Lawrence Berkeley National Laboratory
Recent Work

Title
PARTICLE YIELDS AT THE STAMFORD TWO-MILE ELECTRON ACCELERATOR

Permalink
https://escholarship.org/uc/item/4xp4h6j5

Authors
Flatte, S.M.
Gearhart, R.A.
Hauser, T.
et al.

Publication Date
1967-01-17
Particle Yields at the Stanford Two-Mile Electron Accelerator

Berkeley, California
DISCLAIMER

This document was prepared as an account of work sponsored by the United States Government. While this document is believed to contain correct information, neither the United States Government nor any agency thereof, nor the Regents of the University of California, nor any of their employees, makes any warranty, express or implied, or assumes any legal responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by its trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof, or the Regents of the University of California. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof or the Regents of the University of California.
PARTICLE YIELDS AT THE STANFORD TWO-MILE ELECTRON ACCELERATOR

Stanley M. Flatté, Roger A. Gearhart, Todd Hauser, Joseph J. Murray, R. Morgado, M. Peters, P. R. Klein, L. H. Johnston, and Stanley G. Wojcicki

January 17, 1967
Particle Yields at the Stanford Two-Mile Electron Accelerator

Stanley M. Flatté, Roger A. Gearhart, Todd Hauser, and Joseph J. Murray

Lawrence Radiation Laboratory
University of California
Berkeley, California

and

R. Morgado and M. Peters

Department of Physics
University of Hawaii
Honolulu, Hawaii

and

P. R. Klein

Department of Physics
Purdue University
West Lafayette, Indiana

and

L. H. Johnston

Stanford Linear Accelerator Center
Stanford University,
Stanford, California

and

Stanley G. Wojcicki

Department of Physics
Stanford University,
Stanford, California

January 17, 1967

ABSTRACT

The π^\pm, K^\pm, p^\pm, and e^\pm yields at 2 and 3 deg from 16- and 18-GeV electrons on a 0.3-radiation-length beryllium target have been measured at the Stanford two-mile electron accelerator.
It was early realized that one of the most intriguing questions associated with the creation of the 20-GeV Stanford two-mile electron accelerator related to the possibility of copious production of strongly interacting particles. In 1960, Drell calculated the amplitudes for a particular set of photon-induced peripheral processes which produced strongly interacting particles. These calculations were used to predict yields that were large enough to be experimentally useful. This letter largely confirms that prediction.

The π^\pm, K^\pm, p^\pm, and e^\pm yields from 16- and 18-GeV electrons on a 0.3-radiation-length Be target have been measured at the Stanford two-mile accelerator and are reported here. The measurements were carried out at production angles of 2 and 3 deg, and at various secondary momenta between 4 and 14 GeV/c.

Figure 1(a) shows diagramatically the beam layout. Electron pulses, each approximately 1.5 μsec long were delivered to a 10- by 0.6- by 0.6-cm Be target, with a typical current of 1 mA within each pulse, giving about 10^{10} electrons per pulse. The pulse repetition rate was normally 180 per second. The primary beam-momentum spread was < 1%. After traversing the target, the electron beam was stopped in a well-shielded, water-cooled beam dump. A quadrupole doublet midway between target and detector in the secondary beam served to focus particles of the desired momentum onto the detector array. A 1% momentum resolution was obtained by use of a bending magnet, which deflected the beam by 3 deg. The system accepted a solid angle of $\sim 10 \mu$sr. Figure 1(b) diagrams the detector array, which was located 220 ft from the target.
The acceptance of the counter telescope was determined by two 3/8-in. diam plastic scintillators S_2 and S_3 near the beam focus, and a 3/4-in. scintillator S_4 that defined an angular aperture of $\sim 7\text{ mrad}$. C_4 and C_2 were respectively threshold and differential gas Čerenkov cells for mass identification. The pressure in C_4 was normally set below the threshold for K's. The coincidence counts of $S_1 S_2 S_3$, $S_4 S_2 S_3 C_2$ (or $S_4 S_2 S_3 C_1 C_2$) were recorded as a function of C_2 pressure. At all secondary momenta the fast particles (π, μ, e), K's, and p's (or \bar{p}'s) were well-separated in pressure. The scintillator S_4 was used to detect showers produced by electrons interacting in the preceding lead. The thickness of this lead was experimentally adjusted to be near the shower maximum for each momentum studied, and the discriminator on S_4 was set to reject single particles and accept only electron showers. Finally, the scintillator S_5 together with iron absorbers placed in front were used to measure the μ fraction of the beam.

The absolute magnitude of the electron beam current was measured with calibrated toroids accurate within $\pm 5\%$. The beam on target was monitored relatively by measuring the net charge emitted from the electrically insulated target. This charge amounted to about 1.2 electrons per primary beam electron, due mainly to delta rays, Compton electron emission, and positron annihilation.

All results obtained with the Be target are shown in Table I. A systematic correction for interactions and scattering losses in the detector array which depends on gas pressure in C_4 and C_2 as well as on momentum has been applied to the data. This correction is typically 15%. To the statistical error we have added algebraically an error of
\[2\%\text{, which reflects nonstatistical fluctuations in the ratio of } S_1 S_2 S_3 \text{ to monitor current. This combined error is quoted in Table I. The overall normalization of the data is believed to be accurate to } \pm 15\%.

The 2-deg yields at 18 GeV primary energy are shown in Fig. 2. Figure 3 shows representative angular distributions at 18 GeV. The 0.5-deg and 1-deg data were taken from Boyarski et al.\(^4\) It was necessary to correct their data from 16-GeV to 18-GeV primary energy as well as to correct for a different target length (0.6 radiation lengths). Comparison with the 0-deg data of Barna et al.\(^5\) is not shown, since rather large and uncertain normalization factors would be needed to convert their 1.8-radiation-length data to 0.3 radiation lengths.

It is generally believed that production of strongly interacting particles by an electron beam is a two-step process, with the electrons forming real photons by bremsstrahlung, followed by the interaction of the photons with the target nuclei. The Drell mechanism provides a quantitative estimate of the photon-nucleus interaction. However, once the strongly interacting particle is produced it may still undergo further interactions in the target, or even within the same nucleus. This difficulty, as well as the complication of going through the intermediate step of bremsstrahlung production makes detailed comparison of the yields with theoretical production models difficult. Nevertheless, the following qualitative observations can be made:

1. The ratio of the yields of \(\pi^+\) to \(\pi^-\) [Fig. 2(a)] is unity for all secondary momenta. Calculations of the combined yields of pions from the Drell process and from \(\rho\) production, performed by Tsai and Whitis,\(^6\) give order-of-magnitude agreement with the experimentally
observed π± yields, and, at production angles ≥ 2 deg, give a decrease in yield with angle comparable to that seen in Fig. 3(a).

2. The K+/K− ratio [Fig. 2(b)] is greater than 1.3, which would be expected from the Drell mechanism alone. The order of magnitude of the yields is consistent with such a mechanism. Associated production of K+ with Λ or Σ by photons, however, which could produce an excess of K+ over K−, has been calculated to be 2 to 3 orders of magnitude lower. The decrease of the cross section at small angles predicted by an unmodified (no final-state interaction) Drell mechanism is not seen in the K+ or K− angular distributions (Fig. 3, Table I, and Ref. 5).

3. The large ratio of protons to antiprotons observed in Fig. 2(c) indicates that quite different mechanisms are operative. Drell has suggested that photodisintegration of the Be nucleus with direct emission of target protons may be responsible for the large proton yield. The proton angular distributions of Fig. 3(c) are somewhat flatter than predicted for direct proton ejection.

A search was also made at a secondary momentum of 12 GeV/c for deuterons. The yield was found to be < 3% of that of the protons.

4. Large-angle production of e− and e+ (2 or 3 deg) can occur most simply by bremsstrahlung or pair production accompanied by a single scatter in the target. Calculations using elastic scattering gave results too small to account for the observations of Table I. Inelastic scattering is probably dominant, and is difficult to calculate.

5. The general trend of all yields to fall rapidly at high secondary momenta is, at least in part, a result of the smaller number of bremsstrahlung photons capable of producing these secondaries.
It is a pleasure to acknowledge Dr. Y. A. Tsai and V. Whitis of SLAC for their extensive theoretical calculations, and Prof. S. D. Drell, also of SLAC, for several stimulating discussions. We wish to thank the Research Area Department for skillful operation of the accelerator and associated equipment. The assistance and cordiality of the entire SLAC staff is gratefully acknowledged. Finally, it is a pleasure to thank Professor Luis Alvarez for his encouragement and support.
FOOTNOTES AND REFERENCES

*This work was done under the auspices of the U. S. Atomic Energy Commission.

† Now at Stanford Linear Accelerator Center, Stanford University, Stanford, California.

6. Y. S. Tsai and V. Whitis, Stanford Linear Accelerator Center, private communication.
8. The possibility of associated production by the pions within the same nucleus cannot be excluded. Analysis of data taken with an iron target, which has bearing on this question, is underway and will be reported elsewhere.
9. S. D. Drell, Stanford Linear Accelerator Center, private communication.
Table I. Particle yields in particles sr^{-1} (GeV/c)^{-1} per 10^7 incident electrons on a 0.3-radiation-length Be target. The errors reported here are the algebraic sums of the statistical errors and nonstatistical fluctuations as described in the text. The overall normalization of the data is believed to be accurate to ±15%. All yields are at the target, i.e., they have been corrected for decay. The muon fraction was measured at a few momenta and was found to be < 1% of the total yield.

<table>
<thead>
<tr>
<th>Primary electron energy (GeV)</th>
<th>Production angle (deg)</th>
<th>Charge and secondary momentum (GeV/c)</th>
<th>Electron</th>
<th>Pion</th>
<th>Kaon</th>
<th>Proton</th>
</tr>
</thead>
<tbody>
<tr>
<td>18^a</td>
<td>2</td>
<td>-4</td>
<td>2780±120</td>
<td>2520±150</td>
<td>114±10</td>
<td>7.1±1.3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>-6</td>
<td>1280±80</td>
<td>2050±100</td>
<td>103±11</td>
<td>5.1±1.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>-8</td>
<td>970±60</td>
<td>1680±80</td>
<td>49±5</td>
<td>4.5±0.7</td>
</tr>
<tr>
<td></td>
<td></td>
<td>-10</td>
<td>970±50</td>
<td>820±50</td>
<td>22.5±2.5</td>
<td>2.9±0.7</td>
</tr>
<tr>
<td></td>
<td></td>
<td>-12</td>
<td>930±40</td>
<td>280±30</td>
<td>8.3±0.9</td>
<td>1.2±0.4</td>
</tr>
<tr>
<td></td>
<td></td>
<td>-14</td>
<td>1060±40</td>
<td>74±26</td>
<td>4.5±0.7</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>+4</td>
<td>440±40</td>
<td>2330±100</td>
<td>230±30</td>
<td>260±80</td>
</tr>
<tr>
<td></td>
<td></td>
<td>+6</td>
<td>98±12</td>
<td>2130±60</td>
<td>166±21</td>
<td>84±10</td>
</tr>
<tr>
<td></td>
<td></td>
<td>+8</td>
<td>1630±40</td>
<td>86±11</td>
<td>49±4</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>+10</td>
<td>900±20</td>
<td>56±3</td>
<td>23.2±1.7</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>+12</td>
<td>304±7</td>
<td>31±3</td>
<td>9.8±0.8</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>+14</td>
<td>76±2</td>
<td>14.6±1.5</td>
<td>3.5±0.6</td>
<td></td>
</tr>
<tr>
<td>18^a</td>
<td>3</td>
<td>+6</td>
<td>1480±60</td>
<td>103±15</td>
<td>126±30</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>+10</td>
<td>186±8</td>
<td>35±3</td>
<td>15.1±1.8</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>+12</td>
<td>64±3</td>
<td>14.2±1.7</td>
<td>8.0±0.9</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>-12</td>
<td>164±5</td>
<td>52±3</td>
<td>4.3±0.5</td>
<td>0.26±0.07</td>
</tr>
<tr>
<td>16^b</td>
<td>3</td>
<td>+10</td>
<td>148±6</td>
<td>26±3</td>
<td>10.7±1.7</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>+12</td>
<td>35.2±1.6</td>
<td>10.7±1.2</td>
<td>3.2±0.3</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>-10</td>
<td>252±12</td>
<td>156±11</td>
<td>10.7±1.2</td>
<td>1.1±0.2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>-12</td>
<td>299±9</td>
<td>37±4</td>
<td>2.8±0.4</td>
<td>0.17±0.10</td>
</tr>
</tbody>
</table>

a. 17.85±0.15 GeV.
b. 16.0±0.08 GeV.
c. Deuterons here were found to be less than 3% of the protons.
FIGURE LEGENDS

Fig. 1. (a) Beam configuration (not to scale). The target is 0.3 radiation lengths of Be.

(b) Counter array (not to scale). S_1, S_2, S_3, S_4, and S_5 are plastic scintillators; C_1 and C_2 are respectively threshold and differential Čerenkov detectors.

Fig. 2. Experimental yields of (a) π^\pm, (b) K^\pm, (c) p^\pm, and (d) e^\pm for a 2-deg production angle and 18-GeV primary energy. All yields are in units of particles sr$^{-1}$ (GeV/c)$^{-1}$ per incident electron on a 0.3-radiation-length Be target. Errors shown on the graphs are the algebraic sums of the statistical errors and non-statistical fluctuations as described in the text. The overall normalization of the data is believed to be accurate to ±15%. The error bars on the π^+ data have been suppressed for clarity; they range from 2 to 4% (see Table I). The continuous curves in (a) and (b) are, respectively, the combined pion yields from the Drell process and from p production, and the K^+ yields from the Drell process, as calculated in Ref. 6.

Fig. 3. Representative angular distributions at 18-GeV primary energy for (a) π^+, (b) K^+, and (c) protons. The π^+ distribution contains the adjusted data of Boyarski et al. 4 (see text). The units of the yields, and the significance of the error bars are given in Fig. 2. The overall normalization of the data is believed to be accurate to ±15%.
Fig. 1
Fig. 2
This experiment

- Boyarski et al.
- This experiment

Fig. 3
This report was prepared as an account of Government sponsored work. Neither the United States, nor the Commission, nor any person acting on behalf of the Commission:

A. Makes any warranty or representation, expressed or implied, with respect to the accuracy, completeness, or usefulness of the information contained in this report, or that the use of any information, apparatus, method, or process disclosed in this report may not infringe privately owned rights; or

B. Assumes any liabilities with respect to the use of, or for damages resulting from the use of any information, apparatus, method, or process disclosed in this report.

As used in the above, "person acting on behalf of the Commission" includes any employee or contractor of the Commission, or employee of such contractor, to the extent that such employee or contractor of the Commission, or employee of such contractor prepares, disseminates, or provides access to, any information pursuant to his employment or contract with the Commission, or his employment with such contractor.