the late 1980's 

when it was applied to heavy quarks [3]-[8]. The physical picture of this symmetry is 

actually quite simple: A hadron containing a heavy quark Q is viewed as a pointlike 

static source of color weakly coupled to a cloud of light degrees of freedom consisting 

of the light valence quarks, light sea quark-antiquark pairs, and gluons. "Weak" in 
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this sense means that the interactions of the cloud with itself a~d with the heavy 

quark have typical energies of O(AQcD) << mQ. In this limit, the properties of the 

heavy quark, namely its flavor and spin, are decoupled from the light degrees of 

freedom. Unlike the old SU(6) symme~ry, this spin-flavor symmetry has a natural 

Lorentz-covariant formulation within QCD for all flavors of quark that may be 

co~sidered infinitely heavy. In physical terms, decay of one heavy quark flavor to 

another occurs without changing the heavy quark's velocity or the makeup of the 

light cloud, and moreover, the process is independent of the initial spin state of the 

heavy quark. 

Now let us consider what this means in the real world, The only quarks 

that may be reliably considered heavy compared to AQcD are c, b, and t. Since 

the experimental lower bound on the top quark mass is currently mt > 131 GeV 

> Mw [9], the top quark should decay into a real W in a time 0(1/o:2mt), and 

so we would never see a top hadron.. Thus the usefulness of heavy quark spin

flavor symmetry (HQS) is limited to c "and b hadrons. Extraction of information is 

straightforward in semileptonic weak decays of heavy hadrons [10]-[15]. We may 

use HQS to relate the properties of, for example, D and B mesons, or D with D* 

and B with B*, as in this work. From this, one can gain insight into the elusive 

Standard Model weak mixing angles Vub and Vcb [12). One can also use HQS to 

relate charm and bottom baryons [15). 

Of course, me and mb are not infinite, and therefore HQS is not an ex

act symmetry in the real world. However, as with any approximate symmetry, we 

approach the problem by expanding physical quantities in a sym~etry-breaking pa

rameter that must be small for the symmetry to make sense. Since the requirement 

of HQS is AQcD/mc,b « 1~ these ratios are exactly the expansion parameters we 

need. Let us henceforth describe them with the shorthand 1/mc,b· 

Unfortunately, HQS as described above cannot work if the heavy quark 

interacts with hard gluons (i.e., with energies O(mQ) or larger}, because then the 

coupling between the heavy quark and the cloud is no longer weak, and the descrip

tion of the heavy quark as having an approximately conserved velocity is invalid. 

Fortunately, there is a standard method to eliminate this problem: One simply 
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"integrates out" via the renormalization group the hard gluon degrees of freedom 

to the mass of the heaviest quark (here mb), and then successively integrates out 

th~ gluons to the next heaviest quark, until one reaches the lightest of the . heavy 

quarks. This method is valid because QCD is perturbative at these energy scales. 

In general, this procedure induces new expansion parameters of the ratios of heavy 

quark masses. Thus, in the real world, implementation of HQS requires an expan

sion not only in 1/mc,b, but mc/mb as well. This program of computing Wilson 

coefficients and matching was carried out in Refs. [16]-[21]. 

Once we have computed the quantities of interest in an operator product 

expansion, we may use HQS to relate matrix elements of these operators between 

various heavy hadron states. Essentially, HQS provides us with a Wigner-Eckart 

theorem: There is a geometric (Clebsch-Gordan) coefficient due to the spin-flavor 

symmetry, and a model-dependent (reduced matrix element) portion, which cannot 

be evaluated with further assumptions. However, this does not imply that nothing 

can be said about the latter; there is a renormalization-free theorem (i.e., a theorem 

that forbids the presence of some subleading terms) due to Luke [18] constraining 

matrix elements of certain weak currents. It was subsequently shown by Boyd and 

Brahm [22] that this theore~ is a consequence of an extension of the Ademollo

Gatto· (AG) theorem [23]. This Chapter, based on Ref. [24], focuses upon issues 

surrounding the proof of the theorem and its consequences. 

The first emphasis involves the generality of the statement that the theo

rem is "renormalization-free." In order to verify this claim, we must first' carry out 

the renormalization-group evolution of the weak currents. The current algebra itself 

is defined by a set of canonical commutation relations at equal times established 

by quantization of the fields. Given the Lagrangian, one must first compute the 

N oether currents, quantize, evolve the currents down to the lower energy scale, and 

then examine precisely how much the commutation relations have changed. What 

we find is that, apart from an overall factor due to short-distance QCD corrections, 

the Noether currents and the effective currents differ only at 0(1/m2), not 0(1/m). 

This fact turns out to be crucial to the validity of the AG theorem in HQS, and 

we show that this result is most easily seen in the v = 0 heavy quark rest frame. 
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Moreover, we find that canonical quantization in the v = 0 frame allows us to 

circumvent quantization difficulties present in a general frame. 

Once we have established the algebra of effective currents, we show from 

the AG theorem that the matrix elements of certain weak effective currents deviate 

from their symmetry limits only at 0(1/m2). The usefulness of the v = 0 frame is 

again demonstrated: In an arbitrary frame, we would find states of different spin 

mixed due to the contribution of orbital angular momentum allowed by v ¥= 0. It 

turns out that, in this case, the AG theorem would not prevent 0(1/m) corrections 

to current matrix elements; in the v = 0 frame, however, the 0(3) symmetry of 

space forbids such mixing and permits us to ignore this potential problem. As a 

result, the physical consequences are most transparent in this frame. 

In Sec. 1.2 we study the current algehra of the spin-flavor group, with 

our focus upon the cancellations of 0(1/m) terms that occur in the v = 0 frame. 

In Sec. 1.3 we examine the algebra of the effective currents after integrating out 

hard gluons, and see that this algebra satisfies the SU( 4) algebra (for b and c) up 

to 0(1/m~). The AG theorem modified for HQS is presented ~n Sec. 1.4. Luke's 

results are rederived using the AG theorem in Sec. 1.5, and additional consequences 

of the AG theorem in HQS for the scalar, pseudoscalar, and tensor densities are 

presented in Sec. 1.6 .. Finally, in Sec. 1. 7, we demonstrate some of the consequences 

of the AG theorem in a particular nonrelativistic quark model. 

1.2 The Spin-Flavor Current Algebra 

A particularly convenient method for exhibiting spin symmetry in the 

infinite-mass limit is provided by Georgi [8]. The usual Dirac spinor 1/J(x) in the 

Lagrangian 

(1.1) 

is transformed into the spinor 

(1.2) 
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with the massless Lagrangian 

(1.3) 

where vll = pll Jm is the four-velocity of the fermion. In the rest frame, ~(1 ± 1°) 

p~ojects out the upper (lower) two components of hv; thus, in the limit of infi

nite mass, these project out the quark (antiquark) spinors in the rest frame. We 

generalize to an arbitrary frame via 

(1.4) 

Then the Lagrangian Eq. 1.3 may be expressed in terms of h;. In the infinite~mass 

- limit, terms creating fermion-antifermion pairs are suppressed, leading to 

(1.5) 

We now render the derivative covariant by Dll = iJil + igAil, where All is the gluon 

field. When the mass is instead large but finite, the expansion reads [7],[17]-[19] 

(1.6) 

where Gllv is the gluon field strength. The second term is formally 0{1/m), but 

because the equation of motion from this Lagrangian is (vD)hv = 0{1/m), we 

see that it cari. only produc_e matrix elements that are 0(1/m2). The rest of the 

expansion follows from the operator identity 

(1.7) 

If we now expand to include N1 heavy quark :flavors with their antiquarks, 

the LagraiJ.gian Eq. 1.5 with a covariant derivative possesses SU(2Nt)+ x SU(2N1)_ 

symmetry for each v,.,.. In the physically relevant case, we embed the band c quarks 

in an SU ( 4) symmetry, using the spin or notation · 

(1.8) 
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and the Lagrangian 

- 4- - -

where the left-handed covariant derivative, defined by hvDP = 8P hv - ighvAP, is 

introduced for ease of obtaining currents and equations of motion. Also, the m in 

0(1/mn) here and henceforth refers to the lightest heavy quark mass. We introduce 

the fifteen SU ( 4) generators [8] 

where 

and f!t form an orthonormal set with vP: 

vpe/ = 0. 

Then the r; satisfy the SU ( 4) algebra 

[r~ /2, rf= /2] 

[r~ /2, Sf /2] - 0, 

[r~ /2, Sfrt /2] - ifabcSfr! /2, 
[Sf /2, sj /2] - i€i;kst /2, 

- ifi;kS[r! /2, [Sf /2, Sjr~ /2] 

[Sfr! /2, Sjrt /2] - i6ab €ijkS[ /2 + i6ii faber! /2. 

The SU(4) symmetry induces 

and using these in the Lagrangian Eq. 1.9, we obtain the Noether currents 

(J~)P = - ± hv ')!vPrQhv 

-~hv [r;M-1if(vD) - (vD)vP M-1r!] hv 

+~hv [r;M-1-yP f)- ~-yPM-1r!] hv + 0(1/m2
). 

(1.10) 

(1.11) 

(1.12) 

(1.13) 

{1.14) 

(1.15) 
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Note especially the asymmetry of derivatives of hu and hv in the first term of Eq. 1.9. 
·- ++ The natural impulse is to symmetrize this term as ~hv-;f(vD)hv and to take both hv 

and h! as coordinate fields in the canonical quantization. However, we show that 

this leads to an inconsistency. For then the fields hv and hv have the conjugate 

momenta 

1rv - {)L/ {)({/Jhv) 

- fiiv [i -;!vo- M-1(vD)vo + M-1 $1o] + 0{1/m2
), 

1r! _ {)L/8(f1Jh!) 

- ~ [-ho -;!vo- loM-1vo(vD) + M-1 Ib] hv + 0{1/m2
), 

whereas the charge densities are 

Imposing the usual canonical anticommutation relations 

leads to the SU ( 4) charge algebra 

{1.16) 

(1.17) 

(1.18) 

(1.19) 

with structure constants lap;., and charges Q! =I rf3x(J~)0 • Now if we take the 

limit m --+ oo, the coordinate-momentum anticommutation relation in the v = 0 

frame collapses to 

(1.20) 

The offending factor. of 2 is a well-known inconsistency in canonical quantization 

due to a haphazard handling of time derivatives of fields; however, it is not merely 

an error in our initial approach of symmetrizing the free kinetic term and treating 

the field ht as an independent coordinate field, for factors of ao ht already appear 

in the Lagrangian. There exist methods [25, 26] of treating such problems in a 

consistent fashion, but we offer a much simpler prescription: Do not symmetrize, 

and work in the frame v-= 0. 
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This frame has a very important cancellation in the Lagrangian Eq. 1.6 

(generalized to N1 flavors), namely that the D5 terms cancel between the second 

and third terms, leaving us with 

where we suppress the v = 0 subscript on the spinor h. We no longer have the 

difficulty of higher time derivatives, and M is no longer an independent coordinate 

field. The momentum conjugate to h is 

{1.22) 

and the Noether charge densities are 

(1.23) 

Now we have no difficulties in defining a charge algebra with consistent canonical 

commutation relations. 

Notice that the Noether charges assume the same form, up to 0(1/m2), 

as they would had ·we worked explicitly in the m -+ oo limit; the cancellation of 

the 0(1/m) time derivatives in the frame v = 0 makes this possible. Therefore, in 

physical applications, one may use the symmetric charges instead of the physical 

charges in the v = 0 frame without fear of inducing 0{1/m) errors. 

1.3 The Algebra of Effectiv~ Weak Currents 

The next step in our program is to evolve the weak currents associated 

with the b -+ c transition via the renormalization group. For now, let us neglect 

O(mc/mb) terms in the evolution. Upon integrating out the gluons down to -q2 = 
m~, the V-A current C,~'(l -")'5)b becomes (17; 18] 

J~ = [a8 (mb)/a:s(mc)]a1 Cv' ['I'll(! -")'s)- 2~c ~'I'll(! -")'s)] bv 

+0(1/m~), {1.24) 
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where ar = - 2
6
5 • The spinors Cv• and bv now satisfy the equations of motion derived 

from the Lagrangian Eq. 1.6. Note also that, for the first time, we consider v' # v, 

namely a breaking of the exact recoil-free limit for the heavy quarks. We must now 

integrate out the gluons in the momentum range p,2 < -c/ < m; in order to evaluate 

matrix elements at the low momentum scale p,, where we believe that the residual 

gluon ·interactions represented by the spin-flip intera.Ction (g / 4m )hvu pvGJJv h" are a 

small symmetry-breaking perturbation. Then the matrix elements of the resulting 

Lagrangian, 

Lv - Lm=oo 
1-- g· 9-+ 

2
mc (Dphu}(Dilhv)"""" 

4
mc [a,(p,)ja.,(mc)tE h,upvGJJvh"' (1.25) 

may be evaluated in the approximate SU(4) symmetry. The (vD} 2 term has been 

suppressed, as mentioned above, because it gives rise to 0(1/m2) ·matrix elements. 

The weak current of Eq. 1.24 is modified by this further evolution to (17]-[19] 

J~ =. [a.,(mb)/a.,(mc)]41 {(a.,(mc)/a.,(p,)t:7 ao ev•-yll(l- 'Ys)bv 

-(a.,(mc)/as(Jl)t:1 a
1 (2~J Cu•~'Yil(1- 'Ys)bv}, (1.26) 

where now ao and a1 are functions of vv' that vanish in the symmetry limit vv' = 1. 

It is important to realize that the spinors in this expression satisfy equations of mo

tion derived from the renonnalize(feffective Lagrangian Eq. 1.25; with this caveat, 

we may use the currents (1.26) to evaluate matrix_elements using the approximate 

SU(4) spin-flavor symmetry. 

The kinematic point of interest, of course, is the symmetry point v = v' = 

0, or vv' = 1, for which the heavy quark has zero recoil, and the two spinors c 
and bare labeled by the same four-velocity. Thus their bilinears give rise to SU(4) 

generators. We then define the effective current 

(1.27) 

and compute its matrix elements in the vv' = 1 limit. The second term of Eq. 1.26 

is quickly seen to be 0(1/m2) for the time part of the vector current and the space 
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part of the axial current, because a0 and a1· vanish in this limit, and also 

(1.28) 

from the v = 0 equation of motion, and· 

{1/m)Ti:rnoh - 0(1/m2), · 

(1/m}h"fif;"fsh - 0(1/m2) (i,j = 1, 2, 3), 
(1.29) 

which are results of the standard nonrelativistic Pauli expansion of bilinears. The 

surviving compone~ts of the effective V - A current J in the symmetry limit, up 

to 0 ( 1/ m 2), are therefore 

Vo = C"fob - cfb, 

Ai = C"fi"fsb - €i;kcf(u;k/2)b. 
(1.30) 

Thus, up to 0(1/m2), V0 and Ai are just the Noether charge densities of r a = 

( 1"1 + ir2) /2 and Si( r1 + ir2) /2. Defining the set of charges by 

Qa - J d3:J: hf(ra/2)h, 

Qsi - J d3:r:€ijkhf(u;k/4)h, 

Q5i - J d3:r:€ijkhf(u;k'Ta/4)h, 

(1.31) 

and using the set of·canonical commutation relations including {h{x, t)i, hf(y, t);} 

= 6i;6(x- y), we generate the SU(4) charge algebra, which holds to 0(1/m2): 

[Qa, Qb] - i~bcQc~ 

[Qa, Qsi] - 0, 

[Qa' Q~i] ·~bcQc - t 5i' 
[Qsr, Qs;] i€i;kQsk, 

(1.32) 
-

[Qsi, Q5;] - . Qa Uijk 5k' 

[Q5i, Qt;l - · abc 6 Qc · 6abQ t€ ij + Uijk 5k· 

Some components of the weak currents are thus related to generators of the SU(4) 

algebra up to 0(1/m2); therefore, the form of the AG theorem introduced in the 

next two Sections applies to matrix elements of these currents. 

.• 

.. 
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1.4 The Ademollo-Gatto Theorem 

Originally, the AG theorem [23] was used to obtain model-independent 

information about matrix elements in the fiavor-SU(3) symmetry of light quarks, 

for example, to provide an accurate determination of the Cabibbo angle. The initial 
. . 

statement of the theorem is just this: Matrix elements of a charge operator in a 

broken symmetry deviate from their symmetry values only at second order in the 

symmetry breaking. This statement actually hides some assumptions, which we 

elucjdate in this Section; then the extension of the theorem to HQS is simple. 

The generators of the SU(3) algebra in the symmetJ;iC limit {denoted by 

SU(3)0 ) are given by the Noether charges Q~ = I d3:c q~().4/2)q0• The algebra it

self is defined by the set of structure constants !abc and 'the commutation relations 

[Q~, Qf] = ifabcQ~. But of course, the symmetry is broken in the real world. For 

the moment, let us assume that the u and d quarks are degenerate in mass, and the 

dominant breaking is given by L~rr~c = -l::t.mq0 ('As/2)q0• Does this affect the alge

bra? No, because the symmetry breaking contains no time derivatives of the quark 

fields, which means that the expressions for the zero-components of the Noethet 

currents are unaltered. However, the charges themselves are different, because the 

quark fields now satisfy the equation of motion from L0 + L~rr~c; they are denoted 

by q instead of qo. To sum up, the broken charges Qa = I tf3xqt('Aa/2)q satisfy an 

SU(3) algebraformally equivalent to the symmetric algebra SU(3)0 defined above. 

It is SU(3), not SU(3)o, which was used in the original proof of the theorem. If we 

attempted to work in SU(3)o withLbrk as an interaction-picture perturbation, the 

states used in computing physical matrix elements would be unphysical symmet

ric limits, and the corr~ponding operators would explicitly contain the first-order 

s:Yrnmetry-breaking parameter l::t.m. Then the proof of the AG theorem would be 

unnecessarily complicated. It is far better to work in the Heisenberg picture, where 

we use the asymptotic states of the Lagrangian including L~rr~c, and the charges of 

SU{3). 

We therefore consider the physical matrix element 

(1.33) 
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where the states Ia, P(p)} are physical states not only in being described by SU(3) 

instead of SU(3)0 , but also in consisting of a superposition of group-theoretically 

pure states of SU{3). Of course,'SU{3) isuseful to us because the physical states 

approximately equal eigenstates of the symmetry. We denote these as Ia, ,B(p)), 

and other state8 induced by the mixing by ln{p)). We then write 

la{p)) - Caala(p)) + 2:n Canln(p)), 

IP{p)) - Cppi,B(p)) + 2:n Cpnln(p)), 

with the normalization conditions 

(n(p)la(p)) = (n(p)l,B(p)) = 0, 

(1.34) 

{1.35) 

(1.36) 

Let us denote the dimensionless symmetry-breaking parameter by e-; in the case at 

hand, it is proportional to .6-m. In general, the coefficients C(a,f1)n vanish with e-. 

We thus write 

Can - O(c) 
1 

caa - [1-~ lcanl2r· · l+ o(e-2
), 

{1.37) 

(1.38) 

and similarly for ,B, where the latter relation is merely the normalization condi

tion on the physical state la(p)). This trivial fact actually turns out to be the 

essential content of the AG theorem. It should be pointed out that there are ways 

to break symmetries (e.g., spontaneous chiral symmetry breaking in effective La

grangians) such that vanishing matrix elements do not approach zero analytically 

(typically with logarithmic singularities); in such cases, what we call O(e-n) is actu-

ally O(e-n, c" In e-). 

Suppose for the moment that the states ln(p)) are all in irreducible repre

sentations of SU(3) different from that of la,,B(p)}. For example, it is easy to check 

that As symmetry breaking, as in our example, does not connect any two distinct 

members of the pseudoscalar meson octet. Then the charges Qa, being generators 
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of the group, connect la(p)) and I,B(p)) to each other, but not to ln(p)). The SU(3) 

structure constants alone determine the matrix element 

and analogously for (U4 )mn, so that the physical matrix element is given by 

m,n 

- CppCOtOt(U4
)fJa + O(c:2

) 

_ (Ua)p01 +.0(c2), 

(1.39) 

(1.40) 

where we have used Eqs. 1.37 and 1.38. Thus, in this case, the AG theorem is 

proved as· stated. 

Now suppose that one of the ln(p)} in the expansion of IP(p)) is in the 

same irreducible representation as I.B(p)}. In the example of flavor SU(3), this is 

provided by explicit isospin symmetry breaking Liso = ( mu - md) (uu - dd) /2 = 

(mu - md)q (>..3/2)q. Such a breaking permits the mixing of the 1r0 and the 1J 

eigenstates of SU(3). In this case, the physical1r0 is expanded as 

n 

where the states ln(p)) are not members of the pseudoscalar octet. The key here 

is that although Cr>r> is again 1 + O(c:2), we must contend with the additional 

coefficient Cr>fJ = O(c:). Now consider the matrix element of the weak current 

.transition from K+ to 1r0• The K+ does not suffer from a similar mixing when we 

expand the physical state IK+(p)), and we find 

(i0(P)IQ4 ~ iQsiK+(p)} = -{lj2c';or>CK+K+- /312c";ofJcK+K+ 

+ E c;omCK+n(U4
-i

5)mn 

- -{1!2 + O(c:), (1.42) 

where the O(c) term originates from -13J2c;of'JcK+K+· Correspondingly, we must 

qualify the statement of the AG theorem: For any two states in an irreducible rep

resentation of some symmetry group, and symmetry breaking that neither contains 
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time derivatives of fields nor mixes these states with other states in the same irre

ducible representation, the matrix elements of a charge operator with these states 

deviate from their symmetry values only at second order in the symmetry breaking 

(up to logarithms in the symmetry-breaking parameter). 

We may worry about this mixing in HQS; in fact, it does occur for frames 

with arbitrary 11', but we see in the next Section that working in the frame v = 0 

eliminates these mixings, and the AG theorem holds in its simpler form. 

1.5 The Ademollo-Gatto Theorem in Spin-Fla

vor Symmetry 

In the previous Section the AG theorem was proved in a general context, 

although we used fiavor-SU{3) symmetry broken by the inequality of quark masses 

as a concrete example. Now the symmetry is the spin-flavor symmetry SU(4)+ 

of b and c quarks (or SU(4)_ for their antiparticles), and the symmetry-breaking 

parameter is {1 / m). 

In Section 1.2 we observed that we can eliminate 0(1/m) terms containing 

time derivatives of fields by working in the v = 0 frame, which permits us to use 

the symmetry charges in place of the physical charges up to O(l/m2). Obviously 

this is important for the usefulness of the AG theorem in HQS. In flavor-SU{3), 

choosing a frame was never an issue because the symmetry group commutes with 

the Lorentz group, and thus all frames are trivially equivalent. HQS, however, is 

rendered Lorentz-covariant, and therefore the use of the v = 0 frame has substantial 

implications. 

As q = m(v-v')--+ 0, the chief symmetry-breaking term is the spin-flip 

interaction of gluon absorption and emission, which assumes the limiting form 

{1.43) 

where xis the Pauli spinor, and q is interpreted as the soft-gluon momentum. The 

symmetry-breaking parameter cis J---q2fm2 , where "soft" means that -q2 < Jl-2 , J1-
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being the scale of the softest gluons that have been integrated out. Since spin-flavor 

rotations do not act upon color indices, the interaction in Eq. 1.43 transforms under 

an adjoint representation ofSU(4). 

Exactly as before, we use a basis of states created by the generators of 

the broken symmetry (SU(4), not SU(4)o)-remember that, up to 0(1/m2), the 

generators of the unbroken symmetry satisfy the same algebra. The symmetry 

breaking induces a mixture of pure states of SU(4) to form the physical states: 

0 
(1.44) 

n 

where the states contain a heaVy quark and ( spect~tor) light degrees of freedom. 

Note that the interaction (1.43) is diagonal in flavor, but it can change the spin of 

the heaVy quarks. The induced states In} can therefore have spins different from the 

orthogonal state Ia) but ~till be in the same irreducible representation. A concrete 

example should make this clear: If lei) is the B- meson, Ia) consists of the b quark 

. and a superposition of the u valence quark plus sea quark-antiquark pairs and gluons 

(denoted as "ii'') with the quantum numbers appropriate to build an eigenstate of 

SU(4): 

Ia) = ~[lb(t) "u(t)") + lb(.l.) "u(.t.)" )], 
v2 . 

(1.45) 

where the arrows indicate helicities. On the other hand, the B*- state in SU(4) is 

obtained from the state Ia) by rotating the spin of lb) with the generator Q5i, and 

thus belongs to the same irreducible representation as B-. In general, the physical 

state IE-) consists primarily of the SU(4)-symmetric state IB-), but can also have 

components from other representations: 

(1.46) 
n 

The IB*-) component, although in the same irreducible representation of 

SU(4) .as IB-}, never enters into the 1.8-) expansion in any Lorentz frame. This 

result follows because the interaction (1.43) is an 0(3) scalar in the heaVy quark limit 

lv- v'l «: 1, and therefore cannot mix vector and pseudoscalar states. 'fransitions 

between B and B* (or D and D*) states are thus forbidden if no other particles are 
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produced. Of course, since particle spin and parity are defined in the v = 0 (i.e., 

heavy quark or hadron at rest) frame, the use of the frame v, v' both approximately 

zero allows us very conveniently to distinguish spin states. 

Consequently, the AG theorem in its simpler form holds for the frame 

v = 0, both because of the cancellation of field time-derivatives and the separation 

of spin states in this frame. Anticipating the relations of weak form factors in the 

SU(4)-symmetry limit [6, 16], we parametrize the matrix elements as 

{D(p)jv~+i2l~(p')) = JmvmB [(v~ + vp)/+(v'v) . 

+(v~- vp)/-(v'v)], (1.47) 

{D*(p,e)IA~+i2IB(p')) - Jmv•mB {[e;(l + v'v)- vp(v'E*)] 9I(v'v) 

+vp(v'E*)92(v'v) + v~(v'e*)ga(v'v)}, (1.48) 

{D*(p,e)IV~+i2IB(p')) = Jmv·mB [iepvx~E·vvxv'"Ja(v'v)], (1.49) 

where VP and A~' are the polar and axial vector components of the short-distance 

corrected effective weak current J~ introduced in Section 1.3. The form factors in 

the symmetry limit assume the relations 

f+(v'v) - fa(v'v) - 9l(v'v), 

f-('llv) - 92(v'v) 9a(v'v) = 0, 
(1.50) 

up to phases in the normalization of the meson states. We now follow Ref. [16] and 

define the symmetry liinitof f+(v'v) to be ~(v'v) (called the Isgur-Wise function). 

Because V 0 is a generator of SU(4) in the limit v = v' = 0, the normalization 

condition of this function is 

~(1) = 1. (1.51) 

Once we turn on the 0(1/m) symmetry breaking, the AG theorem comes 

into force. We again use c = J-q2fm2 , where q" is the typical soft-gluon momen

tum. We have seen in Section 1.3 that VO and Ai are components of the charge 

algebra up to O(l/m2), and thuswe find 

1+(1) 1 + O(c-2
), 

gl(l) - 1 + O(c-2). 
(1.52) 
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On the other hand, for all form factors whose kinematical coefficient van

ishes in the symmetry limit, there is simply no way to apply the AG theorem. One 

then finds 
fa(1) - 1 + O(t:), 

!I(l),g2(1),ga(l) - O(t:). 
(1.53) 

Equations 1.52-1.53 are Luke's conclusions [18], for which the relevance of the AG 

theorem was first demonstrated by Boyd and Brahm [22]. One can check these 

predictions in a particular model; in Section 1. 7 we apply them to a calculation by 

lsgur et al. (14]. 

1.6 Scalar, Tensor, and Pseudoscalar Densities 

We have thus far only considered the implications of the AG theorem for 

· the matrix elements of the polar and axial vector currents because these are, of 

course, the dominant effects in the V-A weak interaction. When we include terms 

in the renormalization group expansion of O(mc/mb), the scalar and pseudoscalar 

densities also appear (17]. It is also interesting to consider scalar, pseudoscalar, 

and tensor densities, not only for their possible usefulness in future quark-model 

calculations; but also logically to complete the analysis. The densities in a general 

vJJ frame are 

(1.54) 

We find that all of these densities can be expressed in terms of a single scalar 

function TJ( v' v) in the symmetry limit, exactly as for the V and A currents. This 

results from the fact that proper Lorentz transformations relate the space-space and 

space-time components of the tensor densities, and the spin symmetry relates these 

to the scalar and.pseudoscalar densities, respectively. We parametrize these form 

factors as 

(D(p)lcvbv'IB(p')) - y'mDmB(1 + v'v)s(v'v), 

(D*(p, E)licv'Ysbv'IB(p')) - -iy'mD.mB(v'E*)p(v'v), 

(1.55) 

(1.56) 
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( D (p) lcv<T 11vbv'IB (p')) 

(D* (p, €) lcv<T 11vbv'IB(p')) 

iJmDmB(vllv~- Vvv~)t(v'v), (1.57) 

-JmD.mBEJlv~e.>.[E*It(v.>. + v'.>.)t+(v'v) 
r 

+E*It(v..>.- v'.>.)t_(v'v) + vltv'.>.(v'E*)t'(v'v)].(l.58) 

In the symmetry limit, we have 

s(v'v) - p(v'v) - t(v'v) 

L(v'v) - t'(v'v) - 0, 

t+(v'v) - 17(v'v), 
(1.59) 

with 

7](1) = 1. (1.60) 

In fact we can improve upon the results of Ref. [24]-the function 77( v' v) is 

none other than the Isgur-Wise function ~(v'v). There are several ways to see this 

result. The original assumption of a fully covariant formulation (Ref. [16]) renders 

this result trivial. Furthermore, one may use an analysis similar to that in Ref. [6) 

to relate the V, A to the S, T, P matrix elements by including improper Lorentz 

transformations via a parity flip. This point was described in a general setting by 

Politzer [27], who argued that only one function exists for the lowest-lying mesons 

because of angular momentum conservation and parity conservation of the light 

degrees of freedom. 

To apply the AG theorem, we need only find which bilinear components 

have ·vanishing 0(1/m) corrections in the Pauli expansion, for then they are gener

ators of the SU(4) algebra up to 0(1/m2). These tum out to be the scalar current 

and space-space components of the tensor current; they are related to the V 0 and A i 

currents, respectively, through a parity flip of one heavy quark field, which induces 

an additional 'YO· As an example, the scalar current in the v = 0 frame is 

(1.61) 

whereas the time component of the vector current is 

(1.62) 

The parity flip changes the sign of the small components of the spinors (h=f for 

particles (antiparticles)), which are 0(1/m); therefore, the scalar current and the 
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time component of the vector current differ only at 0(1/m2) inthis frame. Similar 

arguments relate A i to Tik. Consequently, the AG theorem predicts the form factors 

to have the limiting behavior 

s(1) - 1 + O(c2), 

p(1) - 1 + O{c), 

t(1) - 1 + O(c), 

t+(1) - 1 + O(c), 

L(1),t'(1) - O(c). 

1. 7 A Sample Application 

{1.63) 

We conclude this Chapter with an example of the application of the AG 

theorem in a particular nonrelativistic quark model calculation. From the Appendix 

of Isgur et al. [14], we find the following expressions for our form factors in te~s 

of their notation: 

{1.64) 

fa{1) - [2f3Df3s/(f3~ + /3~)]! {1 + (mD- me) fmc- [(mb- mc)/2mcmb]mu,d 

-[(mb- mc)/2mcmb][(/3~- /3~)/(/3~ + /]j))mu,d}, {1.65) 

where mu,d are the. constituent light quark masses, and fJ B,D are the characteristic 

widths of the B and D(D*) bound-state wavefunctions in the nonrelativistic quark· 

model. In obtaining the expression for f+(l) we have used the relation 

where !:l.B is the universal binding energy of heavy mesons in the limit of mb,c -7 oo. 

The correction term originates from reduced mass effects on binding; it is negligible 

because ·it contributes only O(mu,d!:l.Bfm~) = O(c2) to the form factors (c is the 

same as in Sees. 1.5-1.6). 

The widths of the wavefunctions may be expected to deviate from their 



symmetry valules at first order in symmetry breaking, up to logarithms: 

From Eq. 1.67 we find 

f3B(mB) - f3(oo) + 0( yCqlfmB), 

f3n(mB) · = f3(oo) + 0( yCqlfmn). 

2f3nf3s/(f3b + {3~) - 1- [(Ps- f3n) 2 /({3~ + f3b)] 

--- 1 + O(c2
), 

({3~- f3b)/(f3~ + f3b) - O(c). 

22 

(1.67) 

{1.68) 

(1.69) 

- Substituting these relations into Eqs. 1.64,1.65, we can confirm the results of the 

AG theorem in Section 1.5 for the form_ factors 1+{1), 13(1), and 91 (1). 

• 



Chapter 2 

Composite Fermions in a 

Three-Generation Electroweak 

Model 

2.1 Introduction 

The top quark is extraordinarily heavy. Strictly speaking, the current 

lower bound on its mass (mt 2 1319eV) [9] is large-far larger than the masses of 

all the known quarks, larger even than the masses of the weak gauge bosons. Indeed, 

its mass is of the order of the electroweak symmetry-breaking scale, which naturally 

leads one to wonder whether the top quark itself might somehow be responsible for 

the symmetry breakdown. 

A model that realizes this suggestion was proposed by Nambu [28], and 

by Miransky, Tanabashi, and Yamawaki [29]. The usual vacuum expectation value 

. (VEV) arises through a condensation of tl-pairs via a Nambu-Jona-Lasinio mech

anism (30], in analogy to the formation ofCooper pairs in superconductivity. This 

condensation is the consequence of a new interaction whose low-energy form is non

renormalizable within the Standard Model, i.e., an interaction whose scale A is 

large compared to the electroweak scale v. Such a tt-condensate carries exactly 

the symmetry-breaking properties and quantum numbers of what we call the Higgs 

23 
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boson; we thus conclude that the Higgs is not an elementary particle in this model, 

but a dynamically-generated composite oft and t. Henceforth we refer to this model 

as the top-condensate or composite Higgs model. 

Because the Higgs field is not fundamental in this model, its kinetic term 

in the Lagrangian is generated only through the momentum dependence of loop dia

grams. Therefore, at the compositeness scale, where the tt-condensates break apart, 

the Higgs must cease to exist as a propagating field, and the dynamically-generated 

kinetic term vanishes. However, in the low-energy Lagrangian, we normalize kinetic 

terms to unity at all scales. As a result, renonnalized Yukawa and quartic Higgs 

couplings in this model rise to infinity at the scale A; we call these the compositeness 

conditions of the model. The running of these couplings give rise to renormalization 

group equations (RGE's), which we use to predict a relation between the top and 

Higgs masses (me = 2mt in Refs. [28, 29]) through the presence of infrared fixed 

points. 

Unfortunately, only the toy form of this model, in which the effective cou

plings are determined by summing simple chain diagrams alone (Fig. 2.1, p. 27), 

is exactly solvable. Without additional particle lines connecting the "links," such 

diagrams may be summed in a simple geometric series. This special case is equiv

alent to assuming the dominance of color loops of fermions, which is the limit of 

large Nc with gauge couplings turned off. However, the top-condensate model was 

extended to the physical case including finite Nc and gauge couplings by Bardeen, 

Hill, and Lindner [31] by using the following principle: The RGE's for two models 

with the same effective interactions at a given energy scale are the same, whether 

or not any of the particles are composite; the compositeness conditions serve merely 

as initial values for the RGE's. Consequently, the full RGE's are the same as in 

t_he Standard Model, and therefore the RGE's derived in the top-condensate model · 

must be exactly the large-Nc limits of the usual RGE's without gauge couplings. 

We therefore have a prescription for computing the running of couplings in this 

model, despite the fact that we are not smart enough to compute and add up all of 

the complicated diagrams involved. 

In the top-condensate model, the nonrenormalizable interaction is a dim en-
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sion six four-fermion operator. In fact it turns out that the most general form of the 

model possesses, through higher-dimensional operators, exactly the same number 

of parameters as the minimal standard ~odel, and so one cannot use it to predict 

a unique relation be~een the top and Higgs couplings [32, 33]. However, if the 

dimensionless coefficients of these higher-dimension operators are natural (0(1) or 

smaller), and if the running length from the compositeness to electroweak scales is 

large (ln(A/v) >> 1), then the couplings may be expected to approach their infrared 

fixed points quite closely, undisturbed by the precise form of the interaction. (In 

fact, Marciano [34] made numerical predictions from an RGE analysis without ref

erence to a particular model.) The numerical predictions of low-energy parameters 

in the model are thus altered only minimally by these uncertainties [35]. 

This is, however, not the end of the story. As pointed out by Suzuki [36], it 

is precisely the inability of the RGE to discern compositeness that permits a number 

of distinct models with the same compositeness scale A and the same compositeness 

condition and hence the same low-energy predictions. One simply observes that the 

divergence at some large scale A of the Yu~wa coupling connecting the Higgs and 

t L, t R fields would occur if any one of these three fields were a composite of the other 

two. In the case of the composite-tR model constructed in Ref. [36], the toy-model 

chain diagrams (Fig. 2.2, p. 31) include a sum over the number N F of particles in 

the left-handed weak multiplets, and so the model is solvable in the large-Np limit. 

The prescription of Ref. [31] then generates the full RGE. Because this is the same 

. as the RGE in the top-condensate model, the two models are equivalent at low 

energies. 

Of course we may argue that the composite-tR model is unaesthetic, be

cause it treats the two chiralities of top quark very differently, and we still have an 

elementary scalar in the theory. Physically, however, the theories are superficially 

indistinguishable at low energies, and so we must look deeper for distinctions. It 

is when we attempt to include additional fermions in the composite-tR model [37] 

that we begin to see differences from the top-condensate model. These differences 

come about because of the quantum numbers of the composite particle: Unlike the 

Higgs, the t R carries spinor and color indices, and thus we find the matching of the 
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indices to be trickier in the composite-t R model. 

We consequently find that the Higgs sector in this model is subject to 

strong constraints, with the least unnatural model of composite right-handed fer

miens consisting of all third-generation fermions (tR, bR, rR) being formed from 

the condensation of two Higgs doublets with the corresponding left-handed fermion 

doublets, and all other fermions being elementary. We also repeat this analysis for 

a proposed composite-t L model. 

This Chapter is organized as follows: We begin in Sec. 2.2 by seeing how 

one may naturally generalize the top-condensate model to three fermion generations. 

In Sec. 2.3, we briefly review ·the content of the composite-t R model of Ref. [36]. The 

composite-tR model is enlarged in Sec. 2.4, first by the addition of the b quark alone, 

and then the r lepton and other generations. In Sec. 2.5, we develop an analogous 

composite-tL model and consider its extension to the bLand other generations. We 

summarize and comment upon the results in Sec. 2.6. 

2.2 Three Generations in the Top-Condensate 

Model 

As mentioned in the Introduction, arranging for three generations of mas

sive fermions in the top-condensate model [29, 38, 39] is straightforward because 

the quantum numbers of the composite Higgs are easy· to accommodate. When 

only one Higgs doublet is desired, one forms the composite Higgs field in a linear 

superposition channel of the fields uR; tPLi, dR.; t/J1i, and eR.; £1,, where the charge

conjugate fields have been introduced to supply the appropriate quantum numbers, 

and i,j = 1, 2, 3 are generation indices. Also, 

( 
d

e ) ( c ) 
- L" -eL. 

tPLi = C I ' lLi = C I • 

ULi VLi 

{2.1) 

The binding interaction responsible for fermion condensation may be written 

(2.2) 
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Figure 2.1: Fermion chain diagrams in the top-condensate model that dominate 

the calculation of effective Yukawa ·couplings for large Nc. The ellipsis indicates 

iteration of the chain. 

where the scalar density J with the quantum numbers of the Higgs is defined by 

J = 2)ki; uR; ¢Li + ki+3J+3dR; 1/J'Li + ki+6J+6ell;lLi)· (~.3) 
ij 

As in the Standard Model, we may perform separate unitary rotations upon left- and 

right-handed fermions to diagonalize the interaction into fermion mass eigenstates: 

J = 2) ki uRi 1/J Li + ki+a diu t/Jl.i + ki+6 eRi ll.i), (2.4) 
i . 

where now 

(2.5) 

with V being the Kobayashi-Maskawa matrix, and the coefficients ki being the 

eigenvalues of the diagonalized couplings ki; normalized to unity: 

(2.6) 

It is clear that the coefficients ki are proportional to the fermion masses 

in the limit of the top-condensate toy (Iarge-N c) model, for one may compute the 

effective Yukawa couplings from the chain diagrams of Fig. 2.1: 



/d; (p)2 - 167r2jki+312 /[Nc ln(A2 / J-t2)], 

/t;(J-t)2 - 167r2lki+612/[Ncln(A2/JL2)]. 

The compositeness condition of the Higgs doublet then reads 

28 

.(2. 7) 

' EUu;(JL}2 + /d;(J.t)2 + /£;{p)2) = 16?r2/[Ncln(A2/JL2
)] ~ 00 as J-t ~A. {2.8) 

i 

Note that this is a condition only on the sum of the squared Yukawa couplings; 

this constraint assures that the given combination of the couplings satisfies the 

large-Nc limit of its corresponding RGE. However, the individual couplings are 

not analogously constrained. Thus in the large-Nc limit one may trivially choose 

the ratios of parameters ki to recover the experimentally observed fermion mass 

spectrum. 

In the real world of finite Nc, we may use the prescription of Ref. [31) 

to abstract the full (Standard Model} RGE's including gauge contributions and 

nonleading effects in Nc, which in turn modifies the running of the Yukawa couplings 

from the compositeness scale. Defining the differential operator D = 16?r2J.tO/OJ.t, 

and ignoring quark mixing, one finds the one-loop single-generation RGE's 

D(/dJ!u;) - 3/uJd;(f]jf~; -1) + gr/dJ!u;, 

D(ftJ !tJ - ~ftJtjUl! If;- 1), 
(2.9) 

· where g11 the U{l} gauge coupling, is small at all scales and is hence negligible 

in this analysis. It is particularly notable that the SU(3)c x SU(2)F gauge loops 

cancel in these expressions, in the first expression because the two members of the 

weak doublet differ physically only by hypercharge, and in the second because of 

family replication symmetry. Then we find that the full RGE's in the realistic model 

possess infrared fixed points at !uJ /d; = 1 and ftJ ftj = 1. If the running distance 

ln(A/v) were sufficiently large, the Yukawa couplings would approach their infrared 

fixed points regardless of initial values, and with only one VEV in this one-doublet 

model, we would obtain various unfortunate predictions such as mt = mb and 

mr = me. But ln(A/v) is happily large yet finite, and thus sufficiently asymmetric 
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boundary conditions (e.g., lk6 1 « lk3 1 for b and t quarks) evade the fixed point 

expressions like !b(v)/ ft(v) = 1, allowing mb « mt and other realistic ratios of 

fermion masses. 

If we extend this model to include two composite Higgs doublets, then 

there are two distinct compositeness conditions. Consider, for example, the case in 

which one doublet couples only to up-type quarks, and the other couples to down

type quarks and leptons [38]. Then the Yukawa couplings in the toy model still 

behave as in Eq. 2.7, but now the normalization conditions on ki read Li lkd2 = 1 

and Li(lki+3l2 + lki+6l2) = 1. Now we are compelled to choose comparable values 

for the coefficients lk61 and lk3l, and the Yukawa ratio /b/ ft is driven to near unity 

at low energies. This running behavior was confirmed numerically by Luty [40], 

whose two-doublet model generates at-quark mass essentially the same as in the 

one-doublet model. But the masses of the .b and t need not be equal in the two

doublet model, for we have an additional VEV at our disposal, which can be used 

to adjust the mass ratio of mbfm, even though the Yukawa couplings are essentially 

equal. 

2.3 The Cbmposite-tR Model 

Models with a composite tR, in contrast with the top-condensate model, 

turn out to require nontrivial particle content at high energies, owing to the ad

ditional balancing that must be done with spinor and color indices in the former 

. modeL Here we briefly review the minimal model proposed by Suzuki [36]. We 

begin with the gauge group SU(3)c x SU(NF) x U(l), with left-handed fermion 

and Higgs multiplets transforming under this group as 

'1/JL - (3,Np,Yf2), 

<P - (1,Np,Qt-Y/2), 
{2.10) 

where Q, is the electric charge of the t quark. A composite field with the correct 

chirality and-gauge quantum numbers to be a composite tR is 

(2.11) 
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where a indicates the SU(NF) index. However, a composite fermion must appear 

with both chiralities, or else its Dirac mass is zero. Because there exist many 

radiative corrections that could spoil such a coincidence, the only natural way to 

generate this scenario i~ for ~R to be a Goldstino of broken supersymmetry. Barring 

this possibility, there exists in this model the composite state 

(2.12) 

The field ~L represents a particle with quantum numbers not observed in the low

energy Standard Model; the simplest way to remove it is to postulate an elementary 

right-handed "quark" 

TJR = (3, 1, Qt), .(2.13) 

such that f.L and TJR together have a Dirac mass at the compositeness scale A. 

One may also observe that a particle with the quantum numbers of TJR is actually " 

required to cancel the electroweak anomaly induced by ~L· 

Now we have the situation that ~L couples to both ~R and TJR· We must 

diagonalize the couplings to obtain the physical mass eigenstates. The combination 

(~L~R + H.c.) obtains a mass through both its bare value ( O(A)) and through loop 

diagrams with intermediate~ and tPL fields, which in sum can ~e fine-tuned to a 

value of O(v); this is equivalent to the fine-tuning of the Higgs mass in the usual 

Standard Model. The combination (~LTJR + H.c.) obtains its mass through the VEV 

of a supermassive Higgs and so remains at O(A). Thus under diagonalization, the 

light eigenstate consists of nearly all f.R and a small admixture of TJR, with coefficient 

O(v/A) « 1; we identify this eigenstate a8 the physical tR. The heavy eigenstate 

mass remains at O{A) and therefore has no effect on low energy physics. 

The equivalent nonrenormalizable binding interaction that forms the com

posite states ~R,L, as given in Eqs. 2.11, 2.12, is of the form 

(2.14) 

We may now use this interaction to calculate the effective Yukawa coupling using the· 

chain diagrams of Fig. 2.2. Each loop contains a sum over the SU(NF) multiplets, 



r 

,<P ,. 
' ' ' / 

/ 
/ 

/ 

.. ¢> 

31 

Figure 2.2: Chain diagrams in the composite-tR model th~t dominate the calculation 

of effective Yukawa couplings for large NF. 

\ 

and thus these chain diagrams dominate the calculation in the Iarge-N F limit. The 

result is 

(2.15) 

We compare this to the result from the minimal top-composite model (as can be 

extracted from Eq. 2.7): 

(2.16) 

The full one-loop RGE for the top Yukawa coupling with arbitrary Nc,F, including 

. all gauge bosons but neglecting other fermions, reads . 

from which we can easily see how theprescription of Ref. [31] applies to both models. 

There is a superficial difference between the top-condensate and composite

tR toy models in that, although the Yukawa couplings diverge in both, the Higgs is 

elementary in the latter; we therefore naively expect that the quartic Higgs coupling 

.A(J.L) does not diverge as J1 -+ A. Thus the composite-tR model does not appear 

to have a.S many compositeness conditions as the top-condensate model. However, 
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this is only true for the toy models; when we leave the Iarge-N F limit, quark box 

diagrams renormalize the quartic coupling with a logarithmic divergence: 

because f(Jl) 2 ~ lfln(A2 / Jl2 ) in both models. 

2.4 Extending the Composite-tR Model 

2.4.1 One Generation with One Higgs Doublet 

The most basic extension to the model is to generate tR _and bR simulta

neously as composite, massive-particles. The physical case of NF = 2 is actually 

special, because all representations of SU(2) are real, whereas NF and N Fare in

equivalent representations for N F > 2. In the Standard Model, this fact provides 

us with two distinct but group-theoretically equivalent forms for the Higgs doublet, 

4> = (4>0 ,4>+) and ~t = (-ir2~tf = (-4>-,;f). Since no similar-relation preserving 

·the transformation structure of the Higgs multiplet exists for N F > 2, one cannot 

form two SU(NF) singlets tR and bR. Formally, we evade this restriction by pre

tending for the moment that~ and ~t are distinct multiplets transforming under 

theN F representation of SU(NF), solving the toy model in the large-NF limit, and 

then setting NF = 2 so that the two Higgs multiplets may be related. 

The composite tR and bR are assumed to form in the channels 

(2.19} 

and the Yukawa couplings are defined through 

(2.20) 

· where the parentheses indicate a sum over SU(NF) indices. Now we may solve the 

toy model of Ref. [36] by summing chain diagrams as in Fig. 2.2 in the large-NF 

limit to obtain 

(2.21) 
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Note that, in contrast to the top-condensate model, we have two distinct composite

ness conditions, for tR and bR separately; we remind the reader that this results from 

the comparative difficulty of forming composite states with the quantum numbers 

of chiral fermions rather _than scalars. 

Now we employ the prescription of Ref. [31] and proceed directly to Np = 

2. The full one-loop RGE's with one Higgs doublet for t~e top and bottom Yukawa 

couplings {but ignoring other generations) read ( cj. Eq. 2.17) 

D ft . ~ ft + ~ J? ft 
-(8gi + ~g~ + ggi)ft, 

Dfb ~ ~it+ ~Jf !b 

-(8gi + ~g~ + 152!Ji)fb· 

{2.22) 

From Eq. 2.21 we see tha~ the values of ft(P.) and /b{P.) are large and comparable· 

near p, = A; on the other hand, the ratio of Yukawa couplings obeys the running 

given in Eq. 2.9: 

(2.23) 

Thus, because fb(p,)/ ft(P.) ~ 1 for p,-+ A, this ratio must very nearly approach its 

infrared fixed point of ft(P.) = fb(P.) asp,-+ v. In the one-doublet scenario,~ and 

it have identical VEV's: 

(2.24) 

Thus the quark masses mt,b = !t,b(v)v/-/2 are equal, in sharp contradiction to 

reality. We conclude that one Higgs doublet in the composite-tR model is just not 

enough to give the appropriate masses to composite t and b quarks. 

One might be troubled by the outright neglect of the U(l) coupling g1 in 

this analysis. It has been suggested [29, 41] .that this coupling may upset the RGE's 

to the extent that the ratio ft(v)/ /b(v) is driven far from unity; such an effect is 

called critical instability. It is possible, however [42], to absorb such instabilities 

· into the VEV's of the theory. In the usual Standard Model, this has the effect 

of fine-tuning the Higgs masses and thus has no physical manifestation once these 
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masses are fixed. Similarly, in the composite-tR model, the instability is absorbed in 

the fine-tuning of the Dirac mass of the field ~ from Section 2.2, which has negligible 

effect when we diagonalize to obtain mass eigenstates: At low energies, it represents 

corrections to an 0 ( v /A) effect. 

Therefore, with a single Higgs doublet, we conclude that the only option 

is to introduce bRas an elementary particle and choose its Yukawa coupling at the 

scale A to be tiny so that we avoid the infrared fixed point upon evolving down 

to v. This is possible because D /b = 0(/b) for small /6, so it is possible to keep 

Yukawa couplings small at all scales; thus one can obtain an acceptable value for 

m6• Such a problem persists with more than one generation of fermions present: 

Elementary fermions with small Yuka.wa couplings at A do not substantially alter 

the RGE flow for the diverging composite fermion Yuka.wa couplings. On the other 

hand, each composite fermion is forced to have the same Yukawa coupling at scale 

A, and with only one VEV in the theory, all composite fermions necessarily have 

nearly equal masses. 

2.4.2 One Generation with Two Higgs Doublets 

The natural solution to the problem is simply to produce another VEV, 

which requires a second Higgs doublet. It is easy to generalize the model. We define 

(2.25) 

to produce the Yukawa coupling 

(2.26) 

so that tR and bR are composite of 9!t't/JL and i1, respectively. Apart from having 

two distinct VEV's in this case (vt = .;2(¢~) :/; Vb = -/2(t/,) in general), the only 

real difference from the one-doublet case is that the RGE ( cf. Eq. 2.23) has a 

different coefficient [43]: 

(2.27) 
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Nevertheless, the infrared fixed point is still !b/ ft = 1, and so the previous methods 

still apply. Because in the two-doublet model we are using the same RGE's and 

boundary conditions as in Ref. [40], the same numerical analysis applies, confirming 

that !&/ ft = 1 is indeed a true fixed point of the RGE. It is then a simple matter 

to obtain any value of mt/m& by choosing the equivalent ratio vtfv&; thus the two

doublet model produces a composite bR naturally. 

We can even improve upon this result. Although the g~ and gi terms 

vanish in the RGE for the ratio !b/ ft, this is not true if we compute the ratio of 

either quark Yukawa coupling with fT· Neglecting gauge couplings, the fixed point 

of such a ratio is still unity, but now the strong coupling g~ (unlike g?) can easily 

drive the ratio away from one. That this actually happens has been demonstrated 

by calculations in grand unified models [44], in which one may, for example, couple 

the same Higgs (and hence the same Yukawa coupling and VEV) to both the b 

quark and the r and still find mT /mb ~ ~. 

2.4.3 More Than One Fermion Generation 

The most natural way to include additional quark and lepton generations is 

to assume that only the third-generation quarks (and possibly the r) are composite, 

and all of the other fermions are elementary fields. Then the RGE's as in Eq. 2.27 

are modified by additional tiny Yukawa couplings. The numerical results must then 

be essentially identical to those in the previous Subsection. Such a model is not 

unnatural within the context ofour original motivation that the third generation 

quarks, particularly the t, are rather different from the lighter quarks. 

Neither is quark mixing difficult in this model. One simply assumes that 
' tR and bR are actually formed in the combined channels 

tR"' ~t(cttPLl + c2tPL2 + tPLa), bR I'V ~l(c~ tPLl + c~tPL2 + 1/JLa), (2.28) 

where lctl << lc2l « 1 and lc'11 « lc~l << 1. Only in the very special case of cj = ci 
can one remove this mixing by redefining the combined channel to be 1/J La; in general, 

diagonalization of this mass matrix gives rise to a nontrivial Kobayashi-Maskawa 

mixing. 
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It is also true that this model with only two Higgs doublets cannot gener

ate more than one generation of massive quarks. In short, this follows because the 

RGE's force composite fermions to have the same Yukawa couplings at low ener

gies, but there are only two independent VEV's. However, the mixings of Yukawa 

couplings in the full RGE's makes this conclusion somewhat less transparent, and 

so let us consider the particular example of only two generations of quarks, (t, b) 

and (c, s). The compositeness.conditions then read 

and the one-loop RGE's for the Yukawa coupling ratios read [43] 

Dln(fb/ It) - 4(Jl- /,2} + 3(fi - J';) + O(g[), 

Dln{!4 / /c) - 4(Ji- /;)+ 3(Jl- J'f) + O(gi), 
(2.30) 

Dln(fc/ ft) ~Ut- Jl) + lUi- tl), -
Dln(f4 / /b) - ~u; - 1n + lu; - fl), 

where these equations are actually linearly dependent. To solve them, we choose 

large and comparable boundary values for the Yukawa couplings near A as suggested 

by the conditions Eq. 2.29, and evolve down to low energy. We now show that the 

deviations of these ratios from unity are damped exponentially as the energy scale 

decreases. Define the variables 

~ - /b/ft -1, TJ - J~~/Jc -1, 

( - fc/ ft- 1, W - J~~/ fb- 1, 
(2.31) 

and expand Eqs. 2.30 about ~ = TJ = ( = w = 0; such an expansion is reason~ble 

since these variables are approximately zero at the scale A, and remains reasonable 

if (as we now show) their values do not increase as the energy scale decreases. After 

diagonalizing the equations, we find 

- 14Jr(~ + 11), 

2Jr(~ -1]), 

D(~ + 7J) 

D(~ -TJ) -

D(( + w) - 4/?{( + w), 

D((- w) - 2fr((- w). 

(2.32) 
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Thus the Yuka.wa coupling ratios are driven to unity very quickly as J-t decreases. 

We conclude that 

ft(v) = /b(v) = fc(v) = f,(v), (2.33) 

where v is a shorthand for VI, v2; considering the rapidity of convergence, the 

numerical distinction between them in this equation is irrelevant. Therefore, we 

have only one distinct Yuka.wa coupling and two VEV's, which means that only two 

distinct masses are possible. This conclusion holds even if we include realistic quark 

mixings and three generations. 

The natural means by which one might hope to make any number of 

right-handed fermions composite is to introduce more Higgs doublets so that we 

have enough VEV's to adjust all of the fermion masses. Apart from the unappeal

ing proliferation of elementary scalars in the theory, we encounter the very serious 

problem of flavor-changing neutral currents from mixing of scalars in the Higgs po

tential. Indeed, such currents can only be naturally suppressed (45] by coupling 

all of the up-type quarks to one doublet and all of the down-type quarks to an

other. (These two doublets may be the same, as in the minimal Standard Model.) 

Furthermore, the RGE analysis for only two doublets [40] suggests that at least . . 

one of the neutral Higgs bosons should have mass of O(mt); with more doublets, 

one might expect still lighter scalars and achieve a contradiction with experimental 

lower bounds on scalar masses. We conclude that it is impossible in this model to 

make any massive fermions composite except for tR, bR, and rR. 

2.5 A Composite Left-Handed Fermion Model 

In Ref. [36] it was pointed out that a composite-t L model may be developed 

in analogy to the top-condensate and composite-tR models. This case, however, 

possesses no natural Iarge-N expansion with which to justify the dominance of 

simple chain diagrams near the compositeness scale. Nevertheless, if we are willing 

to take this dominance as an ad hoc assumption (recall that Nc and N F are in reality 

not large integers), then the model may be constructed in parallel with the other 
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two cases. However, as has been emphasized elsewhere in this Chapter, it is the 

balancing of quantum numbers of the composite fields that accounts for the unique 

restrictions. on the Higgs sector of each model. We focus upon the restrictions on 

the composite-tL model in the following. 

2.5.1 One Generation 

Because tL and bL, unlike tR and bR, are related by SU(2)L, we expect 

some differences from the composite-tR model. In the present case, the doublet 

tPL = (tL,bL)T is a compositeoftR, bR, and <P; in general, it may be formed in the 

channel 

(2.34) 

where a is a mixing constant. Note that such a combination is not possible in the 

composite-tR model. The Yukawa couplings are computed by iteration of chain 

diagrams identical to those in Fig. 2.2 except that the component fields are now 

CJ.)ttR and ~bR. In analogy to the other models, one finds 

lt(J.t)2 - 327r2 cos20: I ln(A2 I J.t2), 

lb(J.t)2 327r2 sin2a I ln(A2 I J.t2 ), 
(2.35) 

with the single compositeness constraint lt(J.t)2 + lb(JL) 2 -+ oo as J.t -+ A. Thus, 

even with only one VEV, one can tune lbl It -:- tan a near the compositeness scale 

to a sufficiently small value that the ratio mblmt is correctly reproduced. The 

composite-tL,bL model, in contrast with the composite-tR,bR model, requires only 

one Higgs doublet. 

However, if we now attempt to add the T lepton as a composite particle, 

as in the composite-tR model, the single compositeness condition works against us: 

Then the RGE evolution driven by the coupling g~ produces the result IT/ J ll +I~ 
~ 113, or mT ~ !Jm? + m~. One requires two doublets to make the r composite 

in this model. 

.• 
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2.5.2 More Than One Fermion Generation 

The problems of the previous Section appear also in this model when one 

attempts to include more than one generation of composite fermions. If we stick with 

only one doublet, we have only one VEV, and the Yukawa coupling combinations 

J;, + f~ are attracted to the same fixed point for all generations i, leading to the 

incorrect relations 

(2.36) 

We conclude that it is not possible to generate more than two distinct composite 

fermions in this model with only one doublet. On the other hand, if we introduce 

too many Higgs doublets (for example, just one more doublet to give mass to com

posite (cL, sL)), we again encounter the problem of flavor-changing neutral currents. 

The only natural extension of this model is to introduce a second doublet to give 

mass only to a composite r, an ex~ension that seems ill-motivated and needlessly 

complicated. 

2.6 Conclusions 

We have seen that it is possible to build realistic models of composite left

and right-handed fermions (as well as top-condensate models) with more than one 

generation presen~, although it appears to be impossible in this context to construct 

models in which particles from more than one generation are composite. Further

more, we have found such models are distinguishable from the top-condensate model 

and each other at low energies only through their Higgs spectra. The least unnatural 

composite right-handed model consists of a composite t R obtaining mass from one 

Higgs doublet, and composite bRand TR obtaining (distinct) masses from a second 

doublet. The least unnatural composite left-handed model requires only one Higgs 

doublet for tL and bL, but another is needed if we wish to construct a composite 

r. Obviously the discovery of only one Higgs doublet would invalidate the former 

model, but the discovery of two doublets would mean that we cannot distinguish 

between the three models at low energies. 
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All three models, however, seem to suffer from the same problem of an 

m1 prediction [31, 40] large enough to be in conflict with recent analyses of elec

troweak precision measurements. One obvious escape from this difficulty in the top

condensate model is to postulate a composite fourth fermion generation [31, 46]. 

Unfortunately, this skirts the fundamental issue by pushing the problem to a higher, 

unobserved regime. As before, we must either choose only the fourth-generation 

fermions to be composite, which denies the initial motivation of the approach, 

or make both the third and fourth generations composite, and then worry about 

whether we need to suppress flavor-changing currents between them. A third, and 

much more optimistic, possibility is to assume that someone will develop a natural 

way to decrease m1 in such models. 



Chapter 3 

Meson Mass Splittings in 

Potential Models 

3.1 Introduction 

The mass splittings of hadrons in an isospin doublet are often called "elec

tromagnetic splittings" because of the traditional belief that their physical origin 

lies primarily in the differences of (nonrelativistic) Coulombic expectation values, 

which are distinguished by the charges of the valence quarks (Qu # Qd)· Such 

an approach may of course be augmented by including hyperfine, spin-orbit, and 

other well-known interactions. When extensive efforts from the 1950's through the 

early 1970's [47] failed to produce a reliable model for explaining the (p- n) mass 

difference in purely electromagnetic terms, the assumption of corrections due to un

equal intrinsic masses of the quarks, md- mu = 0(5 MeV), resolved the problem. 

A model including only this effect and the standard electromagnetic interactions 

serves to explain the observed splittings (as appearing in the 1992 Review of Parti

cle Properties [48]) (.£(0- K+) = 4.024± 0.032 MeV ~nd (D+- D0) = 4.77 ± 0.27 

MeV (and even that of the very tightly-bound pions, ('n·+- 1r0 ) = 4.5936 ± 0.0005 

MeV), but has failed in light of the surprisingly small (B0 - B+) = 0.1 ± 0.8 MeV. 

It is precisely the last mass difference that has led to a variety of calcu

lations. Some of these [49, 50, 51, 52] are based on the nonrelativistic model of 

41 
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hadron masses put forth by De Rujula, Georgi, and Glashow [53] soon after the de

velopment of QCD; such models have the unfortunate tendency to predict numbers 

no smaller than Bl- B+ ~ 2 MeV, well outside the current experimental limits. 

Using more phenomenological models (54, 55], one can obtain a smaller splitting in 

closer agreement with experiment. Nevertheless, it may seem odd that the usual 

nonrelativistic model, which works well for the D and even the K mesons, should 

fail in the case of the B, which boasts an even heavier quark. 

In fact, a careful analysis [56] of masses starting from field theory yields 

the usual Breit-Fermi interaction used in Ref. [53]; however, we show that a number 

of novel effects appear, owing to the dependence of quantum-mechanical expecta

tion values upon mass, relativistic kinetic energies of the constituent particles, and 

running of the gauge couplings. We find that, using 1992 numbers, it is possible to 

explain.the mass splittings of heavy mesons (D and B, but not K) in such an ordi

nary nonrelativisti~ model with a linear-plus-Coulomb potential, as long as we take 

into account all of these corrections to consistent orders of magnitude. However, 

as we discuss, more recent measurements from CLEO [57] tend to somewhat alter 

this numerical conclusion. 

In this spirit, the Chapter is organized as follows: In Sec. 3.2 we consider 

the problem of computing mesonic mass contributions in field theory. Then, in Sec. 

3.3, we confirm that the nonrelativistic limit of the field-theoretic result leads to 

kinematic terms and the Breit-Fermi interaction, exactly as stated in De Rujula et 

al. This is followed in Sec. 3.4 by an exhibition of the full mass splitting relations 

for isodoublet o- and 1- meson pairs, as well as (o- ,1-) pairs with the same valence 

quarks. Sec. 3.5 discusses the application of quantum-mechanical theorems, includ

ing a very useful generalized virial theorem, to the problem of reducing the number 

. of independent expectation values in the splitting formulas. These theorems are 

applied to the popular choice of a linear-plus-Coulomb potential in Sec. 3.6, with 

numerical results presented in Sec. 3.7. We conclude and comment upon the effects 
' 

of more recent experimental results in Sec. 3.8. 
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3.2 Mass Computation in Field Theory 

Typically, the computation of ha.dronic mass splittings in a nonrelativistic 

model is accomplished by starting with the Breit-Fermi interaction [58, Sees. 38-42] 

i>j 

where ri, Pi, mi, si, and Qi denote the coordinate, momentum, (constituent) mass, 

spin, and charge (in units of the protonic charge) of the ith quark, respectively; 

ri; = ri- r;; a and a8 are the (running) QED and QCD coupling constants; and 

k = - ~ (- ~) is a color binding factor for mesons (baryons). This expression includes 

an annihilation term if qi = 7i; are in a relative j = 1 state. From this expression, ~ne 

chooses the terms that are considered significant and then calculates the appropriate 

quantum-mechanical expectation values. We pursue this course of action in the next 

Section; however, to be confident that no nqvel interactions arise when obtaining 

this expression from the in ore fundamental field theories of QED and QCD, we 

perform a detailed derivation for the meson case. 

·We first consider the ·question of the mass of a composite system from 

the point of view of the S.matrix and interaction-picture perturbation theory. The 

mass of a system, defined as the expectation value of the total Hamiltonian in the 

center-of-momentum frame of the constituents, receives contributions from both 

the noninteracting and interacting pieces of the Hamiltonian; the former gives rise 

to the masses and kinetic energies of the constituents, and the latter produces 

the interaction energy. Technically, this division is not exact in the interaction 

.. 
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picture because the noninteracting Hamiltonian is not necessarily the same as the 

noninteracting Hamiltonian in SchrOdinger or Heisenberg pictures; they are different 

by perturbations in the interactions that serve partially to "dress" the states in the 

interaction.picture, a topic to which we return momentarily. 

Let us follow the method of Gupta [59] to derive the form of the interaction 

from the field-theoretical interaction Hamiltonian. We begin by writing the S matrix 

in the Cayley fomi 
1- liK s- 2 

- 1 + liK' 
2 

and expand the Hermitian operator K in a perturbative series: 

n 

' 

(3.2) 

(3.3) 

The purpose of this expansion, rather than the usual expansion of S, is to preserve 

unitarity in each partial sum of S. The physical effect of this parametrization is to 

eliminate diagrams with real intermediate states from the S-matrix expansion. 

Computing the terms Kn, one finds 

(3.4) 

where I indicates the interaction picture. Now observe that we may invent an 

effective Hamiltonian, H~, such that its first-order contribution is equivalent to the 

contribution from Hfnt. to all orders. Thus, 

l +oo I 
K = -oo dt Hef£(t). (3.5) 

The interaction energy is then 

(3.6) 

where ji1) and jP) are actually the same state because the system is stable. 

For the case of quark-antiquark interactions via QED and QCD, the lowest

order contribution to K comes through two interaction vertices, i.e., the exchange 
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of one vector boson. The equivalent portions of H;ff and K are thus labeled with a 

2, and in terms of the usual invariant amplitude M, we have 

Eli~inating the delta functions that arise in the rightmost expressions, we find 

AE(2} =(!II H;J2}(0) Iii) = M(~) 
(Jll il) fa • 

(3.8) 

Beyond second order the relation between interaction energy and the invariant am

plitude becomes less trivial, but nevertheless Gupta has shown that it can be found. 

However, we do not continue to fourth-order in this work, and henceforth suppress 

the (2) in the following. 

.. In general, M /i at any given order is represented by diagrams of the 

form indicated in Fig. 3.1. The composite state is formed by superposition of the 

constituent particle wavefunctions in such a manner that one obtains the desired 

overall quantum numbers. For the mesonic system, M Ji is represented by the 

diagram in Fig. 3.2, where the lowest-order interaction is the exchange of a single 

gauge boson. This class of diagrams allows for only the valence quark and antiquark 

(no sea qq pairs or glue), and thus would induce a poor model if we chose them 

to be current quarks. Instead, the quarks in our diagrams must be constituent 



46 

q 
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Fig. 3.2 

Figure 3.2: Diagram for M fi in the mesonic syst~m. 

quarks, whereas the loop effects involving the vector boson serve to renormalize the 

gauge couplings to their running values. In this way we can model the hadronic 

cloud; as well as renormalizations of the lines and vertices of our diagram, so that 

its particles are "dressed" in two senses. There is also an annihilation diagram if 

the quark and antiquark are of the same flavor; in this work we consider only the 

exchange diagram, since the mesons of greatest interest to us are those with one 

heavy and one light quark. 

Is it legitimate to factorize the meson wavefunction into two distinct and 

weakly-interacting constituent quark clouds? Similar issues were discussed in the 

Introduction to Chapter 1; there we argued that every quark that is heavy compared 

to the QCD scale approximately decouples from the light degrees of freedom, so the 

assumption of a perturbative coupling to the heavy quark seems to be reasonable. 

The scheme could be greatly improved, in principle, by a better understanding of 

the interaction with the light constituent degrees of freedom. 

The next step is to obtain the amplitude M fi, in which the constituent 

legs are bound in the composite system, from the Feynman amplitude M (Fig. 3.3) 

for the same interaction with free external constituent legs. To do this, we need 

only constrain the free external legs in a manner that reflects the wavefunction and 

rotational properties of the meson state. In general, . if the variables Zn are the 
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Fig. 3.3 

Figure 3.3: Free quark Feynman amplitude M. 

degrees of freedom of the meson state 1~}, then we may write 

{3.9) 

The function 4> is an amplitude in the variables Zn, i.e., a wavefunction; and 0 is 

a collection of Fock space operators that specifies the rotational properties of 1~}. 

The integral-sum symbol indicates summation over both continuous and discrete 

Zn· In this notation, we obtain the result 

(3.10) 

where f(zi, z,) - (OI ot(z, )'HO(z;) IO}; here 1£, the Fock-space operators from the 

Hamiltonian, serve to constrain the quantum numbers of the composite system. 

We have written the energy contribution in this very general expression in order to 

demonstrate the power of the technique. 

-Now we apply this prescription in detail to the meson of Fig. 3.2, so that 

we may make use of the usual Feynman rules. Then Zn are quark momenta, 4> is the 

mesonic momentum-space wavefunction, and f specifies the spin of the meson, as we 

see below. The energy contribution is evaluated in the quark center-of-momentum 

frame (i.e., the meson rest frame); in this frame the momentum of the quark relative 

to rest, initially and finally, is denoted by p and p', respectively, with opposite signs 
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P; PI Q, helicity H 
p; = ~ +p P? = c; 
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Pi P! q, helicity h p2 _ p2- m2 

i - I= 
p2 _ p2- M2 

i - f = 

Fig. 3.4 

Figure 3.4: Notation and conventions for the mesonic system. 

for the antiquark. Fourier transformation of the wavefunctions from momentum 

space to position space yields 

(3.11) 

where 

K(x,,x;) - j d3p' j d3p exp[i(p' · Xf- p · x;)] ~ /(spins)M(p',p,spins); 
spms 

(3.12) 

and 

(3.13) 

As a technical point of fact, it is necessary to keep track of the normaliza

tion conventions used for wavefunctions, Fourier transforms, and Feynman rules in 

order to obtain the true convention-independent D..E. As it stands, Eq. 3.12 locks 

us into a particular set of Feynman rule normalizations, which should be made clear. 

in the following expression. The kinematic conventions are established in Fig. 3.4. 

(Note, however, that p and p' are different vectors in different frames, owing to the 

nonlinear nature of Lorentz boosts.) Then the Feynman amplitude for free external 
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.quark legs and a virtual photon is 

M = i [{2~~.,2r ffi.nlf;lf: 
[v H,(P i)( -iQe!11 )vH1 (Pc)] ( -~'') [uh1(PJ )( -iqe!11 )uh,(Pi)] , (3.14) 

with Qqe2 replaced by g~ and SU(3) generators for_ the gluon-mediated diagram. 

Note the use of helicity rather than spin eigenstate spinors, which is done in order 

to implement a relativistic description of the mesons. In a nonrelativistic picture in 

which meson spin originates solely from the spin of the quarks (s waves), spin-0(1) 

mesons have spin-space wavefunctions described by the usual singlet and triplet 

quark wavefunction Qq combinations: 

t r.l. spins. (3.15) 

The above expr~ion remains true in a relativistic picture if we take the initial and 

final spin-quantization axes to coincide with the axes of relative momenta p and 

p', respectively, and then take t, .J. as helicity eigenstates; this is nothing more than 

the simplest nontrivial case of the Jacob-Wick formalism [60]. It is then a simple 

matter to write the constraint function for singlet (triplet) mesons: 

1 1 
/(hel.) = J2(oh,thH,.I. ± oh,.l.oH,t) .J2(oh1thHJ.I. ± oh,.~.oH,t), (3.16) 

with an additional factor of-~ for the gluon-mediated diagram, which arises from 

the constraint that the initial and final qq pairs are combined into a color singlet. 

The relevant expression is the constrained m~trix element Msing or Mtrip, which 

is the Feynman amplitude multiplied by the constraint function and summed over 

spins (or helicities); this is the object being Fourier transformed in Eq. 3.12. 

In summary, mass contributions due to a binding interaction in a system 

of particles may be computed by writing down the Feynman amplitude induced 

by the interaction Hamiltonian, constraining the component particles to satisfy the 

symmetry properties of the system, and convolving with the appropriate system 

wavefunction. The specific implementation of this technique to spin-0 and spin-1 

mesons with constituent quarks in a relative f = 0 state is described by Eqs. 3.12, 

3.14, and 3.16. 
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3.3 The Nonrelativistic Limit 

With the method for computing mass contributions in hand, we find our

selves with two possible courses of action. The first is to compute Msing or Mtrip 

from Eq. 3.14 without approximation, and then Fourier transform the result to ob

tain D.EcM· The second is to reduce immediately the spinor bilinears via Pauli 

approximants, thus producing a nonrelativistic expansion. Let us explore both di

rections for the pseudoscalar case; the vector case is not much different. 

Even though the amplitude M itself is Lorentz invariant, we must evaluate 

it in the CM frame of the quarks in order to evaluate D.E. It is convenient to 

eliminate spinors from the calculation by means of relations like 

~ ( )- ( ) (mA+PA) (1+/o) (ms+.Ps) 
~~~~~= ' 

h J2mA(EA + mA) 2 J2ms(Es + ms) 
(3.17) 

Once the spinor reductions and the resultant trace are performed, we find the ex

pressiOn 
2 4 2)N 1 

Msing = -(Qqe - 3g., T k2' (3.18) 

where N results from the normalization factors, and T is the gamma-matrix trace. 

They are given by 

N - (2~)6 2~ [Ei(Ei + M}E1(E1 + M)ci(£i + m)c1(c1 + m)r112 

and 

T 8 {(pi· Pi) [2ctEt + 3(mEt +Mel+ mM)] 

+(p1 · P,) [2c-iEi + 3(mEi + Mcj + mM)] +(pi· Pi)(pt · P,) 

-(pi· Pt) (2EiEf + M(Ei +B1 + M)] 

-(Pi· P1) (2cicf + m(c-i + £1 + m)] +(pi· Pt)(Pi · P1) 

-(pi· P,) [mEi +Mel+ mM] 

-(Pi· Pt) [mEl+ Mci + mM]- (pi· P,)(Pi · P!) 

+ (-2mM(Ei- E,)(ci- cJ} 

+mM (m(Ei + E1) + M(ci + c1} + mM) 

. +2m2EiEf .f_ 2M2c:icf]}. (3.19) 
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Also, 

(3.20) 

It is, in principle, possible to Fourier-transform the product Msing of these unwieldy 

functions to obtain the full relativistic result for !::l.EcM; this has not yet been 

performed. We can also perform the expansion of the energy factors in powers of 

(pfm), where all such momentum-over-mass quotients that occur are taken to be 

of the same order. 

However, this is unnecessary work if we require only a nonrelativistic ex

pansion; in this case there is a much faster way, namely expansion of the spinor 

'bilinears via the Pauli approximants 

u(p') "Yu (p) - (x'l (p+p') +iu x (p'- p) lx} +0 [(.!!-) 3
] 

2m· 2m m 

- (x'.ll + (p + p')
2 
+ iu · (p' x p) lx} + o [(!!..) 4

]. {3.21) 
8m2 4m2 . m 

Using these expansions in Eq. 3.14, and taking lx}, lx') in helicity basis, we quickly 

find 

Msing 

Then Fourier transformation of this result produces 

!::l.EcM,sing = (aQq- ~a.,) X 

.{(!) + _1_ (!(P2 +'r. (r. p)p)) 
r 2mM r · 

-~ (2..- __!__ + _1 ) (ca(r))} + ... 
2 ·m2 mM M 2 

(3.23) 

The expectation values cannot be uniquely evaluated until we choose a basis of en

ergy eigenfunctions, which is equivalent to choosing a potential for the Schrodinger 

equation; we return to this topic momentarily. In comparison to !::l.EcM,sing, the en

ergy contribution from the Breit-Fermi interaction (Eq. 3.1) for a quark-antiquark 
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pair of masses m, Min the CM reduces to 

(HBF) = (aQq- ~a.,) X 

{ (~) + 2~M (~(P2 +r. (r· P)P)J 

-; ( 6
3
(r)) [~2 + ~2 + m~ (o + hs,lhqtJ)] 

-~(~) (L. (~q2 + ;J2 + ~~) + 2:~)} (3.24) 

where g =~(sq. sQ), which i~ -l(l) for s = 0(1). Also, s = Sq + S[J, and s12 is 

the AL = 2 tensor operator 

(3.25) 

For mesons with differently-flavored quarks in a relative f. = 0 state, many of the 
- . 

terms drop out. Let us define 

Then Eq. 3.24 becomes 

B - (~), 
c _ (~(p2 +r· (r·p)p)), 

D =. (63(r)). 

(HBF} = (aQq- ~a.,) [n + 2~Mc- ~ (~2 + ~2 + ~~) n], 
and this is exactly Eq. 3.23 where Q = -1. 

(3.26) 

(3.27) 

We have been up to now considering only the contributions to the mass 

originating from the binding interaction due to one-gluon and one-photon exchanges; 

there are, of course, also contributions from the kinetic energy (K) of the quarks. 

Were we calculating these quantities in a relativistic theory, we would simply com

pute K = ( Jm2 + p2). The square root may be formally expanded in nonrelativis

tic quantum mechanics (NRQM) as well, resulting in an alternating series in (p2n}. 

However, for large enough n in NRQM, these expectation values tend to diverge. 

For example, in the hydrogen atom, divergence occurs for s waves at n = 3. Fur

thermore, if the system is not highly nonrelativistic, the inclusion of the (p4} term 
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may cause us to underestimate grossly the true value of the kinetic energy, The 

problem is that there is no positive (p6) term to balance the large negative (p4 ) 

term. For these reasons, we incorporate the alternating nature of the series in a 

computationally simple way by making the Ansatz 

(3.28) 

In order t<? evaluate the expectation values in the above equations, we need 

to choose a potential. In the meantime, let us simply denote it with U(r). Then at 

last we have the mass formula: 

(3.29) 

The static potential U( r) takes the place of L, the universal quark binding function, 

in Eq. 1 of Ref. [53]. 

3.4 Mass Splitting Formulas 

The static potential in which the quarks interact determines the form of the 

NRQM wavefunction. The strong "Coulombic" (static one-gluon exchange) term 

gives the largest energy contribution of terms within the Breit-Fermi interaction, 

and therefore would also be expected to alter substantially the wavefunction in 

perturbation theory; we thus include this term in the static potential: 

V(r) = U(r)- ~ :., . (3.30) 

Then the mass formula Eq. 3.29 becomes, using Eq. 3.27, 

(3.31) 

where the expectation values are now evaluated as integrals over solutions to the 

Schrodinger equation with potential V(r), not U(r) as in the previous Section. 
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Now at last we are in a position to write explicit formulas for the mass 

splittings of interest. Denoting the mass of a meson of spin S and valence quarks 

Q,q as M 5 (Qq), we define 

tJ..O Q - M 0(Qu)- M 0(Qd) 
1 ' M 1(Qu)- M 1(Qd) , fj.Q - (3.32) 

fj.Qu M 1(Qu)- M 0(Qu) -
fj.Qd - M 1(Qd) - AfO(Qd), 

where u and d, the up and down constituent quarks, are nearly degenerate in mass: 

Defining !J..m = mu- md and m = (mu + md)/2, we have IAm/ml << 1. Therefore, 

the differences in Eq. 3.32 are expanded in Taylor series in (Am/m) about m. It is 

also convenient to define 

A -

f3 - l+m/M' 
J.L - usual reduced mass, 

jl - m/3, 

Do. - f3 (.!!:...Bas) I , 
as 8p p.=Ji. 

( ax) Dx - f3 p-
8 

_,, X= A,B,C,D, (V(r)). 
J.L p.=p. 

(3.33) 

Then the expressions for isospin mass splitting are 

!J..0,1 _ [2m2 +DA + DA lAm +D Am 
Q - Jm2+A· JM2+A 2m (V}~ 

4 { 1 -3as!J.m 2m2M (De-C+ CDa.) 

-2:3 [ (1+ 4Y: + ::) (Dn + DD • .)-2 (1+ 2!1 _:) n]} 
+<>Q [s+ 2~Mc- 2:. (1+4!1_: + _::) v] 
+0 [ ( !>.:) 

3

] + 0 (a!>.:) . (3.34) 
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Note that no derivatives appear in the aEM terms because we take both aEM and 

(D..m/m) (but not a,) as expansion parameters. Furthermore, the running of a,(Jl) 

is explicitly taken into account. 

For vector-pseudoscalar splittings, we have 

D..Qq = 3!~ [(~a,- aQq) D ±~a,~: (DD + DDa.- D)] 

+0 [ ( ~:)} 0 (a~), with ± for q = u(d). (3.35) 

Let us remind ourselves ofthe physical significance of the terms in the previous 

two equations. Terms containing A signify kinetic energy contributions, including 

intrinsic quark masses. The potential term is identified, of course, by V; B, C, and 

D denote static Coulomb, Darwin, and (generalized) hyperfine terms, respectively. 

3.5 Quantum-mechanical Theorems 

In order to apply the preceding results, we need to evaluate the expectation 

values A,B,C,D, and (V(r)) for a chosen potential V(r). Following Quigg and 

Rosner (61], we present two quantum-mechanical theorems that make the evaluation 

of these expectation values and their mass derivatives simpler. 

Theorem 3.1 (Feynman-Hellmann theorem) For normalized eigenstates of a 

Hamiltonian depending on a parameter .A, 

8E = (8H(.A)) 
8-A 8-A . (3.36) 

In the particular case that .A= Jl, 

- = --[E- (V(r))] + - . 8E 1 (8V) 
811 J.t a11 

(3.37) 

The other result may be less familiar. For reasons that will become clear, 

let us call it the generalized virial theorem (GVT). 

Theorem 3.2 (Generalized virial theorem) Consider bound eigenstates 

· ue(r) in a spherically symmetric potential V{r) such that 

lim r2V(r) = 0. 
r-+0 



Then, writing the Schrodinger equation as 

II 2p, [ 1i
2
l(l + 1)] ue (r) + 1i2 E- V(r)- · 
2

,_,r2 ue(r) = 0, 

and defining ae by 

then 

i) ae is a nonzero constant; 

ii} for q > -2£, 

. ue(r) _ 
hm --;:--+1 = ae, 
r-+0 r 

(2£ + 1)2a~6q,-:u - - !': (rq-1 (2q[E- V(r)]- r ~)) 
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+(q -1) [2£(£ + 1)- ~q(q- 2)] (rq-3
). (3.38) 

Clearly this theorem proves most useful for potentials easily expressed as 

polynomials in r. But in fact there are some interesting general results included. 

For example, the q = l = 0 case generates the well-known result for s waves, 

2 J.L (dV) llli(O)I = 21r1i2 dr ' (3.39) 

whereas the q = 1 case produces 

E- (V(r)) =- r-1 ( dV) 
2 dr ' 

(3.40) 

the quantum-mechanical virial theorem. 

Using partial integration, the Schrooinger equation, and the GVT, it is 

possible to show the following (1i = 1): 

A - 2p, [E- (V(r))], 

c 4p, [ E (~)- (v;r))- ~ ( ~) (1 + 6e,o)], 
D - ~ (~)6e,o, 

r. ( d~;r) r dr = A - f( l+ 1) c~) . (3.41) 
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In addition, we must also uncover what we can about the JL-dependence 

of expectation values. For a general potential this is actually an unsolved problem; 

unless the potential has very special JL-dependence, 9ne can show . that the only 
( 

case in which one may scale away all dimensionful parameters in the Schrooinger 

equation is when V(r) = Vor". In that case, the JL-dependence is entirely contained 

in the scaling factors, and computing Dx is trivial. Unfortunately, for the potential 

we consider in the next Section, this is not true, and we must resort to subterfuge 

to obtain the required information. 

3.6 Example: V(r) = rfa2 - Kjr 

The potential V(r) = rfa2 - K.jr, where K =~a~, is interesting because it 

phenomenologically includes quark confinement via the linear term. This potential 

was considered in greatest detail by Eichten et al. (62] to describe the mass splitting 

structure of the charmonium system (and was later applied to bottomonium). The 

Schrooinger equation was solved numerically, but it is possible to extract a great 

deal of information from their tabulated results. 

This is possible because of the GVT. If we rescale the Schrooinger equation 

with the linear-plus-Cou~omb potential to 

(
f!l l(f+l) A ) 
dp2 - p2 + p + (- p we(p) = 0, (3.42) 

where 
p (~)1/3 A K(2JLa)2f3' - a2 r, -
( (2JLa4)1/3 E, we(P) ( 2) 1/6 - - ue(r) ;'"' , 

(3.43) 

then the GVT gives 

(q=O) a~bo,e - (~) [l+A(~)-2t(l'+l)(:3 )], 
( q = 1) 0 3 (p) - 2( - A ( ~) . (3.44) 

Also, defining 

(3.45) 



58 

we find 

( v
2

) =- (p) + (+A(~) -l(l + 1} (;2 ). '(3.46) 

It is a happy accident of this potential that all of the quantities in the 

expectation values we need, for any l, may be expressed in terms of the three 

quantities (, {1/ p2), and (v2). These are exactly the values tabulated for the ls 

state, as functions of A, in Eichten et al. Table I. Defining q = (21l/a2)
1
/
3 and 

taking l = 0 (for our mesonic model), we find 

A - q2 (v2), 
B - ;A [3(v2)- (]' 

c - u2 [ 2B( + u ( -3 + A { : 2)) l , 
D - :; [ x( :2 ) + 1]. (3.47) 

So now we can compute all of the necessary expectation values numerically. The 

superficial singularity in B(A = 0) is not real: Note that B(O) is just the ground 

state expectation value {1/r) for a pure linear potential. Then item i) in Theorem 

3.2 guarantees that the integral around r = 0 converges, and the normalization 

condition of the wavefunction assures convergence of the rest of the integral. 

defining 

and 

The mass derivatives must be handled in a different fashion. We begin by 

D- = .!!:_ 8a8 

a. - aa 8JL. (3.48) 

From the Feynman-Hellmann theorem (Eq. 3.37) we may show 

(3.49) 

As mentioned in the previous Section, scaling of the Schrodinger equation can be 

accomplished for J.L-independent potentials that are monomials. In the case A = 0 (a 
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purely linear potential), the scaling would be perfect, and(, (1/ p2), and (v2) would 

be 1 JL-independent. In the A "f:. 0 case, the derivatives must be found numerically. 

Again, we fortunately have a table of numerical values of the desired expectation 

values, as functions of A(JL). We fit the expectation values Y ( = (1/ p2), (v2)) to 

the functional form 

Y(A) =Yo+ KAny. (3.50) 

Then, using Eq. 3.43, we find 

- (2 - ) Dy = 3 +Do.. ny (Y - Y0) . (3.51) 

Finally, define 
- ax · 
Dx = JL OJL for X= A,B,C,D, {3.52) 

so that 

Dx = f3 Dxl _. 
Jl=Jl 

{3.53) 

Then we find 

DA -
Ds -

De -

DD -

·In the exceptional case of Ds, we simply note that the wave equation may be exactly 

scaled when A = 0, and then we can quickly show that Dsl = -31 Bl . This 
).=0 ).=0 

provides us with everything we need to produce numerical results. 

Before leaving the topic, let us mention that many complications of JL

. derivatives of expectation values vanish if the potential itself has the appropriate 

JL-dependence, for then scaling of the wave equation is possible. For example, one 

can scale the Schrodinger equation for the potential 

(3.55) 

where c is a pure number. 
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3.7 Numerical Results 

The method of obtaining results from the theory requires us to choose 

several numerical inputs, most of which are believed known to within a few percent. 

Let us choose the following inputs to the model: 

m = 340 MeV, M 4 = 540 MeV, 

Me= l850 MeV, Mb = 5200 MeV, a= 1.95 GeV-1
• (3.56) 

The light quark constituent mass is obtained by assuming that nucleons consist of 

quarks with Dirac magnetic moments only, which may be added nonrelativistically 

to provide the full nucleonic magnetic moment. Likewise, the strange quark mass 

issues from the same considerations applied to strange baryons [53]. The c and b 

quark masses are simply found by dividing the threshold energy value for charm 

and bottom mesons by two· {however, smaller masses have been predicted using 

semileptonic decay results in addition to meson masses [63]). The confinement 

constant is inferred from charmonium levels [62]. 

One important input not yet mentioned is ~m, the up-down quark mass 

difference. Traditionally, values of ~m ~ -3 to -8 MeV have been inferred to 

account for the isospin mass splittings of the lighter hadrons. Using our model with 

the inputs listed in Eq. 3.56, we find that the experimental splittings for the D 

and B mesons (both vector and pseudoscalar) as of 1992 can be satisfied within 

one standard deviation of experimental uncertainty for values of~m in the narrow 

range of -4.05 to -4.10 MeV. In contrast, it is found that for no choice of ~m can 

one simultaneously fit D- and K-meson data, as was done in the earlier models; 

this conclusion remains true even with the restrictions of the new CLEO data. 

Before exhibiting the quantitative results, let us describe the method by 

which they are obtained. Once particular inputs for the above variables are chosen, 

one can compute the various mass splittings for the values of ). ex: a 8 that occur in 

Table I of Ref. [62], and hi-between values may be interpolated. We then fit vector

pseudoscalar splittings (computed via Eq. 3.35) to the corresponding experimental 

data (since these numbers have the smallest relative uncertainties of the splittings 



Table 1: Contributions to mass splittings of heavy mesons: Isospin pairs 

fr.s 

Source 
D.· _!L 
Kinetic energy 
Potential energy 

1 Strong Darwin 
' EM Darwin 

Static Coulomb 

D.~ 
Strong hyperfine 
EM hyperfine 
Total b.~ 

D.~ 
Strong hyperfine 
EM hyperfine 
Total.D.h 

D mesons 
0.363 

(MeV) 

-4.109 
1.057 

-0.834 
-0.769 
-2.442 

2.148 
0.424 

-4.525 

3.683 
1.817 

-1.596 

B mesons 
0.312 

(MeV) 

-3.523 
-1.645 
-0.635 
0.147 
1.252 

4.075 
-0.561 
-0.889 

5.244 
-0.825 
0.017 
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we consider) and thus obtain a value of a.s. For the three systems K, D, and B, we 

use the three values of fr.s to estimate graphically (and, admittedly, rather crudely) 

its mass derivative. Applying the values of the strong coupling constant and its 

derivative to the splittings in Eq. 3.34, we generate all of the other values. If the 

resultant numbers do not fall within the experimental uncertainties for such split

tings, we vary the input parameters (most importantly, D.m) until a simultaneous 

fit is achieved. 

Tables I and II display the various contributions to mass splittings derived 

in this fashion for B and D mesons. Although the kinetic term (which includes 

the explicit difference .D.m) and the static Coulomb term are expectedly large, a 

significant contribution to the mass splitting arises in the strong hyperfine term. 

That strong contributions to the so-called electromagnetic mass splittings could 

be important was observed by Chan [50], and was exploited in the subsequent 

literature. It is exactly this term that is most significant in driving the B splittings 



Table II: Contributions to mass splittings of heavy mesons: (1-, o-) pairs 

AQu,Qd 
Strong hyperfine 

(leading) 
(subleading) 

AQu 
EM hyperfine 
Total A* Qu 

AQd 
EM hyperfine 

D mesons 
0.363 

(MeV) 

141.30 
± 0.77 

0.93 
143.00 

-0.46 
140.07 

B mesons 
0.312 

(MeV) 

46.04 
± 0.58\ 

-0.18 
46.45 

0.09 
45.54 
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toward zero. Note also the decrease in the derived value of a, as the reduced mass of 

the system increases when· we move from the D system to the B system, consistent 

with asymptotic freedom in QCD. It was this running that motivated the inclusion 

of mass derivatives of the strong coupling constant in this model. If they are not 

included, one actually obtains a value of Am > 0, in contrast with all estimates 

from both nonrelativistic and chiral models. 

The net result is that, using 1992 data, one can satisfactorily fit the data for 

the D and B systems simultaneously in the most natural nonrelativistic model with 

a physically reasonable potential. The comparison of the results of this calculation 

for Am = -4.10 MeV to experimental data is presented in Table III. (Note, 
.. ~ 

however, comments on effects of new data in the following Section.) 

However, the table also exhibits very poor agreement for the K system 

(despite the fact that the fit to vector-pseudoscalar splittings yields the value as = 
0.424, which runs in the correct direction). One may view this as a failure of 

the nonrelativistic. assumptions of the model in a variety of ways. Most obvious 

are the Ansatz Eq. 3.28, which is certainly not an airtight assumption in even 
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Table III: Meson mass splittings compared to experiment 

Mass splitting Notation Pred. (MeV) Expt. (MeV) 
K+ -J<O Ao 

s -0.98 :-4.024 ± 0.032 
K*+- K*0 Al 

s -0.15 -4.51 ± 0.37a 
K*+- K+ A:u 398.6 397.94 ± 0.24a 
K*o- J(O A:d 397.8 398.43 ± 0.28a 
D0 -n+ Ao 

c -4.53 -4.77 ± 0.27 
D*0 - D*+ Al 

c -1.60 -2.9 ± 1.3 
D*o- no A* 

Ctl 
143.0 142.5 ± 1.3 

D*+- v+ A~ 140.1 140.6 ± 1.9a 
B+-B0 A2 -0.89 -0.1 ± 0.8 
B*+- B*0 At 0.02 NA 
B*+- B+ Ab, 46.5 46.0 ± 0.6b 
B*o- Bo Abci 45.5 46.0 ± 0.6b 

aobtained as a difference of world averages. 

b Average of charged and neutral states. 

the best of circumstances, and the crudeness of the estimate of {)a:3 fop,. Other 

possible problems include the assumption that the quarks occur only in a relative 

.e = 0 state (relevant for K*-mesons), and the assumption that the strong effects 

are dominated by a confining potential and one-gluon exchange, since at the lower 

energies associated with the K system, O(a;) terms and more complex models of 

confinement may be required. The failure of these assumptions can drastically alter 

the strong hyperfine interaction, which determines the size of a 8 , and hence the 

other mass splittings. 

Some may find the small size of a., somewhat puzzling. This is primarily 

the result of the confining term of the model potential: It causes the wavefunction to 

be large at the origin, and thus a small a8 is required to give the same experimentally· 

measured vector-pseudoscalar splitting (see Eq. 3.35). Such small values for the 

strong coupling constant might lead to excessively small values of Aqcv and large 

values for mesonic decay constants f Qq· We use the naive expressions for these 
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quantities, 
127r 

as(J.l) = {33-2n,)ln(J..t2/A2r (3.57) 

and, assuming the relative momenta of the quarks is small, 

,.~ = 12 l\11(0)12. 
Qq MQ+mq -

{3.58) 

In the D system, for example, a., .:.... 0.363 and J.l = 287 MeV, and with three fia-

vors of quark, we calculate AqcD = 42 MeV (roughly consistent with Aqcn = 34 

MeV from the B system) and fD = 342 MeV. However, one may state the fol

lowing objections: First, AQcD is computed from the full theory of QCD, but the 

nonrelativistic potential approach includes the confinement in an ad hoc fashion, 

by including a confinement constant a, which is independent of a.,. Furthermore, 

choosing AqcD as the renormalization point forces an artificial Landau singularity 

at J.L = AqcD· The problem is that little is known about the low-energy behavior 

of strong interactions. At low energies the computation and interpretation of AqcD 

requires a more careful consideration of confinement. With respect to the decay con

stant, the assumption that the quarks are relatively at rest leads to the evaluation 

of the wavefunction at zero separation. Inclusion of nonzero relative momentum 

presumably results in the necessity of considering separations of up to a Compton 

wavelength r ~ p-l, for which the wavefunction is smaller in the ls-state. Thus 

decay constants may be smaller than computed in the naive model. 

There is one further qualitative success of this model, a partial explanation 

of the experimental facts that D;- Ds = 141.5 ± 1.9 MeV~ D*- D, and B;
B.,= 47.0 ± 2.6 MeV~ B*- B, namely, the approximate independence of vector

pseudoscalar splitting on the light quark mass. In our model, the leading term of 

the splitting is, using Eqs. 3.35.and 3.47, 

(3.59) 

Inasmuch as {3, >. {1/ p2), and a 8 are slowly varying in the light quark mass m, the 

full expression reflects this insensitivity, in accord with experiment. In fact, we may 



fit the experimental values above to obtain more running values of 0'8 : 

.L\~ - 141.5 MeV for ·a.,= 0.351, 

.L\bs - 47.0 MeV for a.,= 0.295, 
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(3.60) 

and again these decrease as the mass scale increases. Note, however, one kink in this 

interpretation: The heavy-strange mesons all have larger reduced masses than their 

unflavored counterparts, yet the corresponding values of as are nearly the same. 

3.8 · Conclusions 

In this Chapter, we have seen how mass contributions to a bound system 

of particles are derived from an interaction Hamiltonian in field theory, and how 

this calculation is then reduced to a pro.blem in nonrelativistic quantum mechanics. 

For the system of a quark and antiquark bound in a meson, the exchange of one 

mediating vector boson reduces to the Breit-Fermi interaction in the nonrelativistic 

limit. It is also important to consider contributions to the total energy from the 

kinetic energy and the long-range potential of the system; in fact, the higher-order 

momentum expectation values can be so large that it is necessary to impose an 

Ansatz (Eq. 3.28) in order to estimate their combined effect. Future work may 

suggest better estimates. 

It is found in the case of a linear-plus-Coulomb potential that the largest 

contributions to electromagnetic mass splittings originate in the kinetic energy, 

static Coulomb, and strong hyperfine terms. However, it is likely that similar results 
' hold for other Ansiitze and potentials. As in other models, vector-pseudoscalar mass 

. differences are determined by strong hyperfine terms. 

With typi~al values for quark masses, the confinement constant, and the 

up-down quark mass difference, we have obtained agreement using 1992 numbers 

for the mass splittings of the D and B mesons. The failure of the model for K 

mass splittings is attributed to the collapse of the nonrelativistic assumptions in 

that case. The model also qualitatively explains the similarity of heavy-strange to 

heavy-unflavored vector-pseudoscalar splittings, although additional work is needed 
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to explain why these numbers are nearly equal, 9,espite the expected inequality of 

a., at the two different energy scales. 

However, data published after the publication of .Ref. [56] may ~erve to 

render the simple nonrelativistic linear-plus-Coulomb potential model less fit to de

scribe isospin splittings. The numerical fit performed in the previous Section is 

notable in that it was just barely possible with the 1992 data to fit simultaneously 

the isospin splittings (D0 - D+), (D*+ - D*0 ), and (B+ - B0) within one stan

dard deviation of their central values (see Table III). Recently, these experimental 

uncertainties were reduced by the CLEO collaboration [57]: 

n+- D0 - +4.80 ± 0.10 ± 0.06 MeV, 

D*+- D*0 - +3.32 ± 0.08 ± 0.05 MeV, 

B+-~ - -0.41 ± 0.25 ± 0.19 MeV, 

(3.61) 

where the two uncertainties are statistical and systematic, respectively. These num

bers, particularly the new D* splitting, upset the fit of the previous Section. The 

problem, as before, is easy to state: The B splitting is surprisingly small compared 

to the D splitting. If we wish to keep the nonrelativistic potential model, we might 

simply have to abandon the original linear-plus-Coulomb potential once and for all. 

For completeneSs, we list other relevant recent CLEO measurements [57]: 

D*+- n+ - 140.64 ± 0.08 ± 0.06 MeV, 

D*0 - D0 - 142.12± 0.05 ± 0.05 MeV, 

D*+- n+ - 144.22 ± 0.47 ± 0.37 MeV. 8 ., 

(3.62) 

Another interesting problem is the running of a., itself at low energies. As 

mentioned in the previous Section, this running cannot be neglected if we are to 

obtain sensible results, and yet our approximation of this running is based on crude 

assumptions. The size of a 8 also enters into another possible development, namely, 

whether terms of O(a;) are important, particularly for the K system. More reliable 

estimates are required. 

In addition to the explicit formulas derived in this Chapter, the techniques 

employed here may be applied to later efforts: In particular, the explicit consid-
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eration of the mass-dependence of expectation values and the use of quantum

mechanical theorems to reduce the number of such expectation values may prove 

useful and even necessary in subsequent models. 



' 

Chapter. 4 

Baryon Masses 1: Group Theory 

4.1 Introduction 

The final two Chapters are dedicated to a study of the mass spectrum of 

the lightest baryon multiplets (i.e:, the octet and decuplet) in an SU(3)L x SU(3)R 

chiral Lagrangian formalism. Specifically, we study baryon mass relations and their 

corrections, and consider the determination of light quark mass parameters. 

Historically, the chiral Lagrangian [64] approach was developed in the late 

1960's and early 1970's to incorporate in one effective field theory the specific tech

niques of the nonlinear sigma model, current algebra, and soft-pion theorems, but 

the essential physics behind all of these particular approaches lies in just two ele

ments: symmetry and dynamics. One begins with a Lagrangian possessing a large 

symmetry (SU(3)L xSU(3)R), which is spontaneously broken to a smaller symmetry 

(SU(3)v) approximately obeyed by nature; perturbative terms that explicitly break 

the smaller symmetry are then added by hand. The Nambu-Goldstone bosons of 

the spontaneous symmetry breaking form the SU(3)v octet of light pseudoscalar 

me8ons, and the explicit symmetry breaking provides them with masses. Finally, 

since the relevant dynamical degrees of freedom in this Lagrangian are the N ambu

Goldstone bosons, one has now a dynamical theory of the pseudoscalar octet with 

an approximate SU(3)v symmetry built in. 

These two elements also provide a natural means of studying the struc-

68 
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ture of the baryon mass spectrum in a chiral theory. In this Chapter we explore 

the relations of baryon masses purely as consequences of SU(3) group theory (sup

pressing here and henceforth the subscript V) because any theory possessing chiral 

symmetry must respect the appropriate group-theoretical constraints; here the al

gebraic structure of the theory is emphasized. In the next Chapter we introduce the 

specifics of our chiral theory and use its dynamical properties to make numerical 

predictions of corrections to baryon mass relations. 

This Chapter is organized as follows: In Sec. 4.2 we exhibit the full SU(3) 

structure of octet and decuplet baryon masses as organized by the representations of 

SU(3) symmetry-breaking operators. In Sec. 4.3 we study how such representations 

may come about in a chiral Lagrangian and consequently find, to second order in 

flavor breaking, four relations holding among the decuplet masses [65] and one 

relation among the octet masses (66]. We discuss the independent quark mass 
. . 

parameters of an arbitrary chiral theory in Sec. 4.4 and examine their importance 

in determining the viability of mu = 0. In Sec. 4.5 we digress to discuss the problem 

of uncertainties in decuplet masses, and then, as an application of the group theory 

without dynamics, compute numerical values for the decuplet· chiral coefficients. 

4.2 The Structure of SU(3) Breaking 

We begin with a systematic classification of mass terms of the octet and 

decuplet baryons within SU(3) group theory. Consider, within the effective La

grangian, any term contributing to the mass of a field multiplet transforming under 

. an R-dimensional representation: 

oC = RCJR, (4.1) 

where 0 is some operator. The pattern of SU(3) breaking in the masses is exhibited 

by the decomposition of (R x R) into combinations transforming under all possible 

irreducible representations. For the octet and decuplet, these representations are 

(4.2) 

.. 
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and 

10 ® 10 = 1 $ 8 9 27 9 64, (4.3) 

respectively. The projections of 0 forming the coefficients of these combinations, 

called mass operators, are labeled with the SU(3) indices of the corresponding 

combinations. Furthermore, this analysis assumes negligible mixing from heavier 

states with the same quantum numbers. 

A further restriction on mass terms in the Lagrangian is that they not only 

form bilinears of the desired multiplet field with its conjugate, but in fact connect the 

same states within the multiplet. Because all additive quantum numbers of fields 

are the opposites of those of their conjugates, we see that the additive quantum 

numbers of mass operators must be zero. In SU(3} this means mass operators 

possess the additional properties !113 = 0 and dY = 0. Note, however, that we still 

have "mixing" terms for any states with the same values of I a and Y; in our cases, 

no decuplet states mix, whereas in the octet, "£0-A mixing can occur. 

It remains only to distinguish degenerate d/3 = dY = 0 operators within 

a representation. As usual, we use the standard notation of labeling with the isospin 

Casimir I(I + 1), as in 0 = cfOf. It then becomes a straightforward exercise with 

SU(3) Clebsch-Gordan coefficients to decompose multiplet masses into the forms 

Ms - Csa, 

M1o - C10b, 
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where 

Cs = 
1 1 1/I +! 1 1 1 

1ffo 
1 0 272 +275 -2 s 2 +2\Ta -273 +273 +2 10 +710 

1 1 +!If +! 1 1 1 
1Ho 

1 0 272 +275 2 5 2 -2Ta +2J3 -273 +2 10 -"710 
1 1 0 0 1 

+2V1 
1 1 0 1 

272 -75 +ra -2Jj -2ffo +"JG 
1 ' 1 0 0 0 0 0 1 0 -Jf 272 -75 -2ffo 
1 1 0 0 0 0 0 -~fro 0 0 272 +75 2 10 
1 1 0 0 1 1 1 1 0 + 1· 

272 -75 -ra -273 +2Jj -2\130 "J6 
1 1 ' +!If 1 1 1 

+27a 1ffo 
1 0 272 +275 2 5 -2 +273 -wa +2 10 -'710 

1 1 _!If 1 1 1 1 
1/k 

1 0 2V'2 +275 2 5 -2 -273 +wa -2Jj +2 10 +'710 
0 0 1 0 0 1 1 0 -~ 0 -75 -2 -2 
0 0 1 0 0 +! +! 0 -#a 0 -75 2 2 

c10 = 
1 1 ' 

+#a +.fro 3 +if;. 1 +lffs 1 1 
710 +vw +770 +2735 2 35 +277 +275 

1 1 1 +.fro 1 -{A 1 1 1 3 
710 +710 +Jjij +770 +2V'3s + 2V"i''s . -277 -275 

1 1 1 +.fro 1 -{A 1 1 1 ' 3 
710 +710 -730 -770 +2J3s -2Ji'Os -277 +275 

1 1 -No +#a 3 +{/; 1 -l.fl 1 1 
710 +'710 -770 14 +2J35 2 35 + 2/7 -275 

1 0 +Hs -~ 3 1 2 -1ft 1 0 710 -770 +Ja -'7a'S --;n 
1 0 0 -~ 0 -1ft 2 0 2 0 710 -735 +77 
1 0 -#s -~ 3 1 2 +1ft 1 0 ;no +770 +J42 -'JjS --:n '" 

1 1 1 -#a -~ 0 3 +1ft 0 0 7io -710 +"Jjij 35 +735 
1 1 1 -#a ~ 0 3 -!fr 0 0 710 -710 -Jlo + +"735 
1 -~ 0 +~ 0 0 2 0 0 0 710 70 -735 
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and 

al 
0 pp bl 

0 A++A++ 

~1 nn b8 
0 A+A+ 

a~~ E+E+ b8 
1 

AOAO 

a~2 EOEO b~1 A-A-
a~2 AA b21 E•+E•+ 

Ms= b= 1 M10= (4.4) a= '. ' ' :E•OE•O 
. alO E-E- b21 

1 2 

a1o 
1 so:=:o b64 

0 E•+E·-
a21 =-=- b64 =•o=•O 

0 -- 1 - ~ 

a21 E0A br =-==·-1 - -
~7 AE0 b64 . 3 n-n-

Here the 8 ® 8 representations 81,2 are distinguished by the symmetry 

properties of their components under reflection through the origin in weight space 

(i.e., exchanging the component transforming with quantum numbers (l,I3 ,Y) with 

that transforming under (I,-13,-Y)). 81,2 is symmetric (antisymmetric) under this 

exchange, giving, for instance, the same (opposite) contributions to the masses of 

.the p and:=:-. 

With the above normalization of the chiral coefficients af and bf, the 

matrices Cs,10 are orthogonal. The phase conventions of the Clebsch-Gordan coeffi

cients (see, e.g., Ref. [67]) are chosen so that the coefficient of the term 1/J'I/J is truly 

m.p, so that, for example, each octet term has the same singlet coefficient aA /2-/2. 

It is easy to understand the number of chiral coefficients appearing in 

the octet and decuplet. With arbitrary SU(3) breaking, one may clearly supply 

each baryon with a distinct arbitrary mass; hence the decuplet must have at least 

ten chiral coefficients and the octet eight. But because the oct~t supports E0-A 

mixing, there must be at least one further coefficient to parametrize a mixing angle 

(). In the above matrices there are two,· corresponding to the bilinears E0 A and 

AE0 . However, hermiticity of the Lagrangian reduces these to one, imposing the 

constraint a~0 = -al0 . 

Now it is a simple matter to extract numerical predictions for the chiral 
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coefficients in terms of the baryon masses (and the E0-A mixing, in the octet case). 

In fact, the lack of decuplet mixing terms allows one to represent compactly the 

entire C10 matrix equation in terms of a single formula in ! 3 and Y. First renor

malize the coefficients by removing roots: Define the vector c by multiplying the 

corresponding entries of the vector bin Eq. 4.4 by 

(
1 1 {2" 1 1 1 1 1 1 1) 
~' 710' V ls' Jffii' ~' "742' 2ffs' 2Ji0s' M' 2Ts ' 

so that, for example, ci7 = by7 / v"ffi. Then the mass formula reads 

M10 = ~ + ~y + c~ / 3 + c~7 ( 5Y2 + 3Y - 5) 

+ c~7Ia (5Y- 3) + ~~7 (12Ii- Y 2
- 6Y- 8) 

+ ~44 (35Y3 + 45Y2
- 50Y- 24) + c~4Ia (21Y2

- 9¥- 10) 

:+ 1
1

2~ [12Ii (7Y- 6) -7Y3
- 36¥2

- 20Y + 48] 

+ ~4413 (20Ii- 3¥2 -18Y- 20), {4.5) 

where hypercharge Y is normalized by Q = I a + ~ Y. · 

4.3 Baryon Mass Relations · 

In the strictest sense, there could not exist exact baryon mass relations, 

even if the lightest observed baryons truly formed an exact octet and decuplet of 

SU(3); as pointed out in the previous Section, there are at least as many indepen

dent chiral coefficients as baryons in each multiplet. However, if we can find physical 

reasons that operators transforming under certain representations do not appear, 

then the corresponding chiral coefficients vanish, indicating (by Eq. 4.4) a relation 

among baryon masses. 

When Gell-Mann and Okubo [68, 69], and Coleman and Glashow [70) 

derived the famous hadron mass relations named for them, the physical nature 

of the symmetry breaking was not well understood. One could only assume that 

operators in a few representations were responsible for hadron masses, tally the 
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resulting relations, and check them against experiment for self-consistency. We 

have come to believe that the chiral Lagrangian holds the answer: SU(3) breaking 

is accomplished by inequality of masses and electric charges of the three light quarks 

u, d, and s. 

In terms of SU(3) flavor indices, the quark mass and charge operators Mq 

and Qq are 3 x 3 matrices; in terms of SU(3) representations, such a matrix X may 

be decomposed into singlet ((TrX)l) and octet (X -l(ThX)l) portions. Thus, to 

first order in flavor breaking, any combination of baryon masses with no singlet or 

octet piece forms a mass relation. 

Let us consider some examples, first supposing that splittings within iso

spin multiplets are negligible. Then all chiral coefficients of the form cf with I> 0 

must also be negligible. In th~s case, the only independent octet masses are N, :E, 

A, and 2, whereas the only nontrivial chiral coefficients are aA, ag1
, a~, and a~7 • If 

we only work to first order in flavor breaking, the last of these is identically zero, 

and we find 

1\ - 1 llria27 _ aA + l't" 1(N + '=) - 0 (4.6) 
~GMO = 2V3' o ~ 4 4"-'- 2 ..... - ' 

the Gell-Mann-Okubo relation (68]. For the decuplet, the independent masses are 

~' :E*, 3*, and n, whereas the nontrivial chiral coefficients are cA, ~' ~7 , and cg4
• 

To first order in flavor breaking, the vanishing of the last two coefficients gives rise 

to two nontrivial relations, which may be written 

0 -

0 

5(2~7 + cr) - (~ - :E*) 

1o(~7 - 2eo64
) - (:E*- 3*) 

(:E*- 2*), 

(n- 2*), 
{4.7) 

Gell-Mann's famous equal-spacing rule [69]. The equal spacing is also clear from 

Eq. 4.5, because the only surviving coefficients in this case are cfi and~· 
Now consider second-order terms in flavor breaking. A priori we might 

expect to find that all of the representations within the product 8 x 8 occur, but 

we show that this is not the case. Because of charge conjugation symmetry of the 

strong interaction, the mass Lagrangian contains no terms with an odd number of 

Q q factors. Thus the only second-order terms in flavor breaking are of the forms 
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(Mq x Mq) and (Qq x Qq)· Consider the product of two identical arbitrary matrices: 

(X x X)i/1, which contains such terms as X/X/, XlX/, and various traces of 

X, where i, j, k, l are flavor indices in the usual notation. It is readily seen that 

this product has no piece transforming under a 10, for such a tensor with the given 

indices has the form AijmEmkl, and is symmetric under permutation of { i, j, m}. 

If we attempt to construct a product with these symmetry properties from two 

identical matrices, we quickly see that such a term vanishes. Similarly, the product 

of two identical matrices may contain no piece of a 10. 

We conclude that, to second order in flavor breaking, the octet chiral 

coefficients al0 = -al0 are zero. The baryon mass relation corresponding to the 

vanishing of these coefficients is 

the Coleman-Glashow relation [70]. For the decuplet, the analysis is even easier: 

8 x 8 contains no 64 for arbitrary pairs of 3 x 3 matrices, and so we have four mass 

relations good to second-order in flavor breaking, corresponding to the vanishing of 

c
64

o,1,2,3: 

~1 = 20<f - ~++- 3~+ +3~0 - ~-, (4.9) 

~2= 28~- (~++_~+-~0 +~-)-2(~·+-2~*0 +~·-),(4.10) 

~3 = 6{7cf- 4') - (~+- ~0)- (E*+- E*-) + (2*0
- 2*-), (4.11) 

~4 = 35cr - ! ( ~ ++ + ~ + + ~ o + ~-) - ( E*+ + E*0 + ~·-) 
4 .· . 

+ ~ (:=:*0 + :=:·-)- n- (4.12) 

are four vanishing ·combinations. Notice that the first three of these are isospin

breaking, and only the fourth remains in the limit that isospin is a good symmetry. 

These relations are not unknown in the literature. In fact, the first three 

can be trivially derived from quark model calculations over a quarter of a century 

old [71, 72]. The relations found in these papers connect the masses of the octet 

to decuplet baryons, for when these were first derived, the octet masses were al

ready much better known than the decuplet masses. Eqs. 4.9-4.12 can be obtained 
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from the earlier relations by elimin~ting octet baryon masses in the latter. Such 

intermultiplet relations do not occur in the form of chiral perturbation theory that 

we use, as the octet and decuplet are treated as two independent multiplets, unre

lated by the physical fact that they are both three-quark states. Here the average 

decuplet-octet mass splitting fJ ~ 300 MeV is an independent parameter. 

Eq. 4.12 is the remnant of Gell-Mann 's equal-spacing rule, as may be seen 

from Eq. 4.7. It was pointed out by Okubo [73] as early as 1963 that the only 

surviving such relation at second order in flavor breaking is 

a - 3E* + 32* - n = o, (4.13) 

which is, neglecting isospin splitting, the same as Eq. 4.12. It was also derived in 

this form by Jenkins [86], using the heavy baryon effective field theory described in 

the next Chapter. 

Equivalent forms of all four relations have been derived in a very general 

quark model, the general parametrization method of Morpurgo [75]. Again, the 

relations were written in terms of equations connecting octet to decuplet masses. 

Eq. 4.9 is somewhat special because it is the only relation good to second 

order among baryons from only one isomultiplet. Indeed, it is seen to be simply a 

consequence of the SU(2) Wigner-Eckart theorem applied t·o an isospin-3/2 multi

plet, when all Lagrangian mass terms transform as I= 0, 1, 2. I= 3 terms require 

at least three octet operators, as the largest isomultiplet contained in an 8 is I = 1. 

Similarly, if we consider relations good to first order in flavor breaking·, the SU(2) 

Wigner-Eckart theorem supplies us a number of additional relations, including the 

E equal-spacing rule [70]: 

(4.14) 

which is clearly broken only by I = 2 operators. We caution that E0 in this equation 

refers to the isospin I = 1 eigenstate rather than the mass eigenstate; this relation 

is explored in Sec. 5. 7. 

An amusing implication of the insensitivity of Eqs. 4.9-4.12 to the form 

of the chiral breaking, combined with the symmetry of the decuplet field under 
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permutation of flavor indices, is that the set of four decuplet relations is invariant 

under permutations of the three isospin a.Xes T3 , Ua, V3 in the weight diagram of the 

decuplet in flavor space; for example, Eq. 4.9 becomes 

o = ~:::.-- 3E*- + 3:=:·-- n-, ( 4.15) 

under Ta 1-t Ua, Ua 1-t -Va, YaH -Ta, or 

(4.16) 

under T3 1-t - Va, Ua H Ta, Va H -Ua, both of which lie within the linear span of 

Eqs. 4.9-4.12. That is, the set of relations is unaffected if we permute, for example, 

the up and strange quarks in all decuplet wavefunctions. 

4.4 Quark Mass Parameters 

One natural problem we may atte~pt to solve with the chiral Lagrangian 

is the determination of the light quark ma,sses mu,md,m3 (which we relabel for 

convenience in this Section as u,d,s). This turns out to be impossible for a number 

of reasons varying from trivial to subtle, as we now discuss. 

First, consider any effective theory that takes some related set of unde

termined parameters as inputs; in our case, this set is the matrix of current quark 

masses M9 = diag(u, d, s). Each term in the Lagrangian then contains a certain 

number of factors of Mq· The coefficients Ci of the various terms are a priori unre

lated parameters (unlike in a renormalized field theory), and have significance only 

in a product with a power of M9 • Given a particular term with. ni powers of M9 , 

one readily sees that the term is invariant ugder the transformation 

C· H k-n;c· . 
I I 1 (4.17) 

where k is arbitrary. Thus, in any chiral theory one cannot hope to obtain quark 

masses, but only ratios of quark masses. For three light flavors we have two ratios; 

we find it convenient to use two particular combinations, 

d±u 
q, r = I ( d). s- 2 u+ 

(4.18) 
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Note that both parameters are small, inasmuch as u,d ¢:: s, and that q can appear 

with isospin-conserving operators, whereas r can only appear with isospin-breaking 

operators. 

The heavy baryon theory introduced in the next Chapter eliminates the 

common mass of the baryon multiplet as a Lagrangian parameter, and in such a 
\ 

model we may reduce the set of quark mass parameters even further. We simply 

observe that the tree-level Lagrangian is insensitive to transformations of the type 

Mq H Mq + c1, where 1 is the identity matrix and c is arbitrary. This follows 

because each insertion of 1 in a term of O(M;) is equivalent to a redefinition of 

the coefficient of the terms of lower orders in Mq by simple binomial expansion. 

Eventually, we generate singlet terms in this way, which may be ignored using the 

argument above. In particular, this tells us that the Lagrangian is sensitive only 

to differenceS of quark masses; or, combining this with the previous result, it is 

sensitive only to mtios of differences of quark masses. For three light :flavors, only 

one parameter remains, which we choose to be the parameter r. 

Beyond tree level, as we see in Sec. 5.3, the operator Mq is replaced by M = 

Mq+O(IT2), where IT is the pseudoscalar octet field. In this case, the above argument 

fails to hold because the coefficients no longer shift simply by c-numbers. We must 

then use both quark mass parameters, q and T. However' the field rr appears in the 

mass computation only in loop effects. For all examples computed in this model, 

we find that the loop diagrams either vanish because they transform under SU(3) 

representations satisfying mass relations, or the quark mass dependence may be 

removed by expressing coefficients in loop expressions in terms of hadron masses 

alone. Thus we never need to consider q in these calculations. 

Even the determination of the quark mass parameter r is not unique. This 

is a consequence of the Cayley-Hamilton theorem for any 3 x 3 matrix X, which 

reads . 

X 3
- (TrX)~2 + ~[(TrX)2 - TrX2]X- (det X)1 = 0. (4.19) 

For the quark mass matrix, this implies 

(det Mq)M;;1 = diag (ds, us, ud) 
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( 4.20) 

so that in the chiral Lagrangian one may generate an effective quark mass ma

trix Mq 1 physically indistinguishable from Mq merely by shifting the Lagrangian 

coefficients of terms one order higher in Mq: 

Mq I = Mq +:X { Mi- {Tr Mq}Mq + ~[(Tr Mq}2- Tr Mill} 
. ( Ads AUS Aud) 

dtag u+A' d+A' s+A , 
X X X 

(4.21) 

where Ax is the scale of the chiral symmetry breaking, and A is an arbitrary di

mensionless coefficient. If we· now suppose that the current quark mass u = 0, then 

the effective quark mass matrix possesses unaltered d- and s-quark masses, but an 

effective u-quark mass 

{4.22) 

The possibility of a massless up-quark generated in this manner was explored by 

Kaplan and Manohar (76] and Leutwyler [77], who used light hadron masses to 

determine the relevant chiral coefficients. It is of considerable theoretical interest, 

because setting u = 0 provides an economical solution to the strong CPproblem [78]. 

If A were truly arbitrary, we would be able to conclude absolutely nothing 

about any quark masses from a chiral Lagrangian; however, the assumption of 

perturbativity in the effective Lagrangian imposes a naturalness criterion [64, 79]: 

Dimensionless parameters are all 0{1) unless there is a special reason for them to 

be larger or smaller. It is thus only natural to choose a massless up-quark if the 

desired value for Uetr is O(dsJ Ax)· 

The parameter r is not immune to this ambiguity; let us define 

A ( 1 . ) c= A s- 2(u+d) . 
X 

(4.23) 

With s ~ 150 MeV and Ax~ 1 GeV, we see that A= 0(1) makes c a reasonably 

small parameter. Under the transformation of Eq. 4.21, we find 

[1-c+~cq] . 
rt-tr[ 1 1 ]. 1- 2cq- 4cr2 

(4.24) 
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Because q ~ 1, even with the mass ambiguity it is still possible in principle to 

determine r to within a few tens of percent. ·we have more to say about the 

determination of r in Sec. 5.4.-

4.5 Decuplet Mass Measurements 

In this Chapter, we have focused somewhat more upon the decuplet mass 

structure than on that of the octet because the problem is theoretically cleaner: 

There are four relations to check, and one need not disentangle SU(3)-mixed mass 

eigenstates. If the :E0-A mixing angle() were known, we could easily compute all 

of the octet chiral coefficients af in Eq. 4.4. By similar reasoning, we should be 

able to compute immediately all ten decuplet chiral coefficients cf; however, the 

status of current experimental results is not yet up to this task. Little experimental 

refinement of the decuplet masses has occurred in the past fifteen years, and decuplet 

mass differences, particularly isospin splittings, have large relative uncertainties. 

The mass of one decuplet baryon, the .6.-, has not even been measured directly, but 

only deduced from a comparison of pion-nucleon and pion-deuteron cross sections. 

Because the mass of the .6.- is not known independently, we can either 

treat the relations Eqs. 4.9-4.12 as predictions of its mass, or we can eliminate . 

it from three of the relations using the fourth; since all four of the relations result 

from group theory alone, any linear combination of them· is also a valid relation. We 

choose to eliminate the .6.- using Eq. 4.9 (and its corrections), because it is isospin

breaking and is the only one involving .6. masses alone. After this elimination, the 

other three relations depend only on measur~d quantities and thus may be checked 

against our calculations in the next Chapter. 

The central problem with the data is that the .6_·masses, as presented in the 

Particle Data Group's (PDG's) Review of Particle Properties [48], rely on data fif

teen years old, which generally have substantial uncertainties relative to the isospin 

breaking of the multiplet. The statistical averages of the accepted independent 
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measurements in the PDG are 

6++ - 1230.86 ±0.13 MeV,. 

6+ - 1234.9 ±1.4 MeV, (4.25) 

60 - 1233.42 ±0.16 MeV. 

We may ask about the· reliability of these data. A recent discussion of the status 

of baryon isospin splitting measurements is found in a paper by Cutkosky (80]; in 

particular, the author points'out that it is very difficult to accommodate the PDG 

values for the 6-mass splittings in a quark..;model fit. One explanation, of course, 

is that the quark model is· inadequate; the other, that it is the old measurements 

. that are inadequate. The Virginia Polytechnic Institute (VPI) group [81] currently 

recommends the value 

6°- ~++ = 1.3 ± 0.5 MeV. (4.26) 

Here the uncertainty depends on the measurement of scattering lengths and the · 

pion-nucleon coupling constant, and is expected to fall as their fit is refined. Even 

so, this value with its current uncertainty is in disagreement with Eq. 4.25. 

It would also be very helpful to bring down the large uncertainty in the 

PDG A+ mass measurement: There are a few pieces of information, experimen

tal and theoretical, in disagreement with the value in Eq. 4.25. This particular 

number is based on one measurement [82], and is in discrepancy with three other 

· independent values quoted by PDG, which have the simple average 

A+= 1231.5 ± 0.3 MeV. (4.27) 

These were not used in the PDG fit because uncertainties of the individual measure

ments were not estimated; the uncertainty given here is the statistical variance, not 

experimental uncertainty. However, we may use this information as an alternative 

to the PDG value to demonstrate dependence of the results on the measurement of 

~ masses. To support this choice, there are additional predictions of a smaller 6 + 

mass: Using the general parametrization method of Morpurgo [75], one predicts 

A+ - A++- (p-n)- (:E+ -2E0 + :E-) 

- 1230.45 ± 0.27 MeV, 

(4.28) 

(4.29) 



82 

where we have used the PDG number for the A:++ mass. 

Furthermore, pion-deuterium scattering data taken by Pedroni et al. (83) 

· produce the mass combination measurement 

(A:-- A++)+ 1 (A:0 - A+)= 4.6 ± 0.2 MeV. . (4.30) 

However, the uncertainty is statistical only and does not reflect a number of theo

retical corrections made in the processing of the data. If we combine this number 

with the relation Eq. 4.9, the PDG value of A++, and the VPI result, we find 

A+= 1230.78±0.52 MeV. (4.31) 

Because we are using the relation Eq. 4.9, this is only a prediction, rather than a 

true.piece of data. Nevertheless, these numbers all appear to be roughly consistent 

and quite different from the PDG value. 

In summary, to demonstrate the dependence of results on A masses, we 

define two sets of experimental measurements of A masses. Data set A consists 

of only the PDG numbers from Eq. 4.25, whereas data set B consists of the PDG 

number for A++ in Eq. 4.25, the VPI result in Eq. 4.26, and the alternate value for 

the A+ mass given in Eq. 4.27. Set B is expected to represent more accurately the 

true mass values (if we believe the preceding arguments for a smaller D.+ mass), 

and we see in Sec. 5. 7 that this set indeed provides a better fit to the corrections to 

the relations Eq. 4.9-4.12. 

We can now fit to the ten chiral coefficients used in Eq. 4.5; with nine 

known decuplet masses, one parameter remains, which we chose to be cg-t. We show 

in Sec. 5. 7. that the relation Eq. 4.9 remains unbroken by the lowest-order loop 

contributions we have considered, and that its third-order tree-level contributions 

are estimated to be tiny, so that we expect ea64 to be quite small ( << 0.1 MeV). With 
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data set B, we obtain the following fit {all numbers in MeV): 

q, 1382.03 ± 0.24 -2c~, q1 _10c64 - +0.06± 0.15 
4 -148.43 ± 0.21 -2~, 7 3 ' -

c8" _!~ 
c~ +4~, 

- +0.17± 0.05 
7 ' - -1.24±0.38 

cfi +~~' 
(4.32) 

+0.01 ± 0.03 
~7 -0.64±0.04 -~cr - 7 ' ~ _.§.cg4 

+6 64 
- -0.18± 0.16 7 . 

c'F +0.28±0.09 1 - 7C3 ' 

From Eq. 4.5, the coefficient cA is clearly the common decuplet mass and 4 is the 

equal-spacing parameter. The interesting feature of this fit is that the uncertainties 

in the decuplet mass differences are so large that it becomes increasingly difficult to 

determine reliably the coefficients of the larger 'SU(3) representations. If we used 

data set A for the fit, we would find nearly identical values for ~, the coefficients 

insensitive to isospin splittings, whereas the other coefficients would vary substan

tially. Precise measurements of baryon decuplet mass differences would allow us 

to pin down these coefficients and thus constrain any particular operators with the 

same transformation properties. 



Chapter 5 

Baryon Mas~es 2: Chiral 

-Dynamics 

5.1 Introduction 

With the theoretical preliminaries of the previous Chapter in hand, we are 

ready to construct our chiral Lagrangian of mesons and baryons. Using the experi

mentally measured baryon masSes as inputs, we compute corrections to second-order 

tree-level baryon mass relations and consider corrections to various first-order mass 

relations. 

There are two broad categories of findings we may hope to make in the 

following pages. The first regards the chiral coefficients that do not appear in 

the tree-level chiral Lagrangian to second order in SU(3) breaking, namely, those 

associated with the baryon mass relations derived in the last Chapter. In the usual 

perturbative expansion of the chiral Lagrangian, we achieve a consistent expansion 

in the symmetry-breaking parameters by including all loop effects with orders no 

higher than the highest tree-level order we are considering. We find that, to include 

consistently tree-level terms to second order in quark masses and charges, we need to 

compute only one-meson loop diagrams. Even so, many loop diagrams are shown to 

have the group-theoretical structure of those SU(3) representations that respect the 

relations previously derived; this serves to explain why the relations experimentally 

84 
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have such small corrections. In order to perform the necessary calculations, we 

use the Heavy Baryon Effective Field Theory (HBEFT) developed by Jenkins and 

Manohar [84, 85, 86], which is convenient in describing the physics of nearly on-shell 

baryons. 

The second category of findings regards what we may learn from those chi

ral coefficients that do appear in the second-order tree-level Lagrangian, specifically 

the extraction of the quark mass parameters discussed in Sec. 4.4. It is clear that 

knowledge about the parameter r would help us to constrain the value of the up

quark mass and determine whether mu = 0 is admissible with current low-energy 

information. As we show, however, limitations of the chiral Lagrangian formalism 

serves to keep this parameter out of reach for the time being. Another nonvanish

ing parameter is that associated with the ~ equal-spacing rule (Eq. 4.14), which 

we show to be dominated. by electromagnetic effects. Furthermore, we show that 

there are lowest-order corrections to the Gell-Mann-Okubo formula (Eq. 4.6) that 

cannot be computed from measured matrix elements. 

This Chapter is organized as follows: In Sec. 5.2, we review the motivation 

and construction of HBEFT. Within this formalism, the Lagrangian is constructed 

in Sec. 5.3 to second order in both the flavor-breaking operators Mq and Qq, and 

derivative operators. We examine in Sec. 5.4 the free parameters of the theory and 

point out redundancies, which provides us with a means of counting the number of 

independent mass relations, alternate to the approach in Chap. 4. We also discuss 

the fate of the determination of r in this method. In Sec. 5.5, we demonstrate that 

one-loop corrections to the mass relations Eqs. 4.8 (the Coleman-Glashow relation) 

and 4.9-4.12 are calculable, and show why many of the loop corrections vanish. In 

addition, we consider corrections to the Gell-Mann-Okubo relation, as discussed 

above. Sec. 5.6 presents the details of how loop calculations are performed in 

HBEFT (the full loop corrections are presented in Appendices A and B). Numerical 

evaluations of these calculations are presented in Sec. 5. 7, and are found to be in 

excellent agreement with experiment. We also estimate the size of third-order terms 

and show that they do not alter our results, and explain the size of violation of the 

:E equal-spacing rule. We summarize our conclusions in Sec. 5.8. 
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5.2 Heavy Baryon Theory and the Effective La-
• grang1an 

The success of the chiral Lagrangian formalism in computing physical 

quantities rests upon two principles. First, the effective Lagrangian using the meson 

octet fields as the fundamental degrees of freedom, and the QCD Lagrangian writ

ten in terms of the fundamental quark fields, are formally equivalent if one includes 

in the former the infinite set of all terms possessing the same symmetries as the 

latter [64]. Second, this infinite set of terms in the effective Lagrangian may be or

ganized perturbatively in successively higher orders of the chiral symmetry-breaking 

parameters and the derivative operator (divided by the dimensionally appropriate 

powers of the chiral symmetry breaking scale Ax ~ 1 Ge V [79]), such that their 

numerical importance in physical processes decreases as the order of the terms in

creases. For this second requirement to be satisfied, it is necessary not only that the 

parameters that break chiral symmetry explicitly, namely current quark masses and 

their electric charges, give contributions sufficiently small (which is guaranteed by 

mu,d,s «Ax and o.EM << 1), but that the meson momenta are also small compared 

to Ax· 

Because the masses of the lowest-lying baryons are already about 1 GeV, 

the assumptions of chiral perturbativity are violated by a chiral Lagrangian naively 

including baryons fields as degrees of freedom. However, an indication of how one 

may avoid this problem is suggested by the heavy quark effective field theory [3]-[8] 

used in Chap. 1. That such effective theories are formally equivalent to QCD is 

demonstrated in Ref. [87]. We again adopt the formalism developed by Georgi [8]. 

One considers a chiral baryon multiplet to be a collection of heavy, nearly on-shell 

particles degenerate in mass mB and unit-norm four-velocity v~-' that is approxi

mately conserved, and having momentum 

(5.1) 

where k~-' is the residual, off-shell momentum of the baryon. The statement that 

the baryons are nearly on-shell is expressed by the constraint k · v « m B; thus we 
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have a momentum small enough to use as an expansion parameter in a perturbative 

chiral theory. This is implemented by the transformation ori the baryon fields in 

any multiplet B via 

(5.2) 

The positive- and negative-energy solutions are separated by means of the projection 

operators 

{5.3) 

and we work only with the positive solutions. Whereas the original free fields B 

satisfy the usual Dirac equation (i~- m8 )B = 0, the new free fields Bv satisfy a 

massless Dirac equation ifJBv = 0. This means that a derivative acting upon Bv 

pulls down a factor of k rather than p, producing the perturbative expansion we 

require. Henceforth we work only in perturbations about these effectively massless 

fields, and drop the subscript v. This method, called heavy baryon effective field 

theory (HBEFT), has been developed as a useful calculational tool by Jenkins and 

Ma.nohar [84, 85, 86], although the general method could be applied to effective 

field theories with other heavy degrees of freedom. However, it must be stressed 

that we have lost some infomiation in HBEFT, namely the baryon multiplet mass. 

The parameter m 8 is nowhere present, so the Lagrangian is sensitive only to baryon 

mass differences. 

That baryon multiplets ~e assumed to be degenerate in lowest-order mass 

and four-velocity makes it convenient to write a Lagrangian expression .Cv in the 

baryon fields for each velocity v. As with the fields, we henceforth suppress the 

index von Cv· The use of this description has the effect of greatly simplifying the 

Dirac algebra; in particular, particles and antiparticles no longer mix, reducing four

spinors to two-spinors. It is easily seen [84, 85] that any gamma matrix structure in 

baryon bilinears may be replaced with the c-number velocity vP and a generalized 

spin operator SP. defined by the properties 

[SP.,S"]+ = ~ (vllv"- gil"), (5.4) 

where €0123 = + 1. A specific representation of the operator satisfying these relations 
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lS 

(5.5) 

In the rest frame (v"' = (1, 0)), the operatorS~-' reduces to the usual Pauli matrices 

(O,u /2). 

The prescriptions listed above are useful for any baryon multiplet included 

in our theory; in the current model we must consider both baryon decuplet and 

octet degrees of freedom. Whereas the octet baryon fields are taken to be ordinary 

Dirac fields, the decuplet is taken to be represented by Ranta-Schwinger fields Tf;k, 
I 

symmetric under permutations of the SU(3) flavor indices i,j, k, with the spin-1/2 

portion projected out via the usual constraint "Y~.tT"' = o~ In HBEFT, this translates 

to the two conditions 

(5.6) 

The consequences of these conditions for the Feynman rules of this theory are sum

marized in Reference [86]. 

One point that should be made at this time is that the octet and decuplet · 

in this theory are taken to have different multiplet common masses, m 8 = m8, m 10• 

Both fields, Bi; and Tf;k, transform under the rule given by Eq. 5.2; since the 

values of ms in the phases are different, the intermultiplet spacing 8 = m 10 - m 8 is 

a parameter which appears in the Lagrangian and must be placed into the theory 

by hand. 

5.3 Constructing the Lagrangian 

5.3.1 Field Transformation Properties 

The hadron field multiplets may be compactly represented by matrices in 

flavor space .. The baryon and meson octets have the familiar forms 

~+ 

-~~o+7sA 
=o 

p l n ' 
_:LA 

v'6 

(5.7) 
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and 

(5.8) 

The baryon decuplet in this notation, a 3 x 3 x 3 array, may be represented as 

(suppressing Lorentz indices) a collection of three matrices: 

1 =•OJ 73~ 

1 -·-73=.. . 
n-

(5.9) 

One may assign any particular permutation of indices i,j,k to denote row, column, 

and sub-matrix in this representation, because the decuplet is completely symmetric 

under rearrangement of :flavor indices. 

We require in particular that the chiral Lagrangian with bary~ns contains 

the usual nonlinear sigma model. To this end, we define the field 

(5.10) 

where the choice of pion decay constant normalization is f ~ 93 MeV. Then, with 

L and R specifying the left- and right-handed chiral transformations respectively, 

the field~ is chosen to transform under SU(3)L x SU(3)R according to the rule 

(5.11) 

a mapping that implicitly defines the transformation U, and that implies the usual 

transformation (e is often called E in the literature) 

(5.12) 

Under our transformation choice of~' we may define Hermitian vector and axial 

vector currents: 

. (5.13) 
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So that the couplings of these currents to the baryon fields may be chirally invariant, 

we require the baryonic transformation properties to be 

T JA Ul um un 'T'IA 
ijk 1-t i j k.L lmn · (5.14) 

Then we may define the chirally-covariant derivatives 

vv B - ff B - i [Vv, B]_ , 
_/ 

(VvTP)iik - a"Tf;k- i(Vv)/Tf;k- i(Vv)/Tf,k- i(Vv)k1Tf;l, (5.15) 

which have the same transformation properties (Eq. 5.14) as the baryon fields upon 

which they act. 

The explicitly chiral symmetry-breaking operators, namely 

(5.16) 

are included by the usual spurion procedure applied to the QCD Lagrangian. That 

is, every symmetry-breaking operator is assigned a spurious SU(3)L x SU(3)R trans

formation property conjugate to the real transformation property of the Lagrangian 

term in which it appears. The relevant pieces of the QCD Lagrangian in a chiral 

basis are 

where 

From this we obtain the usual spurion rules 

Mq t-t LMqRt, 

QL t-t LQ LLt, 

QR t-t RQRRt. 

(5.17) 

{5.18) 

{5.19) 

{5.20) 

(5.21) 
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One can quickly see in the theory with the field € that the matrices Mq and Qq 

always occur in the combinations 

M+ = ~ (~tMq€t +€Mq€), 

1 . 
Q+ = 2 (~tQL€ + {QRf), 

M_ = ~ ({tMq~t -€Mq€), 

Q_ = ~ (€tQL€- {QR€t)' 

(5.22) 

(5.23) 

which are designed to be Hermitian, have definite parity properties as indicated by 

the subscript, and transform appropriately under SU(3)L x SU(3)R: 

(5.24) 

5.3.2 Lagrangian Terms 

Now it is a simple matter to construct the most general Lagrangian. For 

example, the lowest-order terms in the meson Lagrangian respecting C, P, and T 

are 

(5.25) 

The remaining coefficients here and below are normalized to be dimensionless (once 

factors of the pion decay constant f and the chiral symmetry-breaking scale Ax 

are extracted) and expected to be of order unity (as demanded by naturalness). 

The factor a/47r multiplying the electromagnetic term follows from the fact that 

such terms, if computed from the quark Lagrangian, would arise from photon loop 

diagrams. 

This model is constructed to include all terms to two orders in the per

turbation operators we have discussed, namely all terms with a total of two of the 

following operators: {}ll, Mq, and Qq. Because the derivative operators ultimately 

generate meson masses and hence quark masses, the series should be thought of 

as one in quark masses and charges alone. The physics of the expansion becomes 

more lucid when we distinguish our results by the number of powers of m8 , mu,d, 

and aEM, namely, organizing them according to their SU(3) and isospin-SU(2) 

properties. Since we are representing strong and electromagnetic interactions only, 

we include only those terms that respect the same symmetries. Charge conjugation 
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Figure 5.1: "Keyhole" (quartic vertex) diagram contributing to baryon masses. 

symmetry eliminates all terms with an odd total number of Q±, whereas parity con

servation requires that M_ and Q _ only occur in an even total number (before we 

include derivative terms), that is, not before second order. Furthermore, since M_ 

and Q_, when expanded in P.owers of the meson fields, give no contribution before 

O(D2), these terms would not appear in mass relations until. we include loops of 

second-order terms. Thus the parity-odd combinations do not occur at this order, 

and we may therefore suppress the subscript ( +). 

Next, all terms with derivatives produce factors of meson momenta 'and 

thus contribute to masses only through diagrams with meson loops. Bec;;tuse higher

order loops require more meson fields and hence produce more powers of the quark 

masses, we compute only those loop diagrams with one meson loop. Derivatives 

appear in the Lagrangian through the covariant derivative 1JP(= 8P + O(D2)) and 

through the axial vector current AP(= 8~'-ll/ f + O(ll3)). Meson fields also occur 

in M = Mq + O(ll2) and Q = Qq + O{ll2). We quickly learn that all one-meson 

loop diagrams are either of the "keyhole" variety (Fig. 5.1) or have two separated 

insertions of AP (Fig. 5.2). 

There is a bewildering proliferation of terms at second order once we in-



93 

p p+k p 

Figure 5.2: Trilinear vertex diagram contributing to baryon masses. The internal 

baryon line may be either octet or decuplet. 

elude derivative terms, for example, 

T(v · A)(S · 'D)T, B(v · A)M_B, (5.26) 

and many others. Two constraints, however, simplify the situation: The first is that 

we are only computing diagrams with one meson loop, and the second is that terms 

with one covariant derivative 'D and some other operator X may be transformed 

away by a suitable redefinition of the baryon field and the addition of new O(X2 ) 

terms; as it stands, such terms contribute to baryon wavefunction renormalizations; 

The physical reasoning behind this transformation is that the only one-derivative 

terms we allow in the fermion Lagrangian are the kinetic terms; if we find other 

one-derivative terms, it means that we then have non-canonical equations of motion 

for the baryons and unfamiliar forms for the Feynman propagators. Under these 

transformations, the only remaining terms at second order and including meson 

fields are of the forms 

T AAT, T'D'DT, (5.27) 

with appropriate factors of v and S thrown in to give the terms the correct Lorentz 

structure. Clearly, the only one-loop graphs possible from these terms are keyhole 
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diagrams; this proves to have special significance when we consider loop corrections 

to certain mass combinations. 

It may seem confusing that we include loop effects of two-derivative op

erators, which are already at second order in the chiral expansion. However, we 

justify this inclusion by pointing out, using simple power-counting, that operators 

in Eq. 5.27 give rise to baryon ~ass corrections of the form 

m4 
SMB ~ 167r2f2Ax lnm~ = O(m;lnm9), (5.28) 

which we show below, are of the same order in quark masses as one-loop diagrams 

with one insertion of M9 , and therefore must be considered in a consistent expansion 

mm9 • 
\ . 

The light-flavor symmetry SU (3) v, which includes strong isospin, is broken 

in this model only by the inequality of quark masses and charges; all other operators 

and coefficients are assumed to obey chiral symmetry. Under these restrictions, the 

most general octet Lagrangian we need to consider in this model is 

£ 8 = TrB (iv · V) B + 2lJ'I'r~S11 [A11.,B]+ + 2FTrBS" [A11 ,B]_ 

+ 2a (Tr M) TrBB + 2bD TrB [M, B]+ + 2bp TrB [M, B]_ 

+ 4:Ax{do(TrQ2)TrBB 
- 2 - 2 + dDTrB[Q , B]+ + dpTrB[Q , B]_ 

+ d1TrBQBQ + d2(TrBQ)(TrQB)} 

+ ; { o-1 (Tr M2
) TrBB + o-2 (Tr M)2 TrBB 

X 

+ lD (Tr M) TrB [M, B]+ + lp (Tr M) TrB [M, B]_ 
- 2 - 2 + cDTrB[M , B]+ + cpTrB[M , B]_ 

+ c1TrBMBM + c2(TrBM)(Tr MB)} 

+terms of the form of Eq. 5.27, 

whereas the corresponding decuplet Lagrangian is 

~"to = . ·r'~' (VvT. )iik + J:T. '~' Tiik + 2"1JTP S (Av)k Tiil 
J.., - Z ijkVv p u ijk p. n. ijk v I p 

(5.29) 



- 20" (Tr M) TijkT;ik + 2c'TijkMk1T;i1 

+ .!!._Ax {fo (Tr Q2 ) T~- Tiik 4w ~k P 

-IJ k I "jm ;:;:;p j k ·zm} + fiTijkQ zQmT; + h1 ijkQ zQ mT; 
1 { 2 -jJ . "k 2 T:. . "k + Ax G-1 (Tr M ) Ti;~cT;3 + G-2 (Tr M) iikT;/ 

+ eo(Tr M) T';;kMkzr;il 

-p k l ·;m -p j k ilm} + e1T1;kM tM mT; + e2TiikM tM mTp 

+terms of the form of Eq. 5.27. 
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(5.30) 

The sign of the kinetic term follows from the fact that the Rarita-Schwinger spinor 

solutions are spacelike~ Note also that terms involving Tr Q = 0 do not appear, a 

result which follows from the definition of Q = Q+ in Eq. 5.23 and TrQq = 0. 

5.4 Parameter Counting 

Naively, the octet Lagrangian .Cs contains sixteen undetermined coeffi

cients and the three quark mass parameters; the coefficients of the derivative terms, 

D and F, can be measured in baryonic decay processes. Thus the prospect of 

extracting useful information from the Lagrangian seems hopeless. The situation 

is not much better for the decuplet Lagrangian £ 10, where one counts ten unde

termined coefficients in addition to the quark mass parameters, the decuplet-octet 

splitting 6, and the measurable derivative coefficient tl. Each Lagrangian also con

tains a host of two-derivative terms of the form of Eq .. 5.27, which again could be 

measured in principle if we possessed a sufficiently precise set of data from baryon

meson scattering; as it stands, however, only D and F, and to a lesser accuracy 1l, 

are currently measured. In addition, the decuplet and octet are connected at lowest 

order by the Lagrangian term 

(5.31) 

Numerically, it is believed that the nonanalytic loop corrections to D and F are 

not excessively large (88], and so one may use the lowest-order fit values of these 
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parameters (the uncertainties are estimates of higher-order corrections): 

D = 0.85 ± 0.06, F = 0.52 ± 0.04, (5.32) 

whereas the most current values from decuplet strong decays and loop effects, re

spectively, are (89] 

fCI = 1.2 ± 0.1, 1l = -2.2 ± 0.6. (5.33) 

There still remains the problem of a multitude of undetermined coefficients. 

As one might expect, many of these turn out to be redundant, as we now show; 

the following methods may be thought of as using "poor folks' group theory" to 

determine the independent parameters of the Lagrangian, as opposed to the full 

treatment presented in Chap. 4. Let us first consider terms that appear as singlets in 

the Lagrangian. In the usual theories with massive baryons, the octet and decuplet 

mass terms are just 

(5.34) 

(5.35) 

These terms do not occur in HBEFT, for we have eliminated the common mass 
I 

terms through field redefinition; only the term proportional to fJ remains. If a term 

that is of the same form appears at higher order in perturbation theory, that is, an 

SU(3) singlet multiplying the fully contracted BB or TT fields, it too contributes 

only to the overall multiplet mass, and hence may have been defined away at the 

outset. Thus singlets may be neglected in this theory; the coefficients n, do, a 1,2 in 

Cs and u, j 0 , and G-1,2 are ignorable in this model. 

The parameter fJ itself is an exception. If we worked within a theory in 

which only one multiplet were present, we would simply transform away {J along with 

all other singlets; however, this model includes both octet and decuplet states [85, 

86]. From the theoretical point oLview, both multiplets arise as ground states· of 

the quark-model SU (3) product 3 ® 3 ® 3 and are equally fundamental, whereas 

the physical point of view also suggests incorporating both because the splitting of 

the multiplets is not large (6/Ax ~ 0.3), so that intermediate decuplet states are 
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not numerically suppressed. Either way, both multiplets should be included in the 

theory. 

The isolation of singlets is just the first step in a formal group-theoretical 

reduction of couplings through eliminating traces of operators. For example, the 

next step is to realize that the operators with coefficients iD,F ·and eo may be 

absorbed into those with coefficients bD,F and c, respectively. As a fine point, the 

traces also include field-dependent pieces, but to consistent order in ·this model, 

only the tree.,. level portions of operators second order in M and Q appear. 

The baryon Lagrangian at second order is also simplified by an application 

of the Cayley-Hamilton theorem. The theorem assumes a particularly elegant form 

in SU{3) for any traceless 3 x 3 matrix X, given only that Band Bare also 3 x 3 . 
and traceless: 

'fr B[X2
, B]+ + 'fr BXBX- {Tr BX){'fr XB)- ~{'fr X 2

) Tr BB = 0. (5.36) 

Inasmuch as Q is traceless, we immediately see that one of the terms with coefficient 

dD,l,2, say d2, may be absorbed by the others and an ignorable do piece. Likewise, 

all factors of Tr M may first be extracted from cD,l,2 terms and absorbed into bD,F 

and singlet terms; then Eq. 5.36 eliminates one of the terms (e.g., c2) second order 

in the tmceless part of M. 

Now note that the operators associated with bD, CD, dD and bp, cp, dp all 

share the same structure {in the notation of Chap. 4, those subscripted with D(F) 

transform according to the 81(2) representation). Thus we may replace them w_ith 

the operators XD(F), defined through 

fJ.CsD(F) 

(5.37) 

As before, the singlet (trace) portion of this operator simply contributes to the 

common octet mass; off-diagonal entries (which appear in loop effects) are SU(3) 

ladder operators, which do not create mass terms at tree level. Thus we are left 

only with operators proportional to the Cartan subalgebra of isospin and hyper

charge. No matter how many operators we have of the form of XD(F), they can 
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always be redefined into only two for each of Xo(F), one proportional to T 3 and one 

proportional to ys. 

·The decuplet Lagrangian also admits a similar simplification. Consider 

any 3 x 3 matrix X as an operator in the mass term 

(5.38} 

Because T is symmetric in its flavor indices, the placement of the contraction is 

irrelevant. Precisely the same argument as before follows, so the set of all operators 

X may be redefined into only two. In the decuplet case, these operators obey equal

spacing rules in isospin and hypercharge. We find three such operators in £ 10, those 

with coefficients c, !1, and e1. 

Finally, recall our observations on quark mass parameters from Sec. 4.4. 

There we learned that SU(3} chiral Lagrangians possess only two quark mass pa

rameters, q and r, and we not only showed that q in HBEFT occurs only in loop 

diagrams, but anticipated the result (demonstrated in Sec. 5.5} that we are able 

to remove all explicit q dependence from our expressions. Therefore, only r holds 

importance for us. 

We are again ready to count parameters. For the octet, the only remaining 

parameters are two associated with XD,F (two each), c1, d1, and the parameter r, 

making seven. As for known quantities, we begin with eight octet masses; but . 

again, HBEFT tells us that we can discover nothing of the common multiplet mass, 

leaving seven mass differences. In addition, the I;0-A mixing angle 0 is in principle a 

measurable quantity; its determination depends upon the discovery of an interaction 

that produces neutral baryon pure isospin eigenstates [90]. Thus we have eight 

"known" quantities, and predict one relation, which turns out to be the Coleman

Glashow relation (Eq. 4.8, which is fortuitously independent of 0). 

For the decuplet, there are the two operators proportional to isospin and 

hypercharge, one quark mass parameter r, and one remaining 0( Afl-) and one 0 ( Q2) 

term, making five unknowns. On. the other side of the equation, we have ni~e 

.m.ass differences, implying that there are four nontrivial mass relations between the 

decuplet baryons (Eqs. 4.9-4.12}. 
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This construction teaches us one more sobering fact, that one cannot de

termine the quark mass parameter r solely from the measured baryon masses. The 
I 

electromagnetic terms labeled by dD,F for the octet and h for the decuplet can 

be made to mimic exactly shifts in the O(M) terms proportional to cD,F and c, 

respectively, using the redundancy of the operator forms XD,F • and X discussed 

above. Thus the determination of r becomes tangled with a determination of the 

electromagnetic contributions to baryon mass differences. The computation of such 

terms has been attempted in the past [91], and will be reconsidered in a future 

publication [92]. 

5.5 Loop Corrections 

We have seen in Sec. 4.3 that tree-level mass relations holding to second 

order in flavor breaking occur because operators in certain representations of SU(3) 
I 

do not arise at this order. For the octet, only operators transforming under the 10 . 

(or equivalently, the 10) break the Coleman-Glashowrelation (Eq. 4.8), whereas for 

the decuplet, only the four components of the 64 representation break Eqs. 4.9-4.12. 

Relations that hold to second order in quark masses are particularly interesting, 

because any loop corrections that have the form O(m~, m!, or m~) are absorbed 

through the usual renormalization procedure by the appropriate counterterms, and 

therefore must also satisfy the relations. Furthermore, it has long been known that 

the leading corrections to lowest-order predictions in a spontaneously broken chiral 

theory are nonanalytic in the chirallimit, owing to the· presence of massless Nambu

Goldstone bosons in the intermediate states; in particular, the leading corrections to 

baryon masses are of the forms O(m!12) and O(m~ln mq).[93]. As a consequence, the 

loop corrections below O(m:) are calculable and nonanalytic in quark masses, and 

independent of the arbitrary renormalization point J.1. (which in this theory appears 

only in logarithms multiplying analytic terms). In one-loop diagrams involving less 

than two powers of M, all corrections are of this form. Thus, in this model, such 

diagrams give calculable corrections to .6.cG or .6.1,2,3,4 if and only if they contain 

a piece transforming under a 10 or 64, respectively. Here we wish to consider the 
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various one-meson loop corrections to baryon masses and classify them by their 

transformation properties. 

The one-loop diagrams fall into two basic categories: those with one quar

tic vertex (Fig. 5.1), which we have called keyhole diagrams, and those with two 
' 

trilinear vertices (Fig. 5.2). Keyhole diagrams in this model occur in two for~s: 

those from the meson-field expansion of the operator M (which transforms as sin

glet plus octet, and therefore its contributions satisfy the relations), and those with 

the structure 

(5.39) 

where flavor indices can appear in all possible contractions, a is the meson octet in

dex, and j(a) is the function that appears upon integration over meson momentum. 

That the two meson field indices are the same simply implies that the meson loop 

must close; 1r0-11 mixing does not change this result, because we may rediagonalize 

the meson SU(3) generators so that they refer now to mass eigenstate$. All that 

is important is that both the unrotated and rotated generators are octet. Because 

the largest representation obtained from the two octet fields is a 27, such loop ex

pressions for the decuplet do not contribute to D-1,2,3,4; because no 10 appears in 

the 8 ® 8 product of two identical octet operators (Sec. 4.3), such loop expressions 

for the octet contribute neither to D.cc- Note also that this result holds for each 

value of a, not just the sum. Hence all keyhole diagrams respect the second-order 

relations. 

This result has valuable consequences for the Gell-Mann-Okubo relation, 

Eq. 4.6. It is a first-order relation, nonvanishing in the isospin limit, and thus has 

O(m;) tree-level corrections. Jenkins (74] computed nonanalytic corrections to this 

famous relation in HBEFT, and found O(m!12) corrections of about 15 MeV and 

O(m;Inm.,) corrections of order 5 MeV. We now demonstrate the appearance of 

additional corrections of O(m~ ln m8 ), which were not computed in that work and 

cannot at present be evaluated. In Sec. 4.3 we saw that the Gell-Mann-Okubo 

relation is broken by operators transforming under a 27. As we see from Eq. 5.39, 

some two-derivative operators in Eq. 5.27 are of this form, and as discussed in Sec. 
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5.4, their coefficients are not currently measured. Furthermore, as pointed o~t in 

Eq. 5.28, power-counting shows the baryon mass contributions from such terms 

to have the same dependence, 0( m~ In mq), as those computed in Ref. (7 4], and 

these terms clearly do not vanish when we set mu = md = 0. In any case, they 

are not expected to be much larger than the tree-level O(m~) corrections, which 

may be estimated by naive power-counting at 0(20 MeV). Since experimentally 

AGMO ~ +6.5 MeV, we see that these numbers are in satisfactory agreement with 

nature, but not precise enough to make any predictions. 

Next consider loop diagrams with two trilinear vertices. In this model, 

the intermediate state may be either octet or decuplet, the mixing made possible 

through the inclusion of the interaction Eq. 5.31; the resultant mixed diagrams are 

labeled by trans. First, however, consider the case of what we call cis diagrams, in 

which the interm~iate and external baryons are in the same multiplet. The general 

structure of cis diagrams is 

(D2,DF,F2
) x f(a:>:E (Brr~B;) O; (B;IT 0 B), 

j 

11.2 x f(o:) I: (rrraT;) 0; (r1rrar), 
i 

(5.40) 

where j refers to the allowed intei:mediate baryon states, and 0 is an operator that 

may appear on the intermediate line (for example, the O(M) tree-level term}. Now 

if 0 is arbitrary, there is little that can be said using only group theory. However, if 

we consider only those diagrams for which 0 = 1, then we see that the j-dependence 

is trivial, for then we have completeness relations over baryon generators: 

LB;B; oc 1, 
j 

L:T;T; oc 1. 
j 

(5.41) 

We find that such diagrams have exactly the same group-theoretic structure as in 

Eq~ 5.39 and therefore also do not contribute to AcG or 8 1,2,3,4• Since each loop 

contributes a factor of (1611"2 P)-1, dimensional analysis shows these loops to have 

quark mass dependence O(m!/2). 

The trans diagrams have an analogous property: If the baryons of the 

internal multiplet are taken degenerate in. mass (but the masses of the external 
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multiplet need not be constrained), we again have a completeness sum over internal 

multiplet generators, and conclude that diagrams with 0 = 1 satisfy the relations 

for. the external multiplet. For example, decuplet mass diagrams with internal octet 

lines do not contribute to ~1,2,3,4 if the octet baryons are all taken to have the same 

mass; equivalently, the trans-decuplet diagrams break the decuplet relations only 

through octet baryon mass differences. 

However, there is a complication in the presence of the intermultiplet spac

ing 6. Neglecting the mass splittings within the internal multiplet seems unreason

able when many of these splittings are comparable in size to 6. The most thorough 

means of including this information would be to solve simultaneously for both the 

octet and decuplet chiral coefficients using all experimental baryon mass values, 

and to include the corresponding operators 0 in the loop diagrams. However, it 
. . 

is clearly more direct and convenient to use instead the physical masses for the 

internal multiplet. 

The remaining cis diagrams (those with 0 =F 1) may also be rewritten 

in terms of the corresponding internal baryon masses, rather than the chiral coeffi

cients; because the loop coefficients are proportional to powers of quark masses and 

charges, the difference between using chiral coefficients and baryon masses within 

loops is higher order still (at least O(m!lnmq)) in quark masses and charges. It 

is thus not unreasonable to present not only trans but also cis loop expressions in 

this manner. 

5.6 Method of Calculation 

Here we present important details in the calculation of loop diagrams to 

enable the reader to understand the nature of the computations. As discussed in 

Sec. 5.5, we need to compute only those diagrams with two trilinear vertices, since 

keyhole diagrams respect the relations Eqs.· 4.8-4.12. The mass contribution, as 

computed using·the Feynman rules of HBEFT as outlined in Ref. [86], is obtained. 
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from the generic loop expression 

· . { TfJO vr. } ~(Pi· v) = Jt
2 

{ Clebsch)~J a _ ll v , 
' BO llB 

fJ 

(5.42) 

with 

(5.43) 

where the index i refers to a particular external baryon state, j refers to the in

termediate baryon, and a refers to the loop meson, with an implicit sum over the 

last two indices. The external momentu,m Pi is residual, the common octet mass m8 

having been removed through HBEFT. The group-theoretical couplings Clebsch are 

readily computed by constructing matrix representations of the generators for the 

octet meson and baryon, and decuplet baryon states (as in Eqs. 5.7-5.9) and taking 

appropriate traces. Furthermore, factors from contraction of spin and projection 

operators and the couplings D 2 , DF, F 2, 1-£2 , and C2 are.suppressed. 

The term 6; is designed to implement our program of including full phys- · 

ical baryon masses instead of chiral coefficients for internal lines; it represents the 

amount by which the mass of baryon j exceeds the common octet mass m8. If we . 
worked only with chiral coefficients, this term would read 0, 6 for octet(decuplet) in

termediates. Also, in the rest frame, rlt = {6i, 0) and v~" = {1, 0), so that Pi· v = 6i 

in all frames. As a result, we find that the integral depends on baryon masses 

through their differences only, for Pi · v - 6; = "!'i - m;. One further point is that 

the mass contribution for octet(decuplet) baryons issue from ±}:{pi· v) with the 

external momentum as chosen above, where the sign difference between the two 

cases comes from the fact that the spin-3/2 kinetic term has the opposite sign to 

that for the usual spin-1/2 case. 

There is a small amount of sleight of hand here, for had we used the 

masses of intermediate lines in cis diagrams from the outset, we would not have 

obtained the cancellation of the diagrams as described in Sec. 5.5 with 0 = 1 (the 

O(m:12) corrections). Instead, inclusion of the full decuplet masses would mix the 

0 = 1 terms with all the others. But this is exactly what we do with the trans 

diagrams. The difference is the presence of the octet-decuplet splitting parameter 6 
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in the latter. Although experimentally intramultiplet splittings may be of the same 

magnitude as intermultiplet splittings, they are formally two different phenomena 

in the chiral Lagrangian, where the octet and decuplet are taken as independent. 

As a result, the functional forms of trans diagrams are more complicated. 

We now present the expressions for contributions to baryon mass m1 that 

do not vanish in the relations Eqs. 4.8-4.12. For cis diagrams, 

( Clebsch)~J,o 16: 2/ 2 m! ln ( ::) ( mi - m,) , 

{ 
~1£2 for cis-decuplet diagrams 

X ' 
~ (D2 , D F, F 2) for cis-octet diagrams 

and for both tmns-octet and trons-decuplet diagrams, 

with the notation 

F(e) 

and 

_ fooo dx (x2 + 2ex + 1)-1 

-
{ 

b(sgne) cosh-1 lel' 
y{2-1 

1 cos-1 e 
Jl-{2 ' 

1e1 > 1 

1e1 < 1 

3 [ ·(2 2 ) m~ 4 ( 2 )2 ( )] nee) = 27r e 3e - 1 In~ - 3 e - 1 F -e . 

(5.44} 

(5.45) 

(5.46} 

(5.47} 

(5.48) 

The explicit forms of these corrections are detailed in Appendix A (for .a1,2,3,4} 

and Appendix B (for .acG)· Note that, as e -+ 0 (corresponding to 8 -+ 0), these 

corrections assume the standard forms m:/2 (e0 term) and m;_In mq (e1 term). We 

demonstrate these limiting forms explicitly for .acG in Appendix B. 

The cis-decuplet (1-£2) and the F 2 cis-octet corrections to the. relations 

Eqs. 4.8-4.12 possess a remarkable property: The portion linear in decuplet and 

octet masses in Eq. 5.44, for each meson a, may be written in terms of the O(m:} 
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mass combinations ~1,2,3,4 and ~CG, respectively. Consequently, although these 

corrections are a priori 0 ( m! In mq), they are in fact 0 ( m: ln mq) , and are thus 

formally smaller than the third-order tree-level terms we are neglecting. This can

cellation occurs because the meson operators in the 1l and F terms, for each meson 

a, have the form of infinitesimal generators of group rotations; they rotate the 

64 and 10 irreducible representations only into themselves, preserving the com

binations of baryon masses (~1,2,3,4 and ~cG) indicative of these representations. 

On the other hand, the D term acts through an anticommutator, which does not 

generate SU(3) rotations, and hence does not preserve the same baryon mass com

binations. As a result, A 1,2,3,4 have no 1l2 terms in this model; nor has ~CG any 

F 2 terms, but D F and D2 contributions still appear. 

5. 7 Results and Predictions 

·5.7.1 Estimating Parameters 

The expressions derived in the previous Section and exhibited in the Ap

pendices generally depend upon the decuplet and octet baryon masses, the meson 

octet masses, the axial-current couplings in Eqs. 5.32 and 5.36, and the quark mass 

parameter r. As pointed out in the Appendices, this last factor arises from a con

sistent treatment of 1r0-11 and "£0-A mixing; however, as uncovered in Sec. 5.4, r 

cannot be determined at present. To accommodate all currently suggested up

quark masses, we will adopt the range 0.025 ~ r ~. 0.043, which allows mu = 0 

(upper value) [76, 77] as well as the value from lowest-order chiral perturbation 

theory (lower value) [94]. 

In order to judge the reliability of the predictions to follow, we must also be 

able to estimate the size of Lagrangian terms neglected in this model, namely two

loop effects and third-order tree-level terms. Beyond what we have calculated, the 

next contributions are two-loop effects of formal orders m~/2 and m: In mq, and then 

the tree-level terms at O(m:). We expect the two-loop corrections to be numerically 

small compared to the one-loop contributions, so we are led to consider the size of 
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third-order contributions to ~CG and ~1 •2,3,4 • For the decuplet, there are only two 

nontrivial such terms, 

1 TP. Mi Mi Mk rtmn A ijk l m n p ' 
X 

(5.49) 

whereas ~CG receives contributions from terms like 

TrBQMBQ. (5.50) 

We may now estimate the generic third-order contributions to the relations using 

the i80spin transformation properties of the relevant operators, because the ~I = 1 

portion of Mq is proportional to the small parameter r. With a unit-size chiral 

coeflicie.nt, r ~ 0.03, Ax~ 1 GeV, m., ~ 200 MeV, we have the following estimates 

for O(M3) and O(MQ2) contributions, respectively (in MeV): 

til= 3: 2. 10-4 
' 

3. 10-3, 

til= 2: 7. 10-3 0.1, 
' 

til= 1 : 0.2, o.i, 
(5.51) 

til= 0: 8, 0.1. 

5. 7.2 Decuplet Predictions: .6.1,2,3,4 

We consider now numerical corrections to the decuplet relations Eqs. 4.9-

4.12. In Sec. 5.6 we found that no cis-decuplet (1-£2) diagrams contribute until 

O(m! In mq); this is fortunate, considering the large current uncertainties on 1-l 

(Eq. 5.33). Furthermore, we found in App. A that trans-decuplet (C2) diagrams do 

not contribute to 8 1 until O(m: In mq), and thus are negligible in this model. We 

therefore predict 

81 = ~ ++ - 38 + + 38 ° -A- = 0, (5.52) 

which remains unbroken at least until two-loop effects of O(m~12). As discussed in 

Sec. 4.5, our choice makes the A 1 constraint a prediction of the A- mass, which we 

eliminate from the other three relations. Thus we also predict (A2 + A1), A3, and 

(A4 + i~1) and compare them against their experimental values. 
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The results are presented as follows: For each set of A masses defined in 

Sec. 4.5, we first obtain a prediction for the mass of the ~::.-. In the subsequent 

. pairs of expressions, the first line indicates which combination of decuplet masses 

is considered and its experimentally measured value. The second line exhibits the 

computed value of corrections to this combination, after the substitution of hadron 

masses alone (left side) and after the substitution of the measured values of C 

(Eq. 5.33) and r as estimated above (right side}. Experimental uncertainties of the 

decuplet masses are included. All numbers are in MeV .. For data set A, 

A- = 1226.42 ± 4.23; 

Ll2 + A1 

C2 [(+1.26- 1.4r) ± 1.74] 

- -16.24±7.0.1,} 

- + 1.88 ± 2.53; 

A3 -

C2 [( -0.01 + 20.5r) ± 0.43] -

Ll4+~A1 -

C2 [(-0.61- 0.4r} ± 0.25] -

and for data setB, 

+2.68 ± 1.69, } 

+0.87 ± 0.87; 

+5.47 ± 1.75: } 
-0.89 ± 0.39, 

Ll- = 1232.84 ± 1.81; 

. Ll2 + Lll - -5.16 ± 4.50: } 

C2 [(-0.70 + 0.5r) ± 0.90] - -0.98 ± 1.30, 

A3 - +0.54± 1.11: } 
C2 [(+0.19- 18.9r) ± 0.34] - -0.54± 0.74, 

Ll4 + iA1 - +5.91 ± 1.69, } 

C2 [( +1.85- 0.4r) ± 0.59] - +2.64 ± 0.95. 

(5.53} 

(5.54) 

(5.55} 

(5.56) 

(5.57) 

(5.58) 

(5.59) 

(5.60) 

We see that, for both cases, the experimental values of (Ll2 + Ll1), Ll3, 

and (A4 + ~Ll1 ) are numerically roughly comparable to their, calculated loop cor

rections. Compared with other chiralloop calculations, the size of these corrections 

is surprisingly small. As to the particular results, set B appears to give a better 
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fit, but to be certain we must refer to the e~timates of higher-order corrections in 

the theory (Eq. 5.51). Noting the isospin properties of the combinations Ll1,2,3,4 

in Eqs. 4.9-4.12, we see that these contributions are indeed of the right numerical 

orders to explain the differences between the one-loop contributions and the experi

mental breakings, with the exception of the quantity (.6.~ +~I) for set A; this leads 

us to favor set B. Another distinction between the two sets is the prediction for 

the .6.- mass; once it is measured; it will probe the validity of the prediction of this 

model that .6.1 = 0 to O(m~/2). 

5.7.3 Octet Prediction: AcG 

The Coleman-Glashow relation is known to hold extremely well. The 

experimental value for its breaking is .6.co = -0.3±0.6 MeV. Substituting hadron 

masses into the expressions in App. B, we find 

.6.~0r = -2.2D2 + 1.3DF + C2(0.5 ± 0.5 + 8.1r) MeV. (5.61} 

The numerical uncertainty in the coefficient of C2 is due to the uncertainty in the 

decuplet isospin splittings. Using the values for D and F in Eq. 5.32 and the above 

bounds on r, we find 

.6.~ar = 0~2 ± 0.7 MeV, (5.62} 

where the quoted error is dominated by the uncertainty of the decuplet isospin 

splittings. This prediction is in agreement with experiment, and the higher-order 

(.6.1 = 1} corrections discussed above are about the same size. Note the subs_tantial 

cancellation between the octet and decuplet contributions: The octet contribution 

alone would give .6.~0r = -1.0 ± 0.2. 

5.7.4 Octet Prediction: AE 

Finally, let us consider corrections to the E equal-spacing rule, Eq. 4.14. 

Corrections to this relation, a.S discussed in Sec. 4.3, arise necessarily as .6.1 = 2 

operators, and thus in this model originate in the 0( Q2 ) terms or have the coefficient 
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r 2 oc O((mu- md)2). The fact that the physical ~0 is not an isospin eigenstate 

actually does not alter the numerical result, for the mass and isospin eigenstates 

differ by an isosinglet admixture of O(r), and under diagonalization of the mass 

matrix, the difference becomes O(r2). 

Comparing the relative sizes of terms, 

(5.63) 

whereas 

(5.64) 

We therefore conclude that ~l: is utterly dominated by the electromagnetic contri

bution. Because experimentally ~'E = 1.7 ± 0.2 MeV, the electromagnetic term is 

the right order of magnitude to naturally explain the measured value. 

5.8 Conclusions 

Let us now summarize our findings of the past two Chapters. In Chap. 4 

we learned that the origin of baryon mass relations is determined by the presence 

or absence of operators transforming under various representations of SU(3). We 

found which relations are expected to hold most accurately (i.e., to highest order in 

chiral perturbation theory) and how to determine the chiral coefficients in general. 

In particular, we found four relations holding at second order in flavor breaking 

for the decuplet, and one (the Coleman-'Glashow relation) for the octet. We also 

examined the issue of determining quark mass parameters, and found that only one 

( r) is in principle easy to determine. 

In this Chapter, we reviewed a chiral Lagrangian formalism {HBEFT) 

that permitted us to perform reliable perturbative calculations with baryons. We 

constructed the second-order Lagrangian and proceeded to count independent pa

rameters; after removing all redundancies, we found an alternate explanation for 

the number of relations found in Chap. 4. We then pointed out that r cannot be 

determined without information on electromagnetic mass contributions. Next we 
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considered one-loop corrections to the mass relations and found that many of them 

vanish for group-theoretical reasons, and that the Gell-Mann-Okubo relation has a 

number of O(m; In m.,) loop corrections with unknown coefficients. The nonvanish

ing loop corrections to the second-order relations were then computed, numerically 

evaluated, and compared to' experiment. We found, in addition to predictions for 

the (unmeasured) mass of the .6-, agreement within errors in all cases, especially 

when estimates of higher-order corrections were included. Finally, we found that 

corrections to the :E equal-spacing rule are dominated by electromagnetic contribu

tions. 
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Appendix A 

Loop Corrections: Decuplet 

We here tabulate the breakings of the relations Eqs. 4.9-4.12, which have 

been labeled ~1 ,2,3,4 • In Sec. 5.6 we demonstrated t~a,t. no cis-decuplet (1£2 ) di

agrams would contribute until O(m: ln mq)· Thus we need consider only trans

decuplet (C2 ) contributions. As it stands, however, the expressions are quite cum

bersome unless we compactify our notation. We denote 

m3 

l67rf2 H(eij) -+ a(i,j), (A.l) 

where the indices are replaced with the particles they represent. We then have 

~2= 

~C2 
{ +if+ ( ( ~ ++, p) - (~ +, n) + ( ~ 0 , p) - ( ~-, n)) · 

-27roJc~+,p)- (~o,n)) 

+K+ (C~++,E+)- 2(~+,E0) + (~0 , E-)) 

-.f<O ( (~ +, 1:+),- 2(~ 0 , E0) +(~-,E-))}, {A.2) 

~C2 {+~if+ [ 3(~++,p)- (~\n)- (~0,p) + 3(~-, n} 

- ( 1 - ~r) (E*+, E0
) - 3 ( 1 - ~r) (E*+, A) 

+2 ( (E*0
, E+) + {E*0

, E-)) 
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- (1- ~r) (E*-,~0)- 3 (1 + ~r) (~*-,A)] 

- ~1f0 [ 2 ( ( ~ +, p) + ( ~ 0 , n)) - 6 (E *0
, A) 

+ (1 + ~r) (E*+,~+)+ (1- ~r) (E*-,E-)] 

- ij [-2(~*o, ~0) + ( 1 - ~r) (E*+, ~+) + ( 1 + ~r) (E*-, ~-)] 

+~k+[ 3(~++,~+)- 2(~+,E0)- (~0,E-) 
-2 ((E*+,s0)- (E*0,p)- (E*0,s-) + (E*-,n))] 

-~.i(O [(~+,E+) + 2(~0,E0)- 3(~-,~-) 
+2 ((~*+,p)- (~*0 , n)- (E*0

, 3°) + (E*-, 3-))]}, (A.3) 

~a= 

1c2 { 1_+ - +-11'" 3 6 . [ 2 (c~+,n)- (A0 ,p) + (3*0,3-)- (3*-,3°)) 

- (1 + ~r) (E*+,E0
)-3 (1- ~r) (E*+,A) 

+ ( ~ ~· ~r) (E*-, E0) + 3 (1 + ~r) (E*-, A)] 

+ ~1f0 [ 4 ( (A+, p) - (A 0 , n)) 

- ( 1 + ~r) ((E*+, E+)- (3*0,3°)) 

+ (1- ~r) (CE*-,I:-)- (s·-,s-))] 

+~ij [- (1- ~r) ((E*+,E+)- (3*0,30)) 

+ (1 + ~r) ((E*-,~-)- (2*-,s-))] 

+~[(+ [4(~+,E0)+ 
-2 ( (~0 , E-)+ (E*+, 3°) - (E*-, n)- (3*0

, E+)) 

- (1- ~r) (3*~, E0
)- 3 (1 + ~r) (3*-,A)] 

-~.I{O [ 4(A 0 , E0) - 2 ( (~ + ,.E+) - (E*+ ,p) + (E*-, s-) - (3*-, E-)) 

- (1 + ~r) (3*0
, E0

)- 3 ( 1- ~r) (3*0,A)]}, (A.4) 



~4= ' 

~C2 { + 112;;r+ [ 3(~ ++,p) + (~ +, n) + (~o,p). + 3{~-' n) 

-2 (t + ~r) (~*+,~0)- 6 (1- ~r) (~*+,A) 
_ 2 ( (~*o, ~+) + (~*o, ~-)). 

-2 (t- ~r) (~·-,~0)- 6 (1 + ~r) (~*-,A) 
+6 ((2*0,3-) + (3*-,3°))] 

+ 112io [ 2 (<~ + ,p) + (~o, n)) - 6(~*o,A) 

- ( 1 + ~r) { +2{~*+, ~+)- 3(3*0
, 3°)) 

- (1-~r) (+2{~·-,~-)-3(3*-,3-))] 

+~ ij [-2(~*o,Eo) 

- ( 1 - ~r) ( +2{E*+, ~+) - 3(3*0
, 3°)) 

- ( 1 + ~r) ( +2(E*-, ~-)- 3(3*-, 3-))] 

+ 112.f<+ ( 3(~ ++, E+) + 2(~ +,Eo)+(~ o' E-) 

-2 (2(E*+, 3°) + (E*0 ,p) + (~*0, 3-) + 2(~*-, n)) 

+3 ( ( 1 -_ ~r) (3*-, E0
) + 9 ( 1 + ~r) (2*-, A)) 

+6 ((3*0, E+)- 2(n-, 2°) )] 

+ 112.f<O [<~ +, ~+) + 2(~o, Eo)+ 3(~-' ~-) 
-2 (2(E*+,p) + (E*0,n) + (~*0 ,3°) +2(E*-,3-)) 

+3 ( (1 + ~r) (3*0
, E0

) + 9 (t- ~r) (3*0 ,A)) 
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+6 ( (3*-, E-) - 2(!1-, =:-))]}. . (A.5) 

The factors of r arise from 1r0-11 and E0-A mixing, which we incorporate into the 

calculation by rotating the SU(3) generators to O(r); this eliminates the mass-
., 

mixing terms to order (O(r2)), consistent with the model. However, within baryon 

loop corrections, the O(r2) terms are numerically insignificant, so they have been 
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suppressed in the above expressions. 

In Sec. 5.5 we indicated that the trans-decuplet contributions would vanish 

if we took the octet baryons degenerate in mass. As a special case to demonstrate 

this point, let us take the value of all decuplet-octet splittings to be 6; then ~ij = 

6/mo: depends only on a, the meson index. We may then trivially verify that the 

coefficient of each ifo: in the loop corrections vanishes if we replace each a( i, j) with 

the same factor f(a). · 

Upon expanding all meson and baryon masses in terms of quark masses 

and charges, we find that the C2 term is also formally too small (O(m: ln mq)) 

to keep in the current calculation, because there are two-loop effects at O(m~/2) 

that have already been neglected. This cancellation is a result of the fact that ~1 · 

originates in ~I = 3 terms, which require three powers of quark masses in this 

model; at least two of these factors in the loop contributions must come from the 

decuplet masses. Thus we find in this model that A 1 = 0, so that the tree-level 

relation Eq. 4.9 remains uncorrected . 
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Appendi~ B 

Loop Corrections: Octet 

We h~re tabulate the breaking of the Coleman-Glashow relation (Eq. 4.8), 

labeled .!lee in the text. We here employ a different format for express!ng our results 

from that in Appendix A in order to explicitly isolate isospin-breaking factors, as 

described below. 

The contribution from octet intermediate states (cis-octet diagrams) is 

computed to be 

This expression is O(ms(md-mu)); in particular, it is analyticin the quark masses, 

which arises as follows: The loop corrections to .6.cc are O(ms(md- mu) In m 8 ), 

where the log~ithm involves the renormalization scale J.t. We now expand the 

logarithms in meson mass differences, giving rise to an analytic result; the key fact 

is that we are taking the difference of a nonanalytic function about two closely

spaced points, which turns out in our case to give an analytic result. Furthermore, 

because there are no O(m~) counterterms for .!leG, changing J.t changes the result 

by O( m!). We may therefore choose J.t = J<fJ, which corresponds to neglecting 

O(m! In m 8 ) contributions, to eliminate the logarithm altogether. 

We now consider contributions from decuplet intermediate states (trans-. . 

octet diagrams). One finds 



,.· 

11.10 -
.ucG-

123 

c2 { 
327r2 J2 (n- p) [G1(~* -. N, K) + 4G1 (~- N, 1r)] 

+(3- - 3°) (G1 (~* - 3, K) + 2G1 (0 - 3, K) 

+G1 (3*- 3, TJ) + G1 (3*- 3, 1r)] 

+~(~+- ~-) (8G1(~- ~,K) + 2Gl(S*- ~,K) 
+3Gl (~*- ~' ry) + 2Gl (~*- ~~ 1r)] 

+~ (E*+ - ~·-) [2Gl (~* - N, K) + 2Gl (E* -:- 3, K) 

. -3Gl(E*- E, ry) - G1 (:E*- ~~ 1r)] 

+
2
3
° (3*0

- 3*-- :E*+ + E*-) (G1 (~- ~~ K)- G1(~- N, w)] 

+~(3*"""'- 3*0
) [2Gl (3*- ~' K) -·3Gl (3*- 3, ry) 

+GI(3*- 3, 1r)] 

+~ ( (_KD)2 
- (K+)2

) [4G2(~ ~ ~' K) + G2(~* - N, K) 

-'G2(:E* - 3, K} + 2G2(3* - E, K) 

-6G2(0- S,K)] 

+r [Ga(~*- ~~ TJ) - Ga(E*- :E, 1r) 

-Ga(3*- 3, TJ) + Ga(3*- 3, 1r)]}. (B.2) 

In writing this result, we have used the decuplet relations Eqs. 4.9-4.12 to eliminate 

to consistent order (O((md-mu)ms) is all we require) the dependence on the poorly

measured ~ isospin splittin~s. As before, terms proportional to r arise from 1r0-11 

mixing. Here 

Ga(M,m) 

(B.3) 

(B.4) 

(B.5) 

where F is the same function as defined in Eq. 5.47. The functions G1 and G2 are 
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simply proportional to the nonanalytic portions of the baryonic and rnesonic deriva

tives, respectively, of (m!H(~~)), where the function H(~) is defined in Eq. 5.48; G3 

is proportional to (m!H(~~)) itself. In these expressions, p, is the renormalization 

scale. 

We now explore the limiting forms of these corrections. In the limit M >> 
m, we have 

. 2 
G1(M,m) 

2 2 4M 1 2 (B.6) -+ +(2M -m )lny- 2m, 

G2(M,m) 
4M2 

(B.7) -+ -Min--2 , 
/1 

Ga(M,m) 
2 2 2 4M2 1 2 

(B.8) -+ +M(-M -m )ln---Mm 3 p.2 6 , 

up to terms that vanish as M.-+ oo. We thus see that the decuplet contributions 

decouple in the limit where the octet-decuplet splitting 8 becomes large, since the 

only terms that do not vanish as 8 -+ oo are analytic in the quark masses. In this 

limit, the decuplet contributions can be absorbed into counterterms in an effective 

Lagrangian that does not contain decuplet fields, and thep, dependence in Eqs. B.6-

B.8 simply renormalizes the couplings in this effective Lagrangian. Physically, such 

a decoupling must occur, because the effects of a massive field on low-energy pa

rameters must vanish as the field becomes infinitely massive. 

In the opposite limit M « m, we have 

m2 
G1(M,m) -+ -m2 ln-. (B.9) 2' /1 

G2(M,m) 
7rm 

(B.IO) -+ +2, 

G3(M,m) 
21rm3 

(B.ll) -+ ~-3-, 

up to terms that vanish as M -+ 0. In this limit, ~b'::; has the same nonanalytic 

dependence on quark masses as the contributions from octet intermediate states, as 

discussed in Sec. 5.6. 

Changing the renormalization scale p. in Eqs. B.3-B.5 changes D.Hh only 

by O(m!), so we may again take p. = J<O for purposes of numerical evaluation. 

.. 

,. 
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