Lawrence Berkeley National Laboratory

Recent Work

Title
HSE Screening Risk Assessment for Geologic CO2 Storage Sites

Permalink
https://escholarship.org/uc/item/4z22n4c2

Author
Oldenburg, Curtis M.

Publication Date
2005-03-01
HSE Screening Risk Assessment for Geologic CO\(_2\) Storage Sites

Curtis M. Oldenburg

Earth Sciences Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720 USA; E-mail: emoldenburg@lbl.gov; Ph: 510-486-7419; Fax: 510-486-5686

We are developing a spreadsheet-based screening-level methodology for assessing potential Health, Safety, and Environmental (HSE) risk of geologic CO\(_2\) storage projects. The challenge of HSE risk assessment for geologic CO\(_2\) storage is that knowledge of the subsurface is invariably limited, especially at the site-screening level. However, a geologist or hydrologist familiar with similar geologic environments will typically be able to assess HSE risk at some rudimentary level based on available data and experience and form an expert opinion. The methodology we developed is designed to capture expert opinion about sites, qualified by associated uncertainties, thereby allowing comparison of sites so that the most promising can be selected for additional characterization. The approach is flexible so that users can control the assessment through weighting factors, and it is very simple and transparent so that it can be easily reviewed and understood by stakeholders. The approach is based on evaluating three basic characteristics that influence HSE risk: (1) Potential of the primary target site for long-term containment of CO\(_2\); (2) Potential for secondary containment if the primary target site leaks; (3) Potential to attenuate and/or disperse leaking CO\(_2\) if the primary formation leaks and secondary containment fails. The user evaluates each of these basic characteristics independently by assigning weights and properties/values to various attributes of the three characteristics, along with uncertainties associated with the properties/values. The primary output for site screening is a plot with uncertainty on the x-axis and a numerical score for each of the three characteristics on the y-axis.

Acknowledgment: This work was supported in part by WESTCARB through the Assistant Secretary for Fossil Energy, Office of Coal and Power Systems, through the National Energy Technologies Laboratory (NETL), and by Lawrence Berkeley National Laboratory under Department of Energy Contract No. DE-AC03-76SF00098.